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Existence Theorems for Abstract Multidimensional
Control Problems®

Lawmserto CEsart®

Abstract. In the present paper, the author discusses an abstract formulation
of control problems involving general operators #: S — V, # : S— Y from
a Banach space S into space V and ¥ of vector functions in a fixed domain
with components in L, ,p 2 1. For this general formulation, the author
states closure theorems, lower closure theorems, and existence theorerns for
an optimal solution. It is then shown that the problems of control involving
Dieudonné-Rashevski partial differential equations previously considered by
the author are particular cases of the present formulation. Finally, it is shown
by examples that problems of control involving usual partial differential equa-
tions, linear or not, as well as other functional relations, can be framed in
the present formulation. The present work concerns problems with distributed
controls. Work concerning problems with distributed as well as boundary
conirols is forthcoming.

1. Introduction

We present here existence theorems for multidimensional optimal control
problems in an abstract setting, which are extensions of theorems proved in a
concrete form in previous papers (Refs. 1-4). The present formulation for
general Lagrange problems includes also a number of results which have
appeared before for free problems only (Refs. 5-11). The present formulation
concerns only distributed control problems in the terminology of Lions (Ref. 12).
Extensions including boundary conirol problems will be discussed elsewhere.
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We are interested in control problems where the state variable is an
element of a Banach space S with norm || x ||, where £: S— Vand#%: S —Y
are two operators, & possibly unbounded, ¥V and Y functions spaces of
elements y(£) = (¥%,..., ¥%), o(f) = (v,..., ¥"), t € G, and where the controls
are also vector functions u(f) = (ul,..., w™), t € G, G a bounded open subset
of E,, v > 1. Thus, we consider control problems monitored by a functional
equation of the form

(Za)t) = f(t, Wx)t), u(t)  ae.in G, 1)
with usual constraints
(&, (@x)0))e 4,  ut)e U(t, (x)t)) ae inG,

and functional
Iz, u] = f Ity (1), () dt.

Details and more general formulations will be indicated below. Whenever S is
a space of vector functions on G and & and % are differential operators,
then (1) reduces to a usual differential system in G.

2. Abstract Functional Equation

Let (7 be a given open bounded subset of the t—space E,, t= (.., 7),
=1, letY be a space of s-vector functions y(¢) = (»%,..., ¥), t € G, whose
components y* are L, -integrable in G, p; > 1,7 =1,..,5,and let V be a
space of r-vector functlons o(t) = (v4,...,¢%), te G, whose components o7
are L, —1ntegrable in G, p; > 1, j=1,..,7. Thus, YCL', VCL", where
szL (G), L" = Hg_IL (G). We shall take in ¥V and V the usual

norms
1= (Z 1 18,) Hel=yf (S 1e,).

or equivalent ones, and we shall denote them also by || ¥ ||, , or || ¥ || L,

Let T be the space, or set, of all m-vector functions u(¢) = (u yerey WY,
t € G, whose components u’ are measurable in G.

Let § be a Banach space of elements x and norm || x ||, and let

U:8~>Y, L: 8->V

809/6/3-3
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be two given operators transforming every element x € S into elements
y=UxeY,v=ZLxel, yt) = (¥,..., ¥°), 0(t) = (¢},..., "), € G. Con-
cerning % and £, we shall assume that (H) if x, «;,, £ = 1, 2,..., are elements
of S and x;, — » weakly in S and y, = Ux,,, v, = Ly, y = Ux, v = Fx,
then y, — y strongly in Y, and v, — v weakly in V.

Foreverytecl G = G U 2G, let A(t) denote a nonempty subset of the y-
space E; , and let A C E,,  be the set of all(¢, y)with ¢ € cl G, y € A(%). For every
(t,y)e 4, let U(t, y) denote a nonempty subset of the u-space E,, , and let
MCE,, ., betheset of all (¢, v, u) with (¢, y) € 4, u e U(t, y). Let f (8, y, u) =
(fys++s fr) be an r-vector function defined on M. We shall say that a pair «, «,
xeS,ueT,is admissible provided the following conditions are satisfied:
(a) xe S, (b) ue T, that is, u(t) = (4l,..., ™), t € G, with &/ measurable in G,
] = l,...,m;{(c)y = #¥x €Y, thatis, y(t) = (¥, ¥%), t € G, with y* e L, (G),
1= 1,.,s; (d)v = ZLx eV, thatis, v(t) = (v%,..., "), t € G, with v eL (G)
J=1.,7(e) (£, ¥(t) e 4 ae. in G5 (f) u(t) € U(t () a.e. in G; and (2)
o(t) = f (t (1), u(?)) a.e. in G. Reqmrement (g) can be written in the form

(L)1) = f(t, (%)), u(t)) ae. inG, ()

an abstract functional equation. Whenever S'is a space of vector functions x(z)
on G and & and % are differential operators, then (2) is a differential equation
or system in G.

Remark 2.1, It will be enough to require that hypothesis (I) is
satisfied for sequences of elements x which actually occur in the closed
classes £2 of admissible pairs «, u of the existence theorems in Sections 7 and 8.

3. Particular Case

In the following situation, which is often encountered, less than (H) is
demanded. Let X be a Banach space of elements x and norm || x ||, let X, be a
linear subspace of X, let #: X, — Y, ¥: X, — V be linear operators, and let
S be the completion of X, by means of the norm

2l = /(U2 + | % [P + || L [). ()

Then S is a Banach space with norm ||| x ||l. Now, to each element x € S there
corresponds a unique element x, € X, which we may denote simply by x, a
vector function y(£) = (¥, 3o°), ¢ € G, with y* € L, (G), a vector function

,(2) = (P10, ¥7), tEG, W1th v L, (G), and sequences [x;] of elements
x,€X,, k=1,2,., such that, 1f Vi = (Vitseoor V) = Uxy,, vp=
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(vk » ,vk) — gxk: k=1,2,., then ”xk - xl]-—>0, inf —yoinz-">O
i=1,. s,]]ka—-v’}lp —0,j=1,...,7, as k — 0. We define #%: S— Y,
Z: S——> V by taking Gz = Yo s gx == 9, . It is known that % and £ are
uniquely defined and are linear operators from the Banach space S into Y and
V, respectively.

Let X* be the topological dual of X, and let (x, x*) denote the application
of x* € X*tox € X. Asequence [x,] of elements x, € S, k = 1, 2,..., converges
weakly in .S to an element x € S, or x;, — x weakly in S as £ — oo, provided
the following conditions are satisfied: (x5, » ) — (%, x*) for every x* e X*;
Jo Wilp dt — [ vip dt for every ¢ €L, (G), ¢i* p =1, 7= 1,..., 5; and
_[G v dt — [, i dt for every YL (G) GGt +p7t = 1,7 = 1,..,r. Here,

= (Vs 91°) = Uy, v = (Wk) »y o) € L%y, ¥ = (Ve :ys) = Ux,
”U = (vh,..., ¥") = L.

In this situation, x;, — x weakly in S certainly implies that y, — v
weakly in Y and v, — v weakly in V. The part of (H) concerning & is thus
trivial, and all we have to require is that () if x;, — x weakly in S as £ — o0,
then y, — ystronglyin Y as k£ — o0, wherey, = %x, ,y = Ux, k= 1,2,....

