
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 87, No. 2, pp. 323-347, NOVEMBER 1995 

State Constraints in the Linear 
Regulator Problem: Case Study 1 
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Communicated by T. L. Vincent 

Abstract. In this paper, we consider the problem of minimum-norm 
control of the double integrator with bilateral inequality constraints for 
the output. We approximate the constraints by piecewise linear functions 
and prove that the Lagrange multipliers associated with the state con- 
straints of the approximating problem are discrete measures, concentra- 
ted in at most two points in every interval of discretization. This allows 
us to reduce the problem to a convex finite-dimensional optimization 
problem. An algorithm based on this reduction is proposed and its 
convergence is examined. Numerical examples illustrate our approach. 
We also discuss regularity properties of the optimal control for a higher- 
dimensional state-constrained linear regulator problem. 

Key Words. Linear-quadratic problems, double integrators, state con- 
straints, obstacle avoidance, finite-dimensional approximations. 

1. Introduction 

We consider the minimum-norm problem for the double integrator with 
bilateral state constraints as follows: 

min [lull, ( la) 

s.t. 5~(t)=u(t), ( lb) 

x(a) = Ya, :c(a) = S a ,  x(b) = yb, ~(b) = so, (lc) 

g(t) <x(t)  <f(t) ,  for all t~ [a, b], u~La[a, b], (ld) 
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where a, b, Ya, Yb, Sa, Sb are given numbers and 1[ �9 11 denotes the L 2 norm 
in the interval [a, b]. We assume that f and g are given functions that are 
continuous in the interval [a, b] and such that g(t)<f(t) for all ts[a, b] and 
g(a) <Ya <f(a ) ,  g(b) <Yb <f(b)  ; then, there exists a C 2 function p satisfying 
the boundary conditions (lc) and such that g(t) <p(t)  <f ( t ) .  Hence, the set 
of feasible controls is not empty; since it is a closed and convex subset of 
L2[a, b], there exists a unique solution of problem (1). Moreover, by the 
existence of an interior trajectory, it follows that the first-order Lagrange 
optimality conditions are in the normal form; see, e.g., Refs. 1-2. 

The double integrator is a classical example in optimal control which 
is often used to describe the motion of a car or trolley along a horizontal 
track without friction. The bilateral state constraints in problem (1) may be 
interpreted as arising from the presence of two other cars, on both sides of 
the controlled car, whose positions in time are given by the functions g a n d f  

In this paper, we provide a nonstandard reduction of problem (1) to 
finite dimensions based on approximation of the constraints by functions 
that are piecewise extremal arcs. We approximate problem (1) in the follow- 
ing way. Let a = to < t~ <- �9 �9 < t, = b be a partition of the interval [a, b], and 
let e and d be two piecewise linear and continuous approximations of g and 
f respectively across the grid { ti } such that e(t)< d(t) for all t e [a, b]. Let e 
be a fixed sufficiently small and positive number, e.g., 

e < ( 1 / 4 )  min (d(t)-e(t)). 
t ~ [a,b] 

Consider the following problem: 

min 

s.t. 

J(u, s, y) = Ilull, 

~( t )  = u( t ) ,  

x (a )  =Ya,  2(a)  =Sa, x (b )  =Yb, 

e(t) <x(t) < d(t), for all t~[a, b], 

x(ti)=yi, 2(ti)=&, i = l , 2 , . . . , n - 1 ,  

e( t i )+e<yi<d(t i )-e ,  i = 1 , 2  . . . . .  n - l ,  

s=  (sl, s2 . . . .  , s,_~ )~( ' -~) ,  

y=(Yl,Y2 . . . . .  y n - l )  E~(n-1), u~L2[a,b]. 

~(b)=sb, 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(2f) 

(2g) 

(2h) 

Problem (2) can be rewritten as a two-stage minimum problem. Let 

yo=ya, So=Sa,  Y,=Yb, s,=sb. 
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For fixed s; and y;, i = 0, 1 . . . . .  n, we first solve the problem 

min I(u)=llull, (3a) 

s.t. ~(t)=u(t), x(ti):yi, x(ti):si, i=O, 1 . . . . .  n, (3b) 

e(t) <_x(t) <_d(t), for all ts[a, b], u~L2[a, b]. (3c) 

This problem can be viewed as a constrained best approximation problem 
with mixed interpolation conditions. In a previous paper (Ref. 3), a 
Lagrange duality result for a related problem is established. Based on an 
extension of this result, in Section 2 we show that the unique optimal control 
of this problem is a piecewise linear function that can be computed in a 
finite number of steps. Let 

�9 (s, y) = min I(u) 

be the value (marginal) function of problem (3). In Section 4, we prove 
that this function is convex, coercive in s uniformly in y, (1/2)-Lipschitz 
continuous, and has a unique minimum. The solution of (2) can be then 
obtained by solving the finite-dimensional convex programming problem 

min ~'(s, y), (4a) 

s.t. s ~  n-l, e(ti)+e<_yi<_d(ti)-e, i = 1 , 2  . . . . .  n - 1 .  (4b) 

In Section 3, we study the convergence of the optimal solution of problem 
(2) for e ~ 0  and when the piecewise linear approximations e and d of the 
constraints converge to g and f respectively. In Section 5, we discuss some 
generalizations, while in Section 6 we present numerical examples. 

The approach presented in this paper may be useful for optimal control 
of mechanical systems in the presence of obstacles. As an example, consider 
a planar Cartesian manipulator (a factory crane) which moves in the plane, 
with constant velocity along the x-axis while the motion of the manipulator 
along the y-axis is subject to control. The problem of transferring the manip- 
ulator from one point to another avoiding given obstacles and spending 
minimum energy may be described with the help of the state-constrained 
double integrator considered in this paper. Another possible application of 
the results obtained in this paper is planning a highway in a specified region 
(with lakes, mountains, etc.), where the minimization of the second norm 
corresponds to minimizing the curvature of the highway. 

Standard computational methods for optimal control problems are 
based on discretization in time usually combined with penalty function tech- 
niques; see, e.g., Refs. 4-8. Apparently, such an approach is justified when 
nonlinear higher-dimensional problems are to be solved. In the case of state 
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constraints, the error analysis of discrete approximations may be consider- 
ably involved because of the implicit character of the constraints; see Ref. 
9. In this paper, we follow a different path; considering a relatively simple 
problem, we choose an approximation on the basis of the properties of the 
solution. The key observation in our analysis is given in Theorem 2.1, where 
we show that the optimal control of problem (2) is a piecewise-linear func- 
tion in time. For more general problems, there are only partial results on 
regularity of optimal controls. Hager (Ref. 10) considered a linear-convex 
optimal control problem with state and control inequality constraints pro- 
ving that, under a certain linear independence condition for the active con- 
straints, the optimal control is Lipschitz continuous in time. A more recent 
study of regularity properties of the measures representing the Lagrange 
multipliers for various state-constrained problems is given in a book by 
Dikusar and Milyutin (Ref. 11). In Section 7 (Appendix), we discuss the 
regularity properties of the optimal control for a higher-dimensional state- 
constrained linear regulator problem, related to possible extensions of the 
approach of the present paper. 

2. Regularity of the Solution 

Consider problem (3) with fixed s and y such that e(tg)<y;< d(t~), and 
let u* be the optimal control, which exists and is unique. In this section, we 
show that the corresponding optimal output x* is a C 1 piecewise-cubic 
polynomial with a special structure. First, we need some terminology. 

The points ti, i = 0, 1 . . . . .  n, are called fixed knots. Given an interval 
[ti, ti+l], we say that the point r ~(t;, t~+ 1) is a single touching point on the 
constraint e if x*(r) =e( r )  and e(t) <x*(t) <d(t) for all tv~ r, t~[ti, ti+l ]. 
An interval [rl, r2]c(t~, ti+l), r l< r2 ,  is a subarc on the constraint e if 
x*( t )=e( t )  for all t~[r l ,  r2] and e ( t )<x*( t )<d( t )  for all 
te[ti, r ~ ) u  (r2, t~+~]. A touching point and a subarc for the upper con- 
straint d are defined in the same way. A pair (rl ,  re), with rl,  r2~(t,-, te+l ), 
is a touching pair if x*(rl ) =e(r l  ) and f(r2) = d(r2), and e(t) <x*(t) <d(t) 
for all te [t~, t,.+ ~ ], t ~ r~, t ~ r2. The touching points, single or in a touching 
pair, and the ends of a subarc are called contact points. 

Theorem 2.1. The unique optimal control u* of problem (3) is a piece- 
wise-linear function which may be discontinuous only at the fixed knots ti, 
i= 1 . . . . .  n - 1 .  In every interval (ti, ti+l), there are at most two contact 
points where the optimal output x* reaches or leaves the constraints. The 
optimal control u* is linear and x* is a cubic polynomial in every interval 
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Possible location of contact points in [ti, ti+ ~], according to Theorem 2.1. Case of 
no contact points. 

which does not contain a fixed knot  t; or a contact point. Moreover, in every 
interval [t;, ti+l ], the following cases are possible: 

Case 1. The constraints are not active (no contact points). 

Case 2. A single touching point occurs on one of  the constraints (one 
contact point). 

Case 3. A subarc occurs on one of  the constraints (two contact points). 

Case 4. A touching pair (two contact points) takes place. 

These cases are illustrated in Figs. l a - ld .  

Lemma 2.1. There exist real numbers/~i and k;, i=  0 . . . . .  n, and non- 
negative regular measures/Jl  and/2z,  supported on the sets/ '1 = {re[a, b]: 
x*(t) =e(t)} and Tz = {t~[a, b]:x*(t)=d(t)}, respectively, such that 

where 

u*(t) = pl(s) ds+ d lci(t- tl)~, 
" t i = O  
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Proof. The p roof  of  the lemma is completely analogous to the p roof  
of  Lemma 1 in Ref. 3, where a constrained interpolation problem is studied. 
I t  can be also derived by the p roof  of  (but does not follow directly from) 
the general first-order conditions for state-constrained problems given in 
Ref. 2. We note that  the constants Zi, i=  1, 2 . . . .  , n, are the Lagrange 
multipliers corresponding to the conditions x(ti)=y;, i = 0 , . . . ,  n; the con- 
stants lc~, i =  0 . . . . .  n, are the Lagrange multipliers corresponding to the 
conditions ~(t~)=s,-, i = 0  . . . . .  n; and the nonnegative measures /lj, 



JOTA: VOL. 87, NO. 2, NOVEMBER 1995 329 

. . . . .  . . . . .  I I I I 

Fig. ld. 

0.8 

0.6 
X , 

0.4 
I'll 

~ 
v 

0 0,2 0,4 t 0,6 0,8 
Possible location of contact points in [t~, t~+ ~], according to Theorem 2.1. Case of a 
touching pair. 

j =  1, 2, are the Lagrange multipliers corresponding to the inequality 
constraints. [] 

P r o o f  o f  Theorem 2.1. Lemma 2.1 implies that the optimal output x* 
is C 2 in every interval (ti, t~+ ~ ) and is a cubic polynomial in every subinterval 
of [ti, ti+l] where e( t )<x*( t )<d( t ) .  Moreover, if r is a contact point in 
(ti, t~+ 1 ) where x*(v) = e('c), then ~*(r - 0) < ~*(r + 0) ; if x*(r) = d(r), then 
fi * (r  - 0) > z~* (r  + 0). Let r l, r2 ~ ( t~, ti+ 1 ), for some i, be such that x* ( r l )  = 
d(rl ) and x*(r2 ) = d(r2). Since x*(t) <_ d(t) and x* 6 C l, then s ) = d(Zl ) 
and ~(r2)=d(r2) .  The control 