4. Orientor Fields and First Closure Theorem

The abstract functional equation (2) can be written in terms of an orientor
field. Indeed, for every (¢, y) € 4, let O(¢, y) C E, denote the set

Q(t)y) :f(tsy’ U(t’y)) = [zEET |z =f(t,}‘, u)) ue U(t’y)]' (4)

Then, if x, u is any admissible pair, then obviously v(z) € O(z, ¥(t)) a.e. in G,
where v = L%, y = ¥x, or

(Lx)(2) e Qt, (x)(t))  ae. in G. (%)

This is the present abstract form of an orientor field equation.
IfG,A4,8,Y,V, &, U are assigned as in Section 2, and we also assign
for every (¢, y) € A an arbitrary set Q(¢, y) C E,, then we may consider the
corresponding director field relation in the form (5). We shall say then that
an element x € S is admissible provided the following conditions are satisﬁed
(@)xeS;(b)y = UxeY, y(t) = (¥...¥°), t€ G, y' €L, (G) i =1,
() o= ,?er, o) = (..., v"), teCG, vel,(G), j=l,.,r1; (d)
(t y(t)) € 4 ae. in G; and (e') o(£) € Q(2, y(¢)) a.c. in G that is, relation (5)
is satisfied.
If x, y is any admissible pair, that is, x, u satisfies (2)—(g) of Section 2 and
Q(t, y) is defined by (4), then certainly x € .5 satisfies (a’)—(e'), x is admis-
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sible and satisfies the director field relation (5). Conversely, if we know that
A and M are closed, that fis continuous on M, and that O(z, ) is defined by (4),
then for every element x €.S satisfying (a’)—(e’) above, that is, for every
solution of the director field relation (5), we can associate an element # € 7' such
that x,  is an admissible pair, that is, x, u satisfies (a)—(g) of Section 2. The
proof is based on the implicit function theorem (see, for example, Ref. 13).

Finally, we shall need below the property (Q) for closed convex sets
which we have used in Refs. 1-4 and 14-15. This concept is a variant for closed
convex sets of Kuratowski’s definition of upper semicontinuity of sets.
A great many criteria for property (Q) of the sets we shall deal with are known,
and references will be given (Section 6).

For (f,5)e 4 and 8 > 0, let N4(i,7) denote the 8-neighborhood of
(%, 7) in A, that is, the set of all (¢, y) € A at a distance <3 from (, ¥). For
(&, 7)€ 4 and 8 >0, let O(%, 7; ) denote the union of all (¢, y) with
(¢, ¥) € Ng(Z, 7). We say that the sets O(¢, y) satisfy property (Q) at the point
(#, 7) € A provided O(Z, ¥) = (s cl co Q(Z, 7: 3), or

0G5 =ceo U 0.
5 (t.mEN(EF)

We say that the sets Q(Z, y) satisfy property (Q) in 4 provided these sets
satisfy the property above at every point (¢, ) € A. Sets Q(t, y) satisfying
property (Q) are necessarily closed and convex.

Theorem 4.1 (First Closure Theorem). Let G C E,be open and bounded,
and A CE,, closed,let S, Y, V, %, & as in Section 2; and, for every (¢, ¥) € 4,
let O(¢, v) be a given subset of E, which we assume to be convex, closed,
and to satisfy property (Q) at every point of 4 (with exception perhaps of a
set of points whose £-coordinate lies in a set of measure zero on the f-space E,).

Let x, x,, B = 1,2,..., be elements of S, such that, if y, = %x,
v, = L,y = Ux, v = Lx, then x;, — « weakly in S, y;, — y strongly in¥,
v, — v weakly in 7" as k — co. If all elements x, are admissible [that is, all
x;, satisfy (a’)—(e’)], then x also is admissible.

This statement is a particular case of the following closure theorem.

5. Second Closure Theorem

Let I, be an interval of the ¢-space E, containing ¢l G = G U 8G, where
G is a given bounded open subset of E,. It is not restrictive to assume
I,=[0, 8],0r[0,..., 0, b,..., b],for some b > 0.For every t € I, t = (t,..., *), let
[0, £] denote the interval [0,..., 0, £1,..., #],0r 0 << 7 < 85, i = 1,...,,v. Let Zbe
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the space or set of all functions 2{f) = (2%,..., 2°), ¢ € I, which can be written
in the form 2(¢) = fé (7) dr, t €1, , where dr = dr* -+ d7*, §(2) = (1., ),
tel,, and each component ¢ is L-integrable in I, and zero in I, — G. Note
that the elements 2(f) = (z%,..., 2°), t €I, , of Z certainly have the following
properties: (1) each 2i(¢), £e1,, is continuous on I, with values 2%(z) = 0
whenever ¢ = (£.,...,#) €1, , 42 --- #* = 0; and (2) 2% admits the generalized
derivative D%z’ of order «, = (1, 1,.... 1), | o, | = v, and D%g? = ¢ is L~
integrable in I, and zero in I, — G (a.e.).

Let G, 4, U(t,y), M as in Section 2, let N =7 + o, and f(2, y, u) =
(/i f) = (Sasees s fri1 5e-0s Jrio) DE an N-vector function defined on M. Let
O(t, y) C Ey be the set defined by

Ot y) = f(t,y, Ult, y)) = [Fe Ey | 3 = f(t,9,w), ue U, y)). (6)

LetS, YV, V, T, %, % be defined as in Section 2. Instead of pairs x, #, we shall
consider here systems x, 2, u with x€ S, 2€ Z, uc T. We shall say that a
system x, 2, u is admissible provided all requirements (a)—(g) of Section 2 are
satisfied and, in addition also (h) € Z and (i) Dz(2) = f,(¢, ¥(2), u(t)) a.e.
in G, o, = (1, 1,..., 1). Thus, (g) and (i) together represent the increased
functional system

(L)) = f(t, (‘Ux)1), u(t)), (D™=)(2) = f,,(t, (Ux)(t), u(t)) ae in G. (7)

As in Section 4, the system (7) can be written in the form of the orientor field
relation

(£5)t), (D*5)®) € 0(t, (Xx)(t)  ae. in G, (8)

where the first member is an N-vector, the second member is a subset of Ey,
and N =7 | o.

Given G and 4 and, for any (¢, y) € 4, a set (¢, y) C Ey, we may con-
sider the orientor field relation (8), with S, Y, V, &, % defined as in Section 2.
Then, a solution x, z of this orientor field is now a pair ¥, 2, satisfying (a")—(d")
of Section 4 and, in addition, also (f') € Z and (g’) (v(2), D*=2(%)) € O(t, ¥(t))
a.e. in G, which is again relation (8).

We have just proved that, for any system x, 2, u satisfying (a)—(i), the
pair x, 2 satisfies (a’)~(d"), ('), (g'), that is, the orientor field relation (8) with
the sets O(t, ¥) defined by (6). Conversely, if 4 and M are closed, f continuous
on M, and the sets O(t, ¥) are defined by (6), then for any pair x, # satisfying
(a")~(d"), ("), (g'), that is, for any solution of the orientor field equation (8),
there is some element # € 7" such that x, z, u satisfies all requirements (a)—(i),
that is, x, 2, u is a solution of the increased functional system (7).
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We shall consider the countable set {p} of all rationals, the countable
system {Z,} of all points ¢ = (f,..., 1) with # = p;b, p;e{p}, j = 1,..., %, and
the countable system {I} of all intervals I = [a,, a,] C1,, a = (a},..., a*),
a; = (ay..., a?), &yt < ayf, i =1,.,v, with a;, aye{t,}. For any given
function 2(t), t€l,, we shall consider the usual differences 4z = 4,z of
order v relative to the 2* vertices of 1.

Let G and A4 as usual, N = 7 + o; and, for every (¢, y) € 4, let us consider
aset J(¢, y) C Eywith the following properties: (1) there is a scalar L-integrable
function () >0, e G, such that, if & = (2,..,, 2", 2™,..., 29) e O(¢, ),
then 2t > —f(t), i = r + 1,..., 7 -+ o; and (2) if

g = (2., 28, 2+, g e O(t, ),

then any other point g = (&,..,, &, 2",..., 2*°) with & > &, i =7 + 1,..,
r -~ o, belongs to J(t, y).

Theorem 5.1 (Second Closure Theorem). Let G be bounded and open,
and A CE,,, closed as in Section 2, with GCI,CE,,and let S, Y, V, Z,
L, U as in Sections 2 and 5. Let N = 7 + o; and, for every (f,y) € 4, let
0(t, ) be a subset of Ey satisfying properties (1) and (2) above, and also
convex, closed, and satisfying property (Q) at every point of 4 (with exception
perhaps of a set of points whose #-coordinate lies in a set of measure zero on
the t-space E,). Let &, 25, B = 1,2,..., 5, €S, 2, € Z, be pairs satisfying
properties (a')~(d"), (f), (g"), that is, admissible, and such that the following
statements hold: x, — x as R — oo weakly toward an element x € S; 2,(t) — 2(t)
pointwise for all t € {t,}, t €I, ; ¥, — y strongly in V; and v, — v weakly in V,
where y, = Uy, , v, = Ly, ¥ = Ux, v = Lx, and 2(¢) is defined only at the
points ¢ € {£,}, t € I, . Assume that there is a decomposition 2(t) = z,(£) -+ s,(¢),
2{E) = (Boheeer 20), So(E) = (8,550, 8°), Where z, is defined in the whole of I,
2, € Z, and s, is singular. Then, the pair x, z, is admissible, that is, the pair
5, 2, satisfies (a")~(d"), (f'), (g"). The proof of this statement is essentially the
same as the one in Ref. 2, Section 3.3.

6. Lower Closure Theorem

Here, G, 4, U(t,y), M are as in Section 2, f(¢, v, %) = (f1 0 o)
fot, y, u) are functions defined on M, f, scalar,and S, Y, V, T, %, ¥ are as in
Section 2. We consider the class of all pairs x, u, x € S, u € T, satisfying all
requirements (a)-(g) of Section 2, and, in addition, the following further
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requirement: (h) f,(¢, (#x)(t), u(t)) is L-integrable in G. These pairs x, u shall
be denoted here as admissible pairs. Thus, for every admissible pair #, u, the
functional

Ilw,u] = | ol (), ) dt )

is defined, and the constraints and the functional equation

(t, (#x)t)) e A,  u(t)e Ult, (Ux)t)), (10)
(Lx)(0) = f(t, (Ux)D), u(t)) ae inG, (11)

are satisfied. We say that the functional (9) possesses the property of lower
closure at an element x € S provided the following statement holds: if x; , u, ,
k=1,2,..,x,€8, u,eT, are admissible pairs, that is, x; , #, satisfy (a)—(h),
and x, — x as k — oo weakly in S, and lim I[x, , #;,] << +0 as & — o0, then
there is an element # € T such that the pair x, u is admissible [that is, x, u
satisfies (a)-(h)], and

I, u] < lim Iy, , 1] (12)

The usual concept of lower semicontinuity is a particular case of the concept
of lower closure above. Indeed, assume that the data G, 4, U(¢, y), M, f, 1, ,
S, Y, V, U, & are so arranged that x determines u uniquely. By this we mean,
in symbols, that (x, u;), (x, #,) admissible implies u,(f) = uy(¢) a.e in G,
briefly #; = u, . Then, we can as well say that x is admissible, we can denote
I{x, u] simply by I[x], and (12) reduces to I[x] < lim I[x;], the usual lower
semicontinuity requirement, relatively to weak convergence in .S. The situation
that we have now depicted is very common. It occurs, for instance, with
free problem, that is, problems concerning with the minimum of functionals
of the form I[x] = [;f,(t, x(t), (Vx)(t)) dt, where x is a vector function
in G and Vx the system of all first-order partial derivatives. Then, the problem
can be written in the form (9)—(11) with Vx = u, that is, ¥ determines u
uniquely. The same situation occurs with the problems considered by Fichera
(Refs. 8-10) concerning the minimum of functionals of the form I[x] =
Ja£o(t, (Ux)(t), (ZLx)(t)) dt, where x € S, % and Z are as in Section 2. These
problems can be written in the form (9)~(11) with #£x = u, that is, again, x
determines # uniquely (see Sections 9.4 and 9.5 for details).

Theorem 6.1 (Lower Closure Theorem). Let G, A, U(t,y), M as in
Section 2, G open and bounded, GCI,CE,, 4 and M closed, let f(¢, y, u) =
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(1 5+ f)s fo(t, ¥, 1) be continuous on M, f, scalar, and let us assume that the
sets O(t, y) = [# = (2, 2) | 2 = fo(t, 3, u), 2= f(t,y,u), uc U(t, »)| CE, 1 y
are convex, closed, and satisfy property (Q) at every point of 4 (with exception
perhaps of a set of points whose #-coordinate lies in a set of measure zero on
the -space E,). Let us assume that (4) for some scalar L-integrable function
¥(t), te G, ¢ >0, we have f(t,y, u) = —(¢) for all (¢, y,u) e M. Let S,
Y, V, T, %, & be as in Section 2 with #, % satisfying property (H).
Then, the functional (9) possesses the property of lower closure at every
element x € S. In other words, whenever x € S and there is a sequence of
admissible pairs x;, , #, , kK = 1, 2,..., with x;, — x as k — o0 weakly in S, and
lim I[x;, , u;,] << -+ o0, then there is some # € T such that x, « is an admissible
pair, and I[x, u] < lim I[x; , %,].

This statement is a corollary of the second closure theorem. Its proof is
similar to the one in Ref. 2, Section 5.4. Condition () in Theorem 6.1 can be
replaced by the following weaker assumption (*): for every point f € cl G,
there are a neighborhood Ny(f) of # in cl G, an L-integrable function (#) > 0,
t € Nyf), and a real r-vector b = (b,,..., b,) such that f, —b-f > — in
Ni(f), that is,

,
flt v, u) — Y bifit, v, u) = —(t)  forall (£, y,u)e M with e Ny).
-1

A proof of this extension of Theorem 6.1 is given in Ref. 16 for v = 1.

By a well known remark by Goodman, the hypothesis in Theorem 6.1
that the functions f; , f are continuous on M can be replaced by the weaker
assumption that f, , f are continuous in x, u for every ¢ and measurable in ¢
for every x, u. The proofs are essentially the same. Also, the assumption
concerning the sets J(z, y) satisfying property (Q) in Theorem 6.1 (as well as
in Theorems 4.1 and 5.1) can be replaced by the following weaker assumption:
there is a countable decomposition of G into disjoint measurable sets H,,
A =1, 2,..., such that, if 4, denotes the set

4, =16y (%y)ed, te H]CE,,,

then the sets O(t, ) satisfy property (Q) in A, for almost every £, A = 1, 2,....

Whenever x determines u uniquely (see above), Theorem 6.1 (and its
extensions) reduces to a sufficient condition for lower semicontinuity. As
such, it contains as particular cases the lower semicontinuity theorems with
respect to weak convergence due to Morrey for free problems (see Section 9.4
below) and Fichera for his class of problems (see Section 9.5 below). In both
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cases, ¥ = m, f = u, hence ¥x = u, and the functional can simply be written

Ifx].

Corollary 6.1. Under the hypotheses of Theorem 6.1, with 7 = m,
f = u, hence Xx = u, and

0@, y) = [(°, u) | 2° = f(t, y, ), € Ut, )] C Epq

if x;, — x weakly in S, and lim I[#,] << o, then [{x] <Clim Jx;].

Indeed, the weak convergence x,— &% implies %x;, — %x strongly,
Fx,, — Px weakly. Hence, Lx;, = u;, k = 1, 2,..., implies u;, — u, weakly
for some element %, , and u, = Zx. On the other hand, the element # guaranteed
by Theorem 6.1 also satisfies # = #», and thus # = u, , and I[x] < lim /{x;].

For a further analysis of the concepts of lower closure and lower semi-
continuity, see Ref. 16.