~t(t)={Ou,,(t) ' ift~[rl,otherwise,r2], 

is feasible and satisfies IJ~ll-< Ilu* II, since d is linear. Thus, u*(t)= ~(t) and 
x*(t) =d(t)  for t e [ r l ,  r2]. The function x* is continuous; hence, the set 
{t~[t~, t~+l ]: x*( t )=d( t ) }  is closed; thus, it has a minimal and a maximal 
element. The same conclusion holds for the other constraint. Summarizing, 
in every interval [t~, tt+1], each of the constraints can be active no more 
than once, either in an interval whose endpoints are contact points, or in a 
single point which is a contact point. 

We will prove that, if for some [t~, t~+l] one of the constraints is active 
in a proper interval (with length > 0), then the other constraint is nonactive 
in [t;, t~+~]. Let r~, r2 be two contact points, with ~1, "t'2~[ti, ti+l ], z1 < l'2 ; 
let rl be the right end of a proper interval where the lower constraint e is 
active; and let v2 be the left end of  an interval or a single point where the 



330 JOTA: VOL. 87, NO. 2, NOVEMBER 1995 

upper constraint d is active; that is, e ( t ) < x * ( t ) <  d(t), for tff(~'l, Z'Z). From 
Lemma 2.1, u* is continuous in (ti, t;+1 ). The Taylor expansion in t e [ r l ,  r2] 
gives us 

x*(t)  = x*(r2)  + 2*(r2) ( t -  r2) + u* ( f ) ( t -  r2)2/2 

= d(t) + u*( f ) ( t -  r2)2/2, 

for some re[ t ,  r2]. Taking into account that x*( t )<d( t )  for tE(rl ,  r2), we 
conclude that u*(f) < 0 for any f arbitrarily close to and less than r2. Hence, 
u*(r2)<0. On the other hand, u*(r l )=0,  since rl is the right end of an 
interval where u* = 0. From Lemma 2.1, fi* has a jump upward at r~. Hence, 
the linear function u*(t) is strictly increasing for r~ < t < r2 and u*(r~ )=  0; 
thus, u*(r2)> 0. The contradiction obtained implies that such a location of 
contact points is impossible. The proofs for the remaining cases are com- 
pletely analogous. Hence, in any [ti, h+~], both constraints may be active 
only in a touching pair. This proves the theorem. [] 

It turns out that, when we minimize with respect to y and s in problem 
(2), the optimal control becomes more regular. 

Corollary 2.1. The optimal control u, of problem (2) satisfies all the 
regularity conditions in Theorem 2.1 ; moreover, u, is a continuous function 
in the whole interval [a, b], and the optimal output x,  is a C 2 piecewise- 
cubic polynomial. If, in some interval [t~, ti+l], x ,  has a subarc on one of 
the constraints, then x,  has no subarcs on the other constraint in [t~_ l, ti+2]. 

Proof. The solution (u, ,  x , )  of problem (2) is also a solution of the 
following problem: 

min Null, (5a) 

s.t. 2(O=u( t ) ,  x ( t i ) = x , ( t ; ) ,  i=0, 1 , . . . ,  n, (5b) 

e(t) <_x(t) <d(t) ,  for all t~[a, b], u~L2[a, b]. (5c) 

In Ref. 3, it is shown in the context of approximation theory that problem 
(5) has a unique continuous and piecewise linear optimal control u, ,  and 
(compare with Lemma 2.1) there exist real numbers li, i= 0 . . . . .  n, and 
nonnegative regular measures pl and p2 supported on the sets 

T1 = { t ~ [a, b]: x , (  t) = e(t)}, 

7'2 = {t~[a, b] : x , (  t) = d( t) } , 
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respectively, such that 

ft fi,(t) = / i +  d ( p l - p 2 ) ,  for a.e. te[ti, b], i = 0 , . . . ,  n. 

By repeating the arguments used in the proof of Theorem 2.1, one can show 
that the solution to problem (5) satisfies all the regularity conditions of 
Theorem 2.1. 

We now prove that, if x ,  has a subarc in [ti, ti+ 1 ] on one of the con- 
straint, say e, then x ,  has no subarcs in [t;_ 1, t~+z] on the other constraint. 
Let rle[ti, ti+l ] be the right end of a subarc on the constraint e, and let 
rze[ti+l,  t~+2] be the right end of a subarc on the constraint d. Then, 
u,(rO = 0 = u,(r2) and, since rl and r2 are contact points, u,(t) > 0 for t > r~ 
and t near r l ,  u,(t)<O for t <  r2 and t near r2. But u,  is piecewise linear 
and continuous with one knot t~+l between rl and r2; hence, u , = 0  in 
[r l ,  r21, which is impossible because x , ( r 2 ) = d ( r 2 ) > e ( r 2 ) .  The proofs of 
the other cases are analogous. [] 

3. Convergence 

Let (x ~ u ~ be the unique solution of problem (2) with �9 = 0; that is, 
(x ~ u ~ is the solution of 

min 

s. t .  

[lull, (6a) 

5d(t) = u(t), (6b) 

x(a) = y~, ~(a) = Sa, x ( b )  = Y b ,  x ( b )  = Sb, (6c) 

e(t) <x(t)  <d(t), for all t~[a, b], u~L2[a, b]. (6d) 

Our first convergence result is given in the following theorem. 