In Refs. 15 and 17, we have given criteria for property (Q) of the sets
O(t, y). We mention here that a function g%, y, u) is said to be of slower
growth than f, with respect to  in a set 4, C 4 provided, given ¢ > 0, there
is some N > 0 (depending on g, f,, ¢, 4,) such that (t, y,u)e M, |u| =N
implies | g(¢, ¥, u)] < f,(t, », u). We proved in Ref. 15 that, if 1 and f are of
slower growth than f, with respect to # in a neighborhood N, 7) of (£, ) € 4,
then the sets O(z, ), if convex, certainly are closed and satisfy property (Q)
at (Z, 7). Other criteria for property (Q) of the sets J(t, y) have been given in
Refs. 16-17 in terms of the supporting planes of the convex sets J(, ), and
in this respect property (Q) corresponds to the property of seminormality
introduced by Tonelli and McShane for free problems (see Ref. 16-17 for
details). Other criteria for property (Q) have been given by Olech (Refs. 18-19).
Nevertheless, Olech’s lower closure and existence theorems contain conditions
which are rather demanding when compared with our condition (¥*). For
comparisen and examples, see Ref. 16.

Note that, in Theorem 6.1 (as well as in the closure theorems of Sections 4
and 5), no topology has been chosen in 7, the set of all measurable vector
functions u(t) = (ul,..., w"), t € G. Hence, the question of what happens if the
vector functions u; are known to converge toward some function #, does not
arise in this situation. Nevertheless, if we assume that the functions u, are
in (L,(G)y™ for some p >1 and that the functions u, converge weakly
in (L,(G)y* toward some element u, = (u,%,..., u,™) of this space (that is,
ut — u,t weakly in L,(G) as k — oo, i = 1,..., m), then we may ask whether
the pair x, u, is admissible and whether the relation I[x, u,] < lim I[x; , u,]
holds. We have already seen that, for free problems, the answer is affirmative
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(Corollary 6.1). The following Corollary 6.2 shows that, even in the general
case, the answer is affirmative under assumptions. We shall assume precisely
that f is linear in w, that is, f(¢, y, u) = B(t, y)u + C(¢, y), B, C matrices of
the types 7 X m, r X 1 respectively, with entries continuous in 4. This is
certainly the case for free problems where 7 == m and f = . Instead of the
sets 0, we shall consider the sets

O*(t, ) = [(2° #) | 2° = fit, v, 4), = = u, u e U(t, )]

= [(=% ) | 2 = fo(t, y, ), u € U(t, )] C Eprss -

Corollary 6.2. Under the conditions of Theorem 6.1, with

f= B y)u+ C )

and the sets 0* replacing the sets §, if the functions #, are in (L (G))",
p > 1, and u;, — u, weakly in L, as kK — o0, then the pair «, u, is admissible,
and I[x, u,] < lim I[x;, %;]. The same statement holds for p = 1 provided
in addition we know that the functions u, are equiabsolutely integrable in G.

This corollary was proved in Ref. 16 for v = 1. The proof for any v
is essentially the same.

Note that, in Corollary 6.2, for p = 1 the functions u; are certainly
equiabsolutely integrable in G under suitable growth conditions. For instance,
a suitable growth condition is the following: (¢,) for each € > 0, there is some
integrable function $(f) > 0, £ € G, such that | u | < 4 (t) + €f (¢, v, u) for
all (¢, y, ) € M. An analogous growth condition was used in Ref. 15 for a
different purpose and will be mentioned in Section 9.4 below.

In Corollary 6.2, the specific hypotheses cannot be omitted in general, as
examples show (see Ref. 16 for v = 1).

7. Existence Theorems for Abstract Multidimensional
Lagrange Problems

We shall use here the same notations as in Section 6, and assume that the
general hypotheses of lower closure theorem 6.1 (or of one of its extensions)
are satisfied. Thus, an admissible pair x, u is a pair of elements x€ S, ue T,
satisfying (a)-(g) of Section 2 and (h) of Section 6. We shall consider classes £2
of such admissible pairs, which are closed in the following sense: if x € S,
if %, , 4, , B =1, 2,..., are admissible pairs and belong to £, if ¥, — x weakly
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in S, and lim I[xy, , ;] << +co0 as k — oo, then at least one of the elements
u € T guaranteed by the lower closure theorem of Section 6 is such that x, u
belongs to 2 (besides x, # being an admissible pair, and I[x, ] < lim f]xy, , %]
as stated in lower closure theorem). Obviously, the class of all admissible pairs
is certainly closed in this sense, under the same general assumptions of the
lower closure theorem of Section 6 (or of one of its extensions).

Given a family 2 = {(#, u)} of admissible pairs x, %, x € S, u € T, we shall
also consider the corresponding class {x}, of the elements x in £; in symbols,
{x}o = {x € S| (¥, u) € 2 for some u € T}. We shall consider closed classes 2
of admissible pairs ¥, # such that the corresponding set {x}, is weakly sequen-
tially compact.

Theorem 7.1 (Existence Theorem for Abstract Multidimensional Lagrange
Problems). Let G, 4, U(t, v), M be as in Section 2 with G bounded and open,
A, M closed, let f(t,y, u) = (fy,., [1)s fo(t, ¥, #) be continuous on M, f,
scalar, and let S, Y, V, T, %, & as in Section 2, with %, & satisfying property
(H). Let us assume that the sets

O, y) = [# = (2, 2) | 2° = fi{t, 9, u), 2 = f(t, 3, w), ue U(t, )]

are convex, closed, and satisfy property (Q) at every point of 4 (with exception
perhaps of a set of points whose #-coordinate lies in a set of measure zero on
the z-space E,). Let us assume that () for some scalar L-integrable function
#(t) =0, t € G, we have f,(t, y, u) = —y(¢t) for all (¢, y,u) e M. Let Q be a
nonempty closed class of admissible pairs x, « [that is, x€ S, ue T, x,u
satisfying (a)—(g) of Section 2 and (h) of Section 6], in particular, satisfying
the constraints (10) and the functional relation (11), and let assume that the
corresponding set {x}, is weakly sequentially compact in S. Then, the
functional (9) possesses an absolute minimum in 0.
The proof is the same as in (Ref. 2, Section 5.4).

Remark 7.1. The same operator % appears in (9)~(11). The case in
which different operators %, , %, , %, appear in (9), (10), (11), respectively, is
only a particular case of the one under consideration. Indeed, if y, = %,x,
Vo = Ux,y3 = Uyx, we may denote by % the unique operator ¥x ==
(31592, ¥s), with the convention that f, depends only on y, , f depends only
ony;, and 4 is a cylinder set 4 = A4, x E, , where & is the dimension of the
vector (¥, ¥3). The existence theorem above holds without changes provided
we assume that %, , %, , U, satisfy axiom (H), that is, % satisfies (H).
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Remark 7.2, Extensions of Theorem 7.1 hold which are analogous to
those mentioned for Theorem 6.1. First, the hypothesis (i) can be replaced
by the following weaker one: (4*) for every point 7 € cl G, there are a neigh-
borhood Nj(%) of Z in cl G, a scalar L-integrable function (z) > 0, ¢ € N(7),
and real numbers b = (b, ,..., b,)such that f, — b - f = —forall (¢, y,u) e M
with t € Ny(f) (see Ref. 17). The hypothesis of continuity of f and f, on M can
be replaced by the weaker one that f and f, are continuous in x, u for every ¢
and measurable in ¢ for every x, u. Also, the assumption concerning the sets
O(2, y) satisfying property (Q) in Theorem 7.1 can be replaced by the following
weaker hypothesis: there is a countable decomposition of G into disjoint
measurable sets H,, A = 1, 2,..., such that, if 4, denotes the set 4, =
[z, ¥) | (t, ) € 4, t € H)], then the sets O(t, v) satisfy property (Q) in 4, for
almost every £, A = 1, 2,....