Theorem 3.1. Let u, be the optimal control of problem (2). Then, 

lim I lu , -u  ~ II =0.  
~--*0 

Proof. Let �9 be a sequence of positive numbers convergent to zero 
and such that 

eg < mint(1/8)  
( 

min (d(t) - e(t)), (1/2)(min (ti+l - ti)/8)6}, 
tE[a,b] i 

k = 1 , 2  . . . .  p, 
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where p = min { d ( t i ) -  x~ x ~  e(t i)},  for all i such that 

e( ti) < x~ ti) < d( ti). 

For  each e~, we will find an admissible control ~-k for problem (2) with E = 
ek such that 

l im Ilu~ II = 0 .  
k--~ oo 

Suppose that x ~  d(ti) for some i, where x ~ is the optimal output corre- 
sponding to u ~ Let 

{--(t--ti--t~k)3(t- t i + ~ k )  3, t ~ [ t i - ~ k ,  t i+Sk] ,  

pk(t) = 0, otherwise, 

where ~6=2Ek. If  x~ =e(t i )  for some i, we take p~ with negative sign. 
__ i Let P k - ~ , i P k ,  where the summation is for all i such that either e or d is 

active at 6. Note that pk(t)  is a C 2 function and ]]/~k ]]L2[o,b] " ' 0  as e ~ 0 .  Let 
~k = x ~ +P~. Then, 

lim II~'k- u~ = 0  
k ~ c x 3  

and 

o r  

2k(ti)  = d(ti)  - 2ek < d(ti)  - ek 

Yck( ti ) = e( ti ) + 2~-k > e( ti ) + ek, 

depending on which of  the constraints is active at t,.. Since the feasible set 
of  problem (2) is contained in the feasible set of problem (6), we obtain 

Ilu,kll<_Ll~kll=llu~176 as  k - ~ o o .  

From the above relations, we obtain 

l im Ilu~k ]l = Ilu~ 
k--* oo 

Moreover, the sequence u~k, k = 1, 2 . . . . .  is bounded; therefore, u~ has an 
L2-weak cluster point, which we denote by ~. If  u l ~  weakly as l ~  o0, then 
by the weak lower semicontinuity of  the L2-norm, we obtain 

Ilu~ I1~11 < l i m  in f  Iluzll = Ilu~ 
l ~ c o  

Hence, u ~  ~. From the uniqueness of  u ~ there exists a unique L2-weak 
cluster point of  the sequence u~ which is u ~ Since u ~ u  ~ L2-weakly and 
Ilu,~ II ~ Ilu~ as k ~ ,  we obtain 

II u,~ - u ~ II--,0, as  k-- ,  ~ .  [ ]  
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The above result yields that the solution (x ~ u ~ of problem (6) has 
the following regularity properties. 

Corollary 3.1. The optimal control u ~ of problem (6) is a piecewise- 
linear function in [a, b]. In every interval (ti, t,-+l ), the optimal output x ~ 
has the following properties: 

(PI) the constraints are not active; 
(P2) there is one contact point that is either a single touching point 

or an end of a subarc whose other end is a fixed knot; 
(P3) there are two contact points that either form a touching pair or 

are the ends of a subarc. 

In contrast to problem (3), in this case it is possible that the fixed knots 
and the contact points form two subarcs in the same closed interval [t~, ti+ ~ ], 
one for each of the constraints, or form a touching point on one constraint 
and a subarc on the other. 

Our next result concerns the convergence of the optimal controls of a 
sequence of approximating problems (6) to the optimal control of problem 
(1). 

Theorem 3.2. Let en and dn be two sequences of piecewise linear and 
continuous functions such that e,~g and d , ~ f  uniformly in the interval 
[a, b]. Let Uo be the optimal control for problem (1), and let u, be the optimal 
controls for the approximating problems (6) with e =en and d= d,. Then, 

lim Ilu.-u0 II = 0 .  
n ~  

Proof. Let z7 be a feasible control for problem (1) such that the corre- 
sponding trajectory ff satisfies the boundary conditions (lc) and 
g(t)<2(t)<f(t) for all te[a,b]. For any sequence 3n~0, if zTn= 
Uo+S,(ft-Uo), then the corresponding output 2, satisfies (lc) and 
g(t) <f t , ( t )< f ( t )  for all te[a, b], ~,~Xo uniformly in [a, b], where x0 is the 
optimal output of problem (1). We will choose c~, such that 

e.(t) < 2.(t) <_d.(t), (7) 

for every sufficiently large n and for all t s[a, b]. Let a be the minimal 
distance from 2 to the constraints, that is, 

O<a  =minIl.<_t<<_bmin I2(t)-g(t)l, ~<_t<_bmin 12(t)-f(t)l } ; 
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and let 

T =  { t~[a,  b]: Ixo( t ) -  Y4 t)l <_ a / 2 }  . 

Let d;. be a sequence of  positive numbers convergent to zero and such that 

f 
d;. > (2 /a )  max~ sup le.(t) -g ( t ) l ,  

[t~[a,b] 

Let t ~ T .  We have 

~. ( t )  - e . ( t )  = xo(t)  + 6n(~( t )  - Xo(t)) - e . ( t )  

sup I d ~ ( t ) - f ( t ) l } .  (8) 
t~[a, b] 

= Xo(t) - Y~(t) + t~n(~(t) - Xo(t)) + Y~(t) - g ( t )  § g ( t )  - en(t) 

>_ - a / 2  + 6n(~(t)  - X o ( t ) )  + a + g ( t )  - e ~ ( t )  >_ O, 

for n sufficiently large. Analogously, 

~ ( t )  - d~(t) = Xo(t) - ~( t )  + 6~(Y~(t) - Xo(t)) + ~( t )  - f ( t )  + f ( t )  - dn(t) 

<_ a / 2  + 6~(~(t)  - Xo(t)) - a + f ( t )  - d~(t) < O, 

for n sufficiently large. Let tq~T. Consider first the case X o ( t ) - Y c ( t ) >  a / 2 .  
We have 

~ ( t )  - e~(t) = Xo(t) - Y~(t) + ~ (~( t )  - Xo(t)) + ~( t )  - g ( t )  + g ( t )  - en (t) 

>_ a / 2  + ~(Yc(t)  - Xo(t)) + a + g ( t )  - e~(t) >_ O, 

for n sufficiently large. Furthermore, 

Yc.(t) - d . ( t )  = Xo(t) - f ( t )  + 8 . (~ ( t )  - Xo(t)) + f ( t )  - d . ( t )  

<_ 5 . ( ~ ( t )  - Xo(t)) + f ( t )  - d . ( t )  <_ O, 

because of  the choice of  d;. in (8). Finally, let X o ( t ) - ~ ( t ) < - a / 2 .  Then, 

~.(  t) - e . (  t) = Xo( t) - g(  t) + ~. (  Yc( t) - Xo( t) ) + g(  t) - e . (  t) 

>_ 8~(~(t)  - X o ( t ) )  + g ( t )  - en(t) >_ O, 

because of  the choice of  5. in (8), and 

~. ( t )  - d . ( t )  = Xo(t) - ~( t )  + 6.(Y~(t) - Xo(t)) + ~( t )  - f ( t )  + f ( t )  - d . ( t )  

<_ - a / 2  + 6n(~( t )  - Xo(t)) - a + f ( t )  - d . ( t )  <_ 0,  

for n sufficiently large. Thus, (7) is proved. This yields that ~. is a feasible 
control for the approximating problem (6). From optimality, we have 

)IUnII<II~.II--'IluoII, as  n ~ .  
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The sequence un is bounded in L2; hence, one can extract a subsequence 
which converges L2-weakly to some ~. The sequence of  optimal outputs x, 
converges uniformly to the corresponding output ~, which clearly satisfies 
the constraints of  (1). Passing to a subsequence and using the weak lower 
semicontinuity of the L2-norm, we have 

Ilu0 I I -  I1~]1 <lim inf Ilu., II--- lim Ilani II : Ilu0 II. 
?/i--~ C~ hi--* ~3 

The uniqueness of  the optimal control u0 implies that Un-"~Uo L2-weakly, 
hence in the norm of L2[a, b]. []  

4. Solving the Finite-Dimensional Problem 

First, we discuss the properties of  the function qJ(s, y) defined by prob- 
lem (3) for s = [s~ . . . . .  sn- 1 ] ~ ~ n - -  2 and for y = [yl . . . .  , Y n -  1 ] ~ ~ n -  1, s u c h  

that 

e ( t ~ ) + e < y ~ < d ( t ~ ) - e ,  i = 1 , . . .  , n - 1 .  

Let us recall that a function f is called coercive if f ( s ) ~  09 as I sl ~ 09. 

Theorem 4.1. The function g / i s  convex, and coercive in s uniformly 
in y; i.e., if [sl~09, then q~(s,y)~09 uniformly in yeEn-2 ,  
e(ti ) + e < y; < d(t;) - e, i = 1 . . . . .  n - 1. Moreover, W attains its unique mini- 
mum in its domain. 

Proof. The convexity of ~P follows from the fact that W is the value 
function of  a convex minimum problem. Let 

s = 2 s l + ( 1 - A ) s  2, y = s  , 0 < A , < I ;  

let u ~ be the optimal control for problem (3) corresponding to (s ~, yl ); and 
let u 2 be the optimal control for problem (3) corresponding to (s 2, y2). Then, 
s  ( 1 - A ) u  2 is an admissible control for problem (3) corresponding to 
(s, y). Since the functional I(u) defined in (3) is convex, we obtain 

~P(2s I + (1 - 2,)s 2, 2,y ~ + (1 -/~)y2) .<I(AU 1 + (1 -- Z)U 2) 

_< M(u' ) +  ( 1 -  s  2) 

= / ~ t i . / ( s l  ' yl)  + (1 - 2,)W(s 2, y2), 

that is, W is convex. 
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Let u(s, y) denote the optimal control in problem (3). Using the Cauchy 
inequality, we have, for i = 0, 1 . . . . .  n -  1, 

It 
t i+  I 

Isi+l-sil  < lu(s,y; t)l dt 
i 

< Ilu(s, y)IlL2[t,,ti+,]lti+l - til 

< tlu(s, Y)l l lb-al .  

Since So=Sa, S,=Sb are fixed, it follows that, if Isl ~ ,  then [lu(s, y ) [ [ ~  
uniformly in y. 

The minimum of problem (2), where the data yi satisfy 
e ( t i ) + e < y i < d ( t i ) - e ,  i = l , . . . , n - 1 ,  exists and is unique; hence, 
attains its unique minimum in its domain. This proves the theorem. [] 

The following corollary shows that problem (4) is well-suited for numer- 
ical computations. 

Corollary 4.1. Problem (4) is Tikhonov well-posed;that is, every mini- 
mizing sequence converges to the unique solution. 

Proof. Let (Sk, y~) be a minimizing sequence; that is, 

q~(s~, yk ) < ~ (s  ~ y0 ) + ~k, 

where (s~ ~ is the solution of problem (4) and 8 ~ 0  as k ~ .  The 
sequence y~ is bounded and, by the coercivity of W with respect to s, it 
follows that the sequence sk is bounded as well. Without loss of generality, 
assume that (Yk, sk)--* (37, g). Then, from the continuity of  vd and the unique- 
ness of the optimal solution (s*, y*), we obtain that (37, g)= (y*, s*). This 
proves the Tikhonov well-posedness. [] 

For a discussion of Tikhonov well-posedness and related topics, see 
Ref. 12, Chapter 1. 