As usual, conditions of the form || y*{|, < M, for given constants M,
guarantee the weak sequential compactness of the functions y* in G whenever
p; > 1. For p, = 1, the same condition together with suitable growth conditions
can be used. For instance, the following condition has been used: (¢) given
€ > 0 there is an integrable function ¢ () > 0, ¢ € G, such that | fi(z, y, )| <

$(8) + €f,(t, ¥, u) (see Refs. 4 and 15).

Remark 7.3. The existence theorem above applies as well to general-
ized solutions (Gamkrelidze’s chattering states). In the present context, we
denote by generalized solution any system (x, p, w) such that the following
statements hold: x € S; p = p(t) = (P ..y D) t € G, py(t) measurable in G,
(=0, j=1.,p Tp®) =1 w=uw)=u..,u®), «PeT,
j=layu y=AUxcY; v=LxecV; (& 1) e 4;

ot) = Zl’j(t)f(t, ¥(B), w(t))  ae. inG;

and Y; p(2) f,(t, ¥(t), u?(t)) L-integrable in G (see Sections 2 and 6). Thus, we
are concerned with a system monitored by a functional equation of the form

(ZLa)t) = 21 20 £t (Ux)(D), u9(r)  ae.in G,

with usual constraints
(2, (%x)(t)) cd, ui(t) e U(t, (%x)(t)), J=1lu,u a.e. in G,

and functional

Tl = [ 3 20 fle (@50, w000 .
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For any integer y > # -+ 2, the corresponding sets O(¢, ¥) C E,,, are the sets
R(t, y) = coO(t, y) C E,.; , which are necessarily convex. It is then assumed
that u above is the minimum integer for which this occurs. The existence
theorem above holds for generalized solutions with the convexity requirement
necessarily satisfied.

8. Extensions

Let us assume that the m components # = (u,..., ™) of the variable u
can be divided into two classes, say ' = (u!,..., u*) and »” = (w*,..., ™), so
that we can write » = (#, "), and that U(¢, y) = U'(t, y) x U"(t, y) for all
(t,yye Awith U'(t,y)eE,, U'(t,y)€E,,_., 0 < o < m. Let us restrict the
class T of Section 2 to a slightly smaller class T'= 7" x T”, where T" is the set
of all measurable vector functions #'(¢) = (u%,..., u*), t € G, and T" is a Banach
space of vector function #"(¢) = (u**%,..., ™), ¢ € G, with norm || " ||, say,

T = [] LGp; > 1, & H=\/(>E 19 12,)

j=atl =0+l

We shall denote by M’, M” the sets
M =ty u) |t NeducUt, NICE, o\,
M"=1[(t,y,u4") 1 (t,y) € A, u" € U'(t, )] CE, s opmma »
so that
M=y, )| (ty)ed,u cUlty),w e Ut D] CEpom
We shall assume that f, and f are of the form
fo(ta ¥, u,’ u”) = fg’(t7 ¥, u,) +f:;(t: » u’ s

7 ” ’ ” (13)
e,y u,u") = 't y,u) + [t 3, u"),

where £, f" are defined on M’, £, is defined on M”, and f” is linear in u”,
or f"(¢, y,u") = B(t, y) u" + C(¢, y), B, C matrices of the types r X (m — «),
r X 1 respectively, with entries defined on A.

From Section 2, we know that VCL" = [17-1Ly (G). We shall need
below the following growth condition. We say that f = (f;,..., f,) and f,
satisfy a growth condition (e,) provided: for every j = I,...,7 with p; > 1,



224 JOTA: VOL. 6, NO. 3, 1970

there are constants ¢ > 0,5 > 0 and a function $ € L(G), §(¢) > 0, such
that | f; [#7 << aif(t) + bf, everywhere in M; for j = 1,..., 7 with p; = 1, then
for every € > 0 there is a function ¢, € L(G), $(t) = 0, such that | f; | <

(t) + ¢f, . Note that, under such condition (¢,), we have f, > —b'ai, or
fo = —i, respectively, where i, ¢ are ﬁxed nonnegative L-integrable
functions in G. An analogous growth condition (e,) could be required for
the pair £, f,, or for the pair f", f,".

We shall need the sets

Oty == |2 = ftyu)z=f(yu),w eVt CE.,,
Ot y) = [8 = (2% w') |2 = fo(t, 3, w"), 0 € U'(t, )] C By -

We shall assume that : S X T" = Y, #: S X T" — V are defined on
S x T thatis,y = %(x,u")e V,v =L (x,u")e Viorall (x,u")eS x T". Also,
we shall denote by ¥, a space of real-valued functions v,(¢), £ € G, which are
L, -integrable in G for some p, = 1, or V,CL, (G) and we shall take in V,
the norm | v, ||, . We shall then cons1der < (x u), or £: SxT'—-V,,
mapping each pair (x,#")e S X T" into an element v, = Z(x,u")eV,.
Instead of axiom (H), we shall now assume the followmg (H *) if x, x5 € S,
w,upe T, k=1, 2,.., if x, — & weakly in S and u; — " weakly in 77,
then y;, — y strongly in Y, v, — v weakly in V, v,;, — v, weakly in V,, , where
Y= WU, 0, 0 = L, 1), 0, = L, 0,y = Uty s 1), v = Ly, u),
Voe = L%, » Up)-

In the present situation, we say that a pair &, u(¢), t € G, is admissible
provided xe S, u= (', u"), uel', w'el’, y=Uxu)ecY, v=
Z(x,u") eV, (t,y®))ed ae. in G, w'(t)e UL, 3(), w'(t)e Ut y)
ae. in G, o) = f'(t, y(), ¥ () + (& y(), w'(t)) ae in G, and
15 (), u (t)) + fi(t, y(), w'(£)) is L-integrable in G, v, = L(x, u") e V,.

We deal here with the problem of the minimum of a functional

I, o, u'] = f@ LF, (8, (@, w))®), w'(2)) + f (s (%, w"))(8), w'(0)) + Z (" )(O)] ot

in a class 2 of admissible pairs x, u(t) = (u', #"), t € G. The constraints
and functional relation are now of the forms

(L, W)t) = F/(t (W, w)R) W @) + [t @, )E), w'(t)  ae.in G,
w(tye Ut (Ux, u))D),  w'(t)e Ut ((xu"))2)) aeinG,
(t, (%, wH)2)) € 4.

We are now in a position to state the following extension of Corollary 6.2.
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Corollary 8.1. Assume that a decomposition (13), holds with f”
linear in #”. Assume that f,’ > —/, f,” > —" for some function ', " € L(G),
4" = 0,4” > 0. Assume that either the pair f’, f,’, or the pair /", f,” , or both,
satisfy a growth condition (e,). If U(t,y) = U'(t,y) X U’(¢,y) as above,
if the sets '(z, ¥) and J*(¢, y) are closed, convex, and satisfy property (Q) in
A (or in any of the modes mentioned in Section 6), if the operators 2, %,
% as above satisfy axiom (H*), if %, , 4, B = 1, 2,..., is a sequence of admis-
sible pairs, with &, € S, u, = (w,' , uy), w,' € T', u, € T”, and if x;, — x weakly
in S, uy —ugweakly in 77, lim Ix;, , u;,, u] << co, then the element u == (i, ")
of Theorem 6.1 can be so chosen that u” = ug, %, u is admissible, and
Iz, o', w"] < Lm Ix;, , u,', ug].

The proof is the same as for Corollary 6.2 (see Ref. 16, where proofs are
given for v = 1). Note that Corollary 6.2 can be obtained from Corollary 8.1
by takinga = 0, 2" = u,f' = 0,f,' = 0,f"= f, f,” = [, , and by remarking
that the pair f' = 0, f,’ = 0 satisfies trivially a growth condition (¢,) and
that the corresponding sets Q’ trivially satisfy condition (Q).