In our algorithm, we evaluate the function q~ in the following way: 

n - - I  

W(s,Y) = Z ~i(si, s i+, ,yi ,Yi+l) .  (9) 
i = 0  
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Here, 

~i(Si, Si+ 1, Yi, Yi+ 1 ) 

= min 

s.t. 

llull~zv,.,., I, (10a) 

2(t) = u(t), x(ti) =Yi, (10b) 

~(ti)=si, x(ti+,)=y~+,, ~(t,+,)=s;+,, (10c) 

e(t)<x(t)<d(t), for all te[h, h+l], u~LZ[t~, t~+,]. (10d) 

Each of problems (10) can be solved explicitly as described below. 
We say that an output of problem (10) for a given interval [t~, t~+l] is 

admissible if it is a C 2 piecewise-cubic polynomial that has one of the four 
properties described in Theorem 2.1. The optimal output of  problem (10) 
is an admissible output with the minimal L2-norm of the second derivative. 
The construction of an admissible output reduces to a root-finding problem, 
where the unknowns are the coefficients of the cubic polynomials and the 
location of the contact points. 

Further analysis of the admissible outputs in problem (10) yields that, 
if there is an admissible output with no contact points, then it is the optimal 
output. If  there is an admissible output that has a subarc on a given con- 
straint, then there is no admissible output that has a touching point on the 
same constraint. Conversely, if there is an admissible output that has a 
touching point on a given constraint, then there is no admissible output that 
has a subarc on the same constraint. I f  there exists an admissible output in 
problem (10) that has a subarc on one constraint, then there is no admissible 
output that has a subarc on the other constraint. Suppose there is no admis- 
sible output that has no contact points. In this case, if there exists an admis- 
sible output that has a touching point or a subarc, then the optimal output 
in problem (10) must have either a touching point or a subarc, and there is 
no need to consider the case of a touching pair. Proof of these statements can 
be obtained by a simple analysis based on properties of cubic polynomials. 

Admissible outputs in problem (10) for each of the cases of a touching 
point, a subarc, or a touching pair are determined from the condition that 
the output is C 2 inside the interval, from the constraints (10b)-(10d), and 
by using the definition of a touching point, a subarc, or a touching pair, 
respectively. The location of a single touching point on a given constraint 
is determined from a cubic equation. Since a cubic equation has at most 
three roots, there exist at most three admissible outputs that have a touching 
point on a given constraint. The location of a subarc on a given constraint 
is determined by solving a linear equation. Hence, there exists at most one 
admissible output in problem (10) that has a subarc on a given constraint. 
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The case of a touching pair reduces to two coupled polynomial equations 
for the locations of the contact points comprising the touching pair. 

5. Discontinuous and Piecewise Cubic Constraints 

In problem (2), we assume that the functions e and d are piecewise 
linear and continuous. This assumption can be relaxed so that the functions 
e and d need not be continuous at the fixed knots te provided that there is 
a function ~" such that ~"eL 2, ~(a)=ya, r  ((b)=Yb, r and 
the graph of ~" is in the interior of the closure of the set 
{ (x, t) e R 2: e(t) < x < d(t) }. The existence of the function ~ guarantees, for 
E sufficiently small, the existence and uniqueness of the solution to problem 
(2) and the nondegeneracy of the Lagrange multipliers. The characteriza- 
tions of the solutions to problems (2) and (6) given in Corollaries 2.1 and 
3.1 hold also for the case where the constraints e and d are discontinuous 
at t;. 

The above analysis can be also applied to a modification of problem 
(6) when, in each interval [t~, t;+ 1], there is one constraint only which is a 
cubic polynomial. More precisely, let I and J be two disjoint subsets of 
the set {1, 2 . . . . .  n}, and let {e~}i~1 and {dj}j~+ be two families of cubic 
polynomials. Define 

and 

e(t) I el(t)' =[--~, 

=I4(t), 
d(t) [ +oo, 

if ieI and te (t,, t;+ 1 ], 

otherwise, 

i f j e J  and te(  b, tj+l 1, 
otherwise. 

Let (t;,yi) be in the interior of the closure of the set 
{(x, t)~ •2: e( t)< x <  d(t)}. In this case, from the necessary conditions for 
optimality (analogous to Lemma 2.1), it can be shown that the solution x* 
of problem (2) is a C 2 function which is a cubic polynomial in every interval 
[rl,  r2] c [ti, tg+ 1] where the constraints are not active. Let x*('cj)= e(rj), 
j =  1, 2. Then, I / = f - e  is a cubic polynomial with two zeros at r l and rz 
and 77>0 on (r~, rg+l). Since the function 77 has minima at rj, r/(rl) = 
q ' ( r l )= r / ( r2 )= r / ' ( r2 )=0 ,  which implies 77=0. Hence, in each interval 
[ti, ti+l], only a subarc or a touching point are possible. In this case, the 
optimal output for problem (2) is a C 2 piecewise-cubic polynomial, with 
perhaps a subarc (two contact points) or a touching point (one contact 
point) in every [6, t,+ l]. Note that subarcs may occur in two neighboring 



JOTA: VOL. 87, NO. 2, NOVEMBER 1995 339 

intervals. If in every interval [ti,/i+l], both constraints e and d are cubic 
polynomials, then the optimal output may have up to four contact points 
in [ti, ti+ 1 ]. 

6. Numerical Examples 

For solving problem (4) numerically, we first choose an initial point 
(s o, yO ), e.g., 

y~ s~ i=1 . . . . .  n - l ,  

where f is the third-order C 2 Hermite spline satisfying 

f(to) =Ya, f '(to) =s, ,  f(tb)=yb, f'(tb)=Sb, 

f ( t i )=y~ i= 1 , . . . , n -  1. 

Then, we apply a code for finite-dimensional optimization. In our com- 
putations, we used the Optimization Toolbox and the Spline Toolbox of 
MATLAB Version 4.0. The numerical solution of problem (2) for the examples 
below takes several minutes on a Hewlett-Packard (HP) Workstation, 9000 
Series, Model 715/50 with a 50 MHz PA-RISC 7100 Processor. Our experience 
shows that, if some of the fixed knots of the solution to problem (2) are 
close to the constraints, then the evaluation of q~(s, y) may be numerically 
difficult. Although we have used a general-purpose minimization routine 
supplied by MAa'LAB, we feel that the performance of the algorithm can be 
increased by using optimization routines which take into account the specific 
structure of the problem. The development of such routines is a subject of 
continuing research. 

Example 6.1. Our first example is to transfer the double integrator 
from the initial state 

x(O)=O, 2 ( 0 ) = - 2  

to the final state 

x ( 2 5 ) = - 1 ,  2(25)=2, 

subject to 

e(t) <_x(t) <d(t), 
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t 

Optimal output in Example 6.1: O =fixed knot; �9 =contact  point. Fig. 2. 

where e(t), d(t) are piecewise-linear and continuous functions shown by 
the dashed lines in Fig. 2. The optimal output of problem (2), obtained for 
6---- 10 -6, is shown by the solid line in Fig. 2. All but two fixed knots lie on 
an e-distance from the constraints and the output has three subarcs and 

30 

20 

10 

! i 

-50 5 10 15 20 25 
t 

Fig. 3. Optimal control in Example 6.1: O = fixed knot; * = contact point. 



JOTA: VOL. 87, NO. 2, NOVEMBER 1995 341 

10 

Fig. 4. 
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- ~  I 1 ~ 
I I ~  ~ 

o 1 2 
t 

Optimal output in Example 6.2: O =fixed knots; *=contact point. 

four touching points. The corresponding optimal control is shown in 
Fig. 3. 

Example 6.2. In the second example, we have 

x(0) = 0.5, :~(0) = -8 ,  x(3) = 1.4, ~(3) = 8, 

and the constraints are shown by the dashed lines in Fig. 4. The constraints 
are not continuous at the fixed knots; in the second interval, one of the 
constraints is a cubic polynomial, while the other constraint is absent. This 
example illustrates our approach for the more general problem described in 
Section 5. The optimal output of problem (2), obtained for e =  10 -6, is 
shown by the solid line in Fig. 4. Figure 5 shows the optimal control. 

7. Appendix: Regularity of the Optimal Control of a State Constrained 
Linear Regulator Problem 

Consider the following problem with one-sided state constraint: 

min (1/2) (x(t)rQx(t)+u(t)ru(t)) dt, (11) 
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t 

Fig. 5. 

I 

3 

Optimal control in Example 6.2: O =fixed knot; ,=contact point. 

on the set of  those xe Wl'2[a, b] and uEL2[a, b] such that 

2(t)=Ax(t)+Bu(t), x(0) = x  ~ , (12a) 

lrx(t)+c<_O, forallt~[a,b], (12b) 

where x(t)~ ~', u(t)~ ~ ' ,  the matrices Q, A, B are constant, Q is symmetric 
and positive semidefinite, l e e  ", c e E  1, the initial state x ~ is fixed, and the 
superscript T denotes transposition. From the analysis in Ref. 11, Chapter 
2, it follows that, if ITB = 0 and I TAB ~ 0, then the optimal control of  problem 
(1 l) is a piecewise analytic function in time. It is also mentioned in Ref. 11 
that the optimal control is analytic if l TB ~ O. We present here a simple proof  
of  the latter assertion using Hager's regularity result (Ref. 10). We also 
discuss briefly the regularity properties of  the optimal control when this 
condition is not satisfied. 

Let us recall that, if for some trajectory x the state constraint is active 
at t (i.e., is satisfied as equality), and for every a > 0 it is nonactive some- 
where in [ t -a ,  t+a], then t is a contact point o fx .  

Theorem 7.1. Suppose that lrx~ and the vector 

lrBs~O. 

Then, the optimal control is piecewise analytic in [a, b]. 

(13) 
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We start with the following simple lemma: 

Lemma 7.1. There exists a control a such that, if2 is the corresponding 
solution of (12a), then lr2(t) + b <0 for all t~[a, hi. 

Proof. From (13), 

f l=lrBBrl>O.  

Let 2 be the solution of 

Yc(t) = (A - BB rllrA/fl)x(t),  

and let 

Then, 

that is, 

x(O) = x  ~ 

~(t) = -Br l l rA2( t ) / f l .  

l rx = (l rA - l T B B  Tl l  rA/fl)Yc(t) = O, 

l r2 ( t )+c=lrx~  for all t~[a, b]. 

Since the set of feasible controls is nonempty, there exists a solution (~, ~) 
to (11) and, by the strict convexity of the functional, the solution is unique. 
Furthermore, Lemma 7.1 implies that the first-order optimality conditions 
are in normal form (see Refs. 1-2); namely, there exist a function of bounded 
variation V and a nonnegative regular measure p supported on the set 
{t~[a, b]: l r~( t )+c=O} such that, for a.e. te[a, b], 

a(t) =Brat(t),  (14) 

f( !] r = [A rV(r) - Q2(v)] dr - l dp. (15) 

[] 

Proof of Theorem 7.1. Condition (13) coincides with Hager's condi- 
tion; hence, the nondecreasing function 

v( t )  = -  d~ 

is Lipschitz continuous in the interval [a, b). Then, from (14) and (15), we 
obtain that the optimal solution (~, ~) satisfies the following relations, for 
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u(t) =Br~(t), 

Yc( t) = Ax(  t) + BB r~(  t), 

(g(t) = - A  r~(t)  + Qx(t) + 19(0, 

0 = (lrx(t)  + c) f,(t). 

y ( t )= t r~ ( t )+c .  

(16a) 

(16b) 

(16c) 

(16d) 

r(t) = [l r, 0] exp(Nt)f, 

Be ] 
_AT j, f= [~ 

z(t) = [l r, O] exp(N( t -  to))V(to) + c. 