We shall say now that a class 2 of admissible pairs x, u is closed provided
the following statement holds: if x € S, u" € T, if x;,, u;, with u;, = (u/, up),
k =1, 2,..., are admissible pairs and belong to @, if x; — x weakly in § and
uy, — u” weakly in 7", and lim I[x; , u,’, u;] < 400 as & — o, then at least
one of the elements #' € T’ guaranteed by the lower closure theorem is such
that the pair x, # with u = (¥, #”) belongs to 2. Finally, given any class {2
of admissible pairs x, # with ¥ = (u’, u”), we shall consider the set {x}, =
{x|xesS, (%,u)e R for some u = (u,u"ye T’ X T"} and the set {u"}, =
{w | u" eT" (x,u,u")e R for some xS, u' e T'}.

The existence theorem of Section 7 holds now under axiom (H*), under
the hypotheses that the sets J(z, ¥) and J*(z, ) are closed, convex, and satisfy
property (Q) in A, that the remaining hypotheses of Corollary 8.1 hold
and that the sets {x}, C S and {#"}, C 7" are weakly sequentially compact.
We do not exclude here that either U’ = E,, or U" = E,,_,, or both.

Remark 8.1, The remarks at the end of the existence theorem of
Section 7 hold also for the present extensions. In particular, the present
existence theorem can be repeated for generalized solutions (x, p, w, #”
analogous to those introduced in Section 7 with «’ replaced by p, w, p = p(#) =
(P13 Pu)y w = w(t) = (uW,..., u'¥), £ € G. Then, for

W= max(r + 2, m — a + 2),

certainly the corresponding sets J'(¢, y) C E, , 0%(¢, v) C E,,_,, are replaced
by the sets R'(t,y) =coQ'(t,y) CE,.;, R*(t,y) = co Q*(, ) CEpora >



226 JOTA: VOL. 6, NO. 3, 1970

which are necessarily convex. The present existence theorem then holds with
the convexity conditions necessarily satisfied.

9. Particular Cases

9.1. Let us assume that G has a smooth boundary I" = 2G in the sense
of Sobolev (or in the sense of Morrey), and take S = [']Z-;l W%»,-(G)’ so that
every element x € S is an n-vector function x(f) = («%,..., ¥*), t € G, whose
components &’ €L, (G), b > 1, possess first-order generalized partial
derivatives Vi = [6x1/6t7 i= l,,n, j=1,.,7] ae in G, and all %,
8x”‘/8t7 eL,(G), j=l,,v, i= 1 ,n. Let YV = ﬂz 1 Lp(G), V =
[Miea (L (G)) let %: S—> Y be the 1dent1ty operator, mapping x € 'S into y==x
as an element of Y, and let #: S — V be defined by #x = Vu, and thus
s = n, r = nv. Now, property (H) is trivial. We are now in a position to
study the problem of the minimum of a multiple integral

1%, u] = f s 50, u(t)

with side conditions expressed by a total differential (or Dieudonné-Rashevsky)
system

oxifor = fift, x(t), u(t)) ae.inG, j=l,.,»v, i=1l,..,mn,
and possible constraints of the form
(tx()ed, ut)eUl ), teG.

If f denotes the mv-vector function f = ( f;;), then the differential system can
be written in the form

dx|dt = f(t, x(t), u(2)).

In this situation, closed classes £ such that {x}, is weakly sequentially compact
can be obtained in a variety of ways, as we have pointed out in Refs. 1-4.
For instance, for all p; > 1, we may define £ by means of requirements of
the followmg form: () || #*|,,, < L; for given constantst s (B oxffod |, < Ly
for given constants Ly; ; (y) I[x, u] <L, for a given constant L, ; and (9)
boundary conditions concerning the Values of the functions x° on suitable
parts I'; of the boundary I' = @G of G. Besides, the sets U(t, y) may be
compact and uniformly bounded.
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For all p; = 1, classes £ may be defined by means of analogous require-
ments; but, if the sets U(t, ¥} are only closed, then a growth condition may be
needed. For instance, in Refs. 3-4 we proposed the following rather general
growth condition: (€) for any € > 0, there is an L-integrable function s (¢) > 0,
t € G, which may depend on ¢, such that | f(¢, y, )| < §(2) + f (¢, v, u) for
all (¢, y, u) € M. Under this hypothesis, for the admissible pairs x, u satisfying
a relation (y), the partial derivatives 0x?/t/ are equiabsolutely integrable in G.
Then, conditions (f) are necessarily satisfied with p; = 1, and any condition (a}
makes the class {x}, weakly sequentially compact. Besides, under the same
hypotheses, boundary conditions as (8) are preserved by weak convergence,
and the corresponding classes £2 are closed.

The particular case considered above can be interpreted in the lines of
Section 3, by taking X = []i; W, (G), by taking for X, the linear subspace
of all x(t) = («%,..., ™), t € G, where each x! coincides in G with a function of
class C* in E, , and by considering the operators % and ¥ defined by #x = x,
ZLx = Vx. Let S be the completion of X, by means of the norm || x ||| =
VIl 2P + || Zx |? + || L [?), where || x|, | #x |, || £Lx|| are the norms in X,
Y, V, respectively. It is easy to see that .S coincides with X that|| x| and ||| x ||
are equivalent norms, and that property (#,) holds.

9.2. Let us assume that G has a smooth boundary I' = G in the sense
of Sobolev, or in the sense of Morrey, of some order [ >> 1; and this, as we
know, does not exclude corner pomts for G. Take S = ﬂ,b,l W’ {(G), for some
p: = Lyandinteger I, , 1 <, < i=1,..,n Thus,xe Sis avector function
x(t) = (x%,..., x™), t € G, with components x* € L, (G), and each x" has general-
ized partial der1vat1ves Dext of all orders «, O <laf <Ly o= (0 e ),
loa| =o + - 4+ o, Duwtel, (G). Let s; denote the number of multundlces
awith) < |o| <, — 1 lets = s, 4 -+ + s, , and let % denote the operator

%xNV’x——{Dﬂx‘ {oz\<l l, t = 1,. ,n} for xS, so that
U: S -—>Y, where YV = r] =1 [Lp (G)]%:. For every i = 1,..., n, let {a}; denote
a given collection of distinct multiindices « with | « | = lz ) let r; = 0 be the
number of elements in the collection {a};, and let r = r; + --- . We take

for & the operator Xx = {Dw, ae{a};,? = 1,...,n} for xeS so that
LS — V, where ' = l—l i1 [Ly (G)]7i. Thus, #x is an s-vector y = y(t) =
(340, ¥%), t € G, and L is an r-vector v = = o(t) = (v4,..., "), t € G. Again,
as in Section 9.1, property (H) is trivial. Let V'x = (D= |a| =1,
¢ = 1,...,, n}. We are now in a position to study the problem of the minimum
of a multiple integral

Ix,u] = | A (7)), ) di,

809/6/3-4
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with side conditions expressed by the system of 7 partial differential equations
Do = fit, (Vo)) w(e) dt,  welsls, i=1,.,m,
and possible constraints of the form
(t, Vx()ed, ut)e U (Vx)2), teG.

If f denotes the r-vector function f = (f,,,xe{o};, 7 = 1,..., ), then the
differential system can be written in the form

Dx = f(t, (V'®)@), u(t)), t€G,

where Dx = (D=x*, a € {0}; , 1 = 1,..., n).

In this situation, closed classes £ such that {x}, is weakly sequentially
compact can be obtained as in Section 9.1 and we have indicated in Refs. 1-3.
For instance, for all p; > 1, we may define £ by means of requirements of
the form: (o) || Dw*||,, <Ly, 0 < | «| = — 1, for given constants L;, ; (8)
| Dt ||, < Ly, |oa|=1;,forgiven constants L, ; (y) I[x, ] <L, foragiven
constant L, ; and () boundary conditions concerning the values of the func-
tions x* and of the derivatives D=xf, 0 <X « < I; — 1, on suitable parts Iy of
the boundary I' = 8G of G.