From (16b) and (16c), we obtain that, for every te[a, b], 

y ( t ) = z ( t ) +  r ( t -  r)O(r) dr. (17) 
o 

Note that 

r (0)=0  and ~( tO)=f l=lrBBr l>O.  

Since ~, is absolutely continuous, one can differentiate (17) obtaining 

3~(t) =2(t) + k ( t -  r )9 ( r )  dr. (18) 
0 

From the continuity of y and p, it follows that 

y( to ) = p( to ) = Z( to ) = ~( to ) = O. 

If  z is identically zero, then the above equation yields that, for k ~ I sufficiently 
large and for each t~(r2k+2, v2k+l), 

0 = ~:(t- r )9 ( r )  dr_> ( 1 /2 f l ) ( v ( t ) -  V(to)) >0. 
o 

Suppose that there exists an infinite sequence r l ,  r2 . . . . .  r ~ , . . ,  of  contact 
points o f y  in [a, b]. Without loss of  generality, let rk converge to toe[a, b), 
and let r l > r2 > . . .  > r k . . .  > to. Let y(t) < 0 on (rzk + 1, r2k) and y(t) = 0 on 
[r2~§ rz~+ 1 ] for k = 1, 2 , . . . .  Suppose that r2k+2 < r2k+ l for infinitely many 
k from a set of natural numbers L Denote 
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This implies that v is constant on [to, to+a]  for some a >0,  which in turn 
yields that y = z in [to, to + a], a contradiction. Therefore, z is not identically 
zero, which is equivalent to saying that there exists a natural number j > 2  
such that the j th  derivative z~)(to)SO and zi(to)=0 for O<_i<j. 

Let t~(r2k+2, "C2k+~ ). Then from (18) and using the Taylor expansion 
for z, for all sufficiently large k~L we have 

0 = ~ ( t ) +  ~ ( t -  r )9 ( r )  dr  
0 

> z(J~(to)(t- to) J - ' / ( j -  1)! + o( ( t -  to) j--l) +/~A v(t)/2, 

where 

Av(t) = v(t) - v(to) >_ 0. 

Since Av is constant in [Tzk+~, ~ ] ,  then the above inequality implies that 
there exists y > 0 such that, for some sufficiently small a > 0 and for all 
te[to, to+ a], 

0 _< Av(t) _< y ( t -  to) s-I (19) 

Now, let te(r2k+l,  r2k). Since 9 = 0  on (r2k+l, r2~), from (18) we get 

it r 3)(t) = ~(t) + k ( t -  r) 9(r)  dr. 
0 

Differentiating this equality and using the Taylor expansion for z, we obtain 
that, for some constant ~: > 0, 

y( t )=zJ( to) ( t - to )J -2 / ( j -2 ) !+ f ( t - r ) 9 ( r ) d r + o ( ( t - t o )  J-2) 
to 

<z(J)(to )( t - to) J-z /U-2)!  + lcAv(r2~) + o( ( t -  to) j -2) .  

Using (19), we conclude that for te(r2k, r2k+l), k~I, 

j~(t) =zJ-2(to )(t - to) j -2 / ( j_  2)! + o( ( t -  to) j -2) .  

This means that, for all sufficiently large k, the function y(t) has constant 
sign in the interval ('t'2/c+l, "t'2~), which contradicts 3)(r2k+l)=J)(Z'2k)=0. 
Hence, I is a finite set. Since v is continuous, it is constant in [to, to + a] for 
some small a > 0. But then y is analytic in [to, to+ a], because z is analytic 
there, and thus y has a finite number of zeros. This means that the number 
of  contact points is finite in the right neighborhood of to. The proof  is 
complete. []  
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In the proof, we use a local argument; hence, the same conclusion can 
be obtained for several state constraints if one assumes that the condition 
(13) holds for every constraint, and at each instant of time no more than 
one of the constraints is active along the optimal trajectory. If there are 
additional control constraints, to apply the above proof one may assume 
that the state and control constraints do not have the same contact points. 

Suppose that condition (13) is violated, that is, l rB = 0. Then from (14) 
and (15), we obtain 

a(t) = (B rA rvt (r) - B rQ~(r)) dr, (20) 

that is, the optimal control ~ is differentiable almost everywhere in [a, b] 
and its derivative is of bounded variation. If l tAB ~ O, we know from Ref. 
11 that a is piecewise analytic. Now, suppose that lrAB = O. Differentiating 
(20) and using (15), we obtain 

( t = B r Q ~ ( t ) - B r A r [ f  b (AVe(r) - Q~( r )d r ] .  

This means that ~ is twice differentiable and its second derivative is of 
bounded variation. Proceeding in the same manner, we come to the following 
result. 

Theorem 7.2. Suppose that, for some 0 < k < n -  1, 

lrA~B=O, for i=0,  1 , . . . ,  k -  1. 

The optimal control ~ of problem (11) is k-differentiable in [a, b] and its 
kth derivative is of bounded variation. 

then 

Note that, if 

IrAiB=O, for i=0,  1 . . . . .  n - l ,  

lrx(t) = l r exp (A( t -a ) ) x  ~ for all t~[a, b]; 

that is, the violation of the state constraint cannot be controlled by u. 
Considering a fourth-order integrator with a sign constraint for the first 

derivative (in this case, l rB = O, l TAB = 0, but 1 rA2B ~ 0), Robbins has shown 
(Ref. 13) that the optimal trajectory may reach and leave the constraints 
infinitely many times; i.e., the optimal control may not be piecewise analytic. 
A similar example is analyzed in Ref. 11. As stated in Theorem 7.2, in this 
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case the optimal control is twice differentiable; that is, by losing its piecewise 
analyticity, the optimal control becomes more smooth. 
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