For all p; = 1, classes £2 may be defined by means of analogous require-
ments, and, if the sets U(¢, ¥) are only closed, in conjunction with a growth
condition as (¢) in Section 9.1. Under this hypothesis, for the admissible pairs x,
u satisfying a relation (y), the partial derivatives D%, o€ {o};, i = 1,..., m,
are equiabsolutely integrable in G, and hence corresponding relations (B),
for a € {a};, are certainly satisfied for suitable constants L, . For details,
see Refs. 1-3.

The present considerations hold even if the collections {o}; are made up
of arbitrary multiindices o with 0 < | o | < ;.

The situation considered above can also be interpreted in the sense of
Section 3, by taking X = [, W};‘i(G), by taking for X, the linear subspace of
all x(t) = (x%,..., x), t € G, where each x' coincides in G with a function of
class C* in E,, and by considering the operators %, £ defined by #x = V'x,
and % = V". Let S be the completion of X, by means of the norm ||| x ||| =
V(I %1+ | %= | + || L2 ), where | 2|, | #x |, £ | are the norms in X,
Y, V, respectively. As in Section 9.1, S coincides with X, || x || and ||| x ||| are
equivalent norms, and property (H,) holds.

9.3. Let GbeasinSection9.2,let X = [[;_; W,i(G)asin Section 9.2, let
X, be the linear subspace of all (z) = (¥%,..., ¥), t € G, where each x* coincides
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in G with a function of class C* in E,, and let %: X, — Y be the operator
defined as in Section 9.2by #x = V'x = [D*x}, 0 < | o | <[, — 1,2 = 1,..., n];
hence, #x is a function y(f) = (y%...,¥)€ Y, te G, Y = [|iu[L, LG)]*,
s=8§ + -+ +s,. Let ,>0, i=1,.,,n be arbitrary mtegers, let
r=17r; + - + Tp s let V =T [L, (G)]“ and let &: X, — V be any linear
d1fferent1al operator with integrable bounded coefficients in G, say (ZLx)! =
2] 1 2ot Xjat=i Aisi(t) Dox®, of arbitrary orders k; which can be larger than /; .
Let S be the completion of X, by means of the norm

el = V(P % |? + | Lx|P),

where || x|, || #x ], || £« || are the norms in X, Y, V, respectively. If &, > I;
for at least one 7, then certainly S may be distinct from X; but, in any case,
property (H,) obviously holds. We are now in a position to consider the
problem of the minimum of the multiple integral

Iz, u] = f Il (720, ),
with side conditions expressed by the differential system
(L)) = f(t, (Va)e), u(t)), teG, ae
with f = (f;,..., f,), and possible constraints of the form
L (Vx)ed,  wreUr V@), teG, ae
Classes (2 can be defined now as in Section 9.2.
For instance, if wetakev = 2, n = 1, [, = 1, m = 1, {7y coordinates in

E, , and we take for .2 the Laplacian, we may consider the problem of the
minimum of the double integral

1) = [ |76 m0 (&), (&, ) d€ i,

with partial differential equation

Xeg + KXoy = f(‘f’ 7, %(£, ), u(&, 77))’ (&,m) e G,

and constraints of the forms

(& mx(é,m)ed, (€ n)e U, x(é )

Here, X, is the linear space of all functions x(¢, ), (¢, 1) € G, which coincide
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with some function of class C* in G, and S is the completion of X, with
respect to the norm

ol = /Al llp? + 1 g 112 4 1 157 + 1 e + %0 [1,7)-

The minimum above is sought in classes 2 of elements x € S.

9.4. Let us take in the existence theorem r =m, U(t,y) = E,,
A=cdGXE;,, M=A4 XE,, f(t, y,u) = u, that is, f; =u, i = 1,..., 7.
Then, the abstract Lagrange problem of the existence theorem reduces to the
free problem of the minimum of the multiple integral

1] = |t @a)(e), (L)),

which was considered by Fichera (Refs. 8-10). Note that here ¥£x = u, that
is, the element u € T is uniquely determined by the element x € .S (in an
admissible pair x, «). Here, the sets O(¢, v) are the sets

0t, ) = [(z% u) | 2° > ft, y, u) u € E] CE,,,,

that is, the sets of all points on or above the figurative £, . Thus, the sets §(2, ¥),
are convex if, and only if, f,(¢, ¥, #) is convex in u for every (¢, y) € 4. The
following growth condition has been consistently used by Tonelli, Morrey,
Fichera, and Cesari: (@) there is a continuous scalar function @(%),
0 < # < 400, such that D(x)/x — + o0 as x — 400, and f, (¢, y,u) = D(|u )
for all (¢, v, ) € M. Under growth condition (®), the set J(t, y), if convex,
certainly are closed and satisfy property (Q) in A4 (see Refs. 14-15). Theorems
6.1 and 7.1 and Corollary 6.1 essentially contain the corresponding lower
semicontinuity theorem and the existence theorem of Fichera (Refs. 8-10).

9.5. If we take r =m=n, s=mun, Ult,y)=E,, A= G X E,,
M=AXE,,, f(t,yyu) =u, S= [’]Ll Wzl,f(G), Y, VV as in Section 9.1,
U: X — Y, the identity, £ = V as in Section 9.1, then we have the free
problem of the minimum of the multiple integral

I[x] = j . £, %(2), (VX)) dt,

considered by Morrey (Ref. 11). Again, as in Section 9.4, Vx = u, that is, the
element # € T is uniquely determined by the element x € S (in an admissible
pair x, 1). As in Section 9.4, the sets O(t, y) are the sets of all points on or
above the figurative f, , and hence they are convex if, and only if, the function
fo(t, ¥, u) is convex in u for every (2, y) € A. Again, the growth condition (P)
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guarantees that the sets J(t, y), if convex, are also closed and satisfy property
(Q) in 4. Here, as in Section 9.4, Theorems 6.1 and 8.1 and Corollary 6.1
essentially contain the corresponding lower semicontinuity theorem and
existence theorem of Morrey (Ref. 11).

9.6. Let us assume that G has a smooth boundary I' = 8G (as in
Section 9.1 above), take S = [W,}(G)]" for a given p > 2, so that every
element x € S is an m-vector function x(¢) = («%,..., ¥*), t€ G CE,, whose
components x* €L,(G), p > 2, possess first-order generalized partial derivatives
Vx = [oxtfots, i = 1,...,m,j = 1,...,v] a.e. in G, and all x%, dx%/6t € L (G).
Let Y =[L(G)]*, V=L,;(G), let s=mn, r=1, let %: S—Y be the
identity operator mapping x € .S into y = x as an element of Y, and let
&: §—V be the nonlinear differential operator defined by ZFx =
St im1 et @yjo(t) ¥Y(0x7]0t5) for x €S, where ayy(f) are given measurable
bounded functions on G. If x € S, then each product a;;(¢) ¥%(d%x/0t®) is in
L,;(G). Also, if x, %, € S, k = 1, 2,..., and x;, — x weakly in S, then x;° — x*
strongly in L,(G), &x,%/ét® — ox*/ot® weakly in L(G) as k — o0, 7 = 1,..., 1,
s = 1,.,v, and Zx;, — x weakly in L, ;,(G). Here, axiom (H) is trivially
satisfied, and we take for T the set of all m-vector functions u(#) = (1d,..., u™),
t € G, measurable in G. Here, f,(¢, v, #) and f (¢, y, #) are both scalar functions
on M. We deal here with the minimum of a functional

T, ] = [ _fi(t, 2(2), u(e) dt,

with partial differential equation and constraints

v

i_l 2 ais(t) x}(0x7]0r%) = £ (2, x(2), u(?)),

NE §=1
(tx@)ed, uwt)e U@ x(t), aeinG.
The sets J are now subsets of E, ,

é(t’ x) = [(2% 2) | 2° = folt, %, u), 2 = f(t, %, u), ue U(t, »),

and these sets shall be assumed to be closed, convex, and satisfying property
(0) in A.

In the present situation, closed classes 2such that{x},is weakly sequentially
compact can be obtained by requirements of the form (&) || x*||, <L; for
given constants L;, (B) || éxi/et? ||, < L;; for given constants L;; , and other
requirements as (y) and (8) in Section 9.1 above.
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9.7. Letp >2,G, Y, Vbeas in Section 9.6 above, let S = [W, % G)]",
let u = (o', u") with v’ = (i,..., w*), u" = (wt,...,u™), and ue T =T x T",
where 7" is the set of all a-vector functions u'(t),t€ G, Wthh are measurable
in G, andT” = [L,(G)]" with norm || #” || = /(X0 || &9 I ) Let 4: S—Y
be the identity operator as in Section 9.6, and let #: S X T” — V be the
operator defined by

Lo, u’) =dx + ) 3 Y ayt) w(t)(ex[or),
t=a+l j=1 s=1
where x € S, u’ € T, and all a;,(t) are bounded measurable functions on G,
and where Ax denotes the sum of the second-order partial derivatives
o%t/(0t%)?, i = 1,...,m, s = 1,..., v. Then, as in Section 9.6, if x€ S, ue 71",
then ZL(x, u") € L, ;,(G); and, if x;, — x weakly in S and uj, — " weakly in T,
then Z(x;,, u) — L(x, u") weakly in L,/x(G). Axiom (H*) of Section 8 is
trivially satisfied. We deal here with the minimum of a functional

Iz, u', 0] = f Ft, %(0), w(2)) dt,
¢
with partial differential equation and constraints

At S Y ault) we(@wjor) = (o x(t), (),

t=atl j=1 8=1
(tx)ed, w@eUlt ), «'(¢)el(tx()

a.e. in G, and, as mentioned, x€ S, ' € T’, 4" € T”. We shall now consider
the sets J'(2, %) = [(2°, 2) | 2° = f,(t, x, &), 2 = f(t, x, o), € U'(t, x)], and
these sets as well as the sets U"(¢, x), shall be assumed to be closed, convex,
and satisfying property (Q) in A. We do not exclude here that either U’ = E,,
or U" = E,_,, or both. Note that, in the notations of Section 8§, we have
here f* = 0,f, = 0.

In the present situation, closed classes 2 such that {x}, and {u"}, are
weakly sequentially compact, as requested in Section 8, can be obtained by
requirements of the forms (o) || 2% ||, <L;,j = 1,..., n, (B) || oxf/ots ||, < Lys,
| o%xifots ot ||, < Ljgo, = Loy, s, o= lLu,v, (B)e|, <L;, i=
a + 1,..., m, for given constants L;, L;;, L;, and by requirements as (y) and
(8) in Sections 9.1 and 9.6 above.

98, Letv=2,n=1,m=1,a=0,p=2 G=[0<LEn<1],
Y=LG), V=L{(G), V,=L(G), r=1, s=1, S=WXG), U=
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U= E,;, T=T" = Ly(G). We consider here the problem of the minimum
of the double integral

I u) = [| [B(E )32 + F(& ) uldé d,

in the class £ of all pairs x, u, with x € .S, u € T, satisfying the first~order
partial differential equation

A€, m)x. + B(é, ) %, + C(&,n) xu + D(E,q)u =0 ae. in G,

the boundary condition #(0,7) = 1, 0 < # < 1, and the constraints ||« ||, <1,
[®l, <L, [xl, <1, 2, <1 The class 2 is nonempty since ¥ = 1,
u = 01is in Q. Here, 4, B, C, D, E, F denote given measurable essentially
bounded real-valued functions in G. Note that the sets {x}, , {u}, are weakly
compact in the respective spaces S = W,l(G), T = T" = Ly(G). Here, we
take Ux = x, Z(x,u) = Ax; 4+ Bx, + Cxu + Du, Z(x, u) = Ex* + Fu,
hence, %: S—Y, : SX T—>V, %:Sx T—V,.If ,—x weakly in
S = W,t and u;, > u weakly in T = T" = L, , then x;, — x strongly in L, ,
%2 — x strongly in Ly, xu, — xu weakly in L;, %x, — Ux strongly in
Y =Ly, L(xy , ty) = L(x, u) weakly in V =L, , and Z(«x,, , u,) — L)(x, u)
weakly in V, = L, . Here we take f, = 0, the requirements concerning the
sets § are vacuous, and we take U” = E, , a fixed convex, closed set. Also,
we can take f = 0. In view of Section §, the integral I above has an absolute
minimum in £.

99, Let v=2, n=1, m=1 a=0, p=2, G=[0< &1 <1]
Y =Ly(GP, V=L(G), V,=Li{(G), r=1, s=3, §S=WXG), U=
U'=E,;, T = T" = Ly(G). We consider here the problem of the minimum
of the double integral

I, u] = [ [F(6m) 2 + G(& m) 2 + H(E, ) ] d i

in the class £ of all pairs x, u, with x € S, u € T, satisfying the second-order
partial differential equation

A(E, ) e + B(€, ) 2y + [C(&, 7) % + D(&,m) %, + E(€, )] u =0

a.e. in G, boundary conditions x = 1 on the boundary G of G, and the
constraints [ u ||, <1, || xllp2 < 1. The class 2 is nonempty since x = 1,
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u = Oisin Q. Here 4, B, C, D, E, F, G, H denote given measurable essentially
bounded real-valued functions in G. Note that the sets {x}, , {#}, are weakly
compact in the respective space S = W,X(G), T = T" = Ly(G). Here we take
Ux = [x, ¢, x,), L(%,u) = Axy + Bx,, + (Cx; + Dx, + Ey, L(x,u) =
Fx? + Gx,* 4+ Hu; hence, %: S— Y, £: S X T -V, Z:SXxT—>V,.
If %, — x weakly in S = W,? and u;, > u weakly in T = 7" = L, , then
(% » Xe » %) — (%, %, %) strongly in (L,)3, x7, — x.2, x%, — x,2 strongly in
L, %y, — xu, %, — x,0 weakly in L, . Finally, %x,, — %x strongly in Y,
L%y, , uy) — L(x, u) weakly in V, L(x;, , u,) — £ (x, ) weakly in V. Here,
we take f, = 0, the requirement concerning the sets § are vacuous, and we take
U" = E,;, a fixed convex closed set. Also, we take i = 0. In view of
Section 8, the integral I above has an absolute minimum in 2.

9.10. Let G be any bounded open subset of the t-space E, , t = (..., &),
let S = [L,(G)]" for givenp > 1 andn > 1, let K(¢, s) be a given s X n kernel
matrix defined and continuous in ¢l G X cl G, and let %, £ be defined by

(Ux)(t) = f K ds, Lx=w

hence %: S — Y = [L,(G)]5, Z: S — V = § = [L,(G)]". If x, — x weakly
in S, then %x, — %x strongly in L, , and £x;, — Lx weakly in V. We
consider here the problem of the minimum of the multiple integral

Ilx] = f il w0)e), x(0)

We assume here that f,(¢, v, v), or f,: cl G X E, X E, — E;, be a given
continuous real-valued function, convex in v, v = (2%,...,, o"), and satisfying
a growth condition of the form f (¢, y,v) = @ (|v|). Here, @ (£), 0 < § < 400, is
a given real-valued continuous function with @(£)/é — + o0 as £ — -+ 0. Then,
for some constant ¢ > 0, we have @ = —cand, hence, f, = —i(t) with s = ¢,
a constant function. In view of Section 7, the integral above has an absolute
minimum in S. This example was considered by Fichera in Ref. 9. In view of
the same Section 7, the integral I[x] has an absolute minimum also in the
class 2 of all elements x € S satisfying a relation

f K6 ) ds =ft)  aeinG,

where f; is a given r-vector continuous function in cl G and K,(t, s) is a given
r X n kernel matrix defined and continuous in cl G X cl G.
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