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Convergence Analysis of Some Methods for
Minimizing a Nonsmooth Convex Function1,2
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Abstract. In this paper, we analyze a class of methods for minimizing
a proper lower semicontinuous extended-valued convex function
f: R n -»R u {oo}. Instead of the original objective function/, we employ
a convex approximation fk + 1 at the kth iteration. Some global conver-
gence rate estimates are obtained. We illustrate our approach by propos-
ing (i) a new family of proximal point algorithms which possesses the
global convergence rate estimate f ( x k ) -mm x € r n f ( x ) =

even it the iteration points are calculated approxi-
mately, where {yk}k=0 are the proximal parameters, and (11) a variant
proximal bundle method. Applications to stochastic programs are
discussed.
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1. Introduction

Consider the following optimization problem:
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where f: Rn-»R u {00} is a proper lower semicontinuous extended-valued
convex function.
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The Moreau-Yosida approximation FA. of f is defined by

where A is a real positive number. As proved by Moreau (Ref. 1), FA is a
differentiable convex function defined in the whole space Rn and possesses
the same set of minimizers as/in (1). Using these properties, Martinet (Ref.
2) presented a proximal point algorithm for solving (1): start from an initial
point x0eRn and generate {xk}oo=0 by solving

where (At}oo=0 is a sequence of positive numbers.
Under some additional reasonable assumptions, Rockafellar proved in

Ref. 3 the local superlinear convergence of the proximal point algorithm for
rinding a zero of an arbitrary maximal monotone operator even if the itera-
tion points are calculated approximately. When his results are applied to a
lower semicontinuous proper convex function /, two general criteria for
generating xk+1 are that

and that

where

For recent convergence results of the proximal point algorithm, we refer the
reader to Refs. 4 12.

Giiler presented in Ref. 10 two different proximal point algorithms
which used an idea introduced by Nesterov (Ref. 13) for smooth convex
minimization. His methods generate an additional sequence { y k } o o = 0 of
points in Rn, and calculate x^ + i from

He also showed that the minimization in (6) can be performed inexactly by
a modification of (3), i.e.,

where a3k
 = O( 1 /k") for some a > 1 /2.

Lemarechal combined the proximal point method with the bundle
method in Ref. 14; also see Refs. 15 17. In his algorithm, a sequence
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{xk}k=0 is generated by a sequence of convex functions {fk}k=o. More
precisely,

where/A is a bundle linearization function of f. For the bundle method, also
see Refs. 18-25.

In this paper, we study procedures that use a sequence of approximate
objective functions {fA} K =0. Such approximation is necessary in some opti-
mization problems [for example, stochastic programs (see Refs. 26-33),
where the objective functions are too complex for exact evaluation]. For
stochastic programs, the objective function involves the expected value

where co is a random vector defined on a probability space (Q, j&, £P). Thus,
the precise evaluation of f and its subgradients involves multidimensional
integration. To avoid the computational burden associated with this evalua-
tion, the objective function f is replaced by a sequence of approximate
functions { f k } k = o ; see Refs. 26-33.

The remainder of the paper is organized as follows. In Section 2, we
describe a model algorithm and give some global convergence rate estimates.
As an application, in Section 3 we present a family of proximal point algo-
rithms which calculate xk+1 with uk+1 e d f ( x k + 1 ) by

where <j4k and 05k are some numbers in (0, 1). In particular, under the
same conditions, we obtain the following global convergence rate estimate
obtained in Ref. 10 [with exact minimization (6)1:

Note the following: (i) we obtain the same convergence results using the
inexact minimization (10); for example, for all k, <r4k = a5k = 1 /5, or 04k =
0 and < 5 k e [ 0 , 1/3], or c4ke[0, 1/2] and O5k = 0; of course, an essential
difference from the proximal point algorithms in the literature is the fact
that cr4k and a5k can be bounded away from zero; and (ii) the convergence
rate (11) for algorithm (10) is higher than that obtained for (7) in Ref. 10.
Some applications in stochastic programs are discussed in Section 3. As
another application of the results in Section 2, we present in Section 4 a



The following two lemmas slightly extend related results in Ref. 10. The
proofs follow closely those of Ref. 10.

The aim of this section is to extend the above idea to a sequence of
proper lower semicontinuous extended-valued convex functions {fk}k=0,
which approximate f at step k. We assume that:

which implies that, if Yli-o (1 -ai)-»0, then {xk}k=0 is a minimizing
sequence for/.

Let x0eRn, {xk}k=0ERn, uk+1edfk+1(xk+1), and let a constant a>0 be
given. For given ake[0, 1), we define

then from (14),

If, at step k,

where a k e[0 , 1). If (13) is satisfied for each k>0, then

2. Model Method Algorithm

We describe briefly the main idea of the methods in Ref. 10. The idea
there is to generate recursively a sequence {pk}k=0 of simple convex quad-
ratic functions that approximate f such that, at step k>0, for all xeR n ,

variant proximal bundle method which calculates xk+1 by
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(A1) for any xedom f and all k>0, fk(x)<+oo.



From Lemma 2.1, we have

It is easy to show that

For all; such that 1 <,j<k, let

Using the convexity of f k + 1 , the conclusion (19) follows.

Proof. From the definition of c p k + 1 , we have

where

Lemma 2.1. For all k, the quadratic functions (pk (x) satisfy the follow-
ing inequality:
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Since for all k, the quadratic function <pk can be written in canonical form
(Ref. 10), we may let

which combined with (18) yields

From (17), we have a0 = a and VO = X0.

Lemma 2.2. If <pk >fk (xk), then

Proof. From the definition of pk+1, (24), and (25), we have

by the assumption in the lemma. Using the convexity of fk+1, we have

So, (26) follows.

Letting
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and choosing xk+1 with u k + 1 e d f k + 1 ( x k + 1 ) such that

we have the following lemma.

Lemma 2.3. Suppose that (27) and (28) hold. Then, for k = 0, 1, 2 , . . . ,

Furthermore, for /c = 0, 1 , 2 , . . . ,

Proof. We prove (29) by induction. From the definition of <po, (29)
holds for k = 0. Suppose that (29) holds for k. From Lemma 2.2 and (28),
we have that (29) holds for k+1. Then, Lemma 2.2, (26), and (29) imply
that (30) holds. D

Algorithm 2.1. Model Method Algorithm (MMA).

Step 0. Initialization. Select an initial point x0edom f. Let v0 = x0,

Step 1. Set

Step 2. Generate fk+1 satisfying assumption (Al). Then, compute xk+ \
with u k + 1 e d f k + 1 ( x k + 1 ) such that (28) holds, that is,

Set

Choose

Step 3. Increase k by 1, and go to Step 1.

It is worth noting that, for any ykeRn, any ake(0, 1), and any ak>0,
we can always find xk+1 and u k + 1 e d f k + 1 ( x k + 1 ) such that qmmA>0. In fact,
since



Corollary 2.1. Suppose that { x k } k = 0 is generated by (MMA) with
fk (x) <fk+1 (x) for xedom f and k > 0. Suppose that fk satisfies the following
condition:

(A2) There is an index set K such that, for all xedom /,

Then,

The model method algorithm gives a variety of choices on different (a)
approximation sequences {fk }k=0, (b) solution methods for qMMA, and (c)
parameters ak. In the remainder of this section, we discuss (a). We will
discuss (b) and (c) in Section 3.

Denote So = 0, e° = 0, a - 1=0,

where

Then, ( x k + 1 , u k + 1) is a desired solution.
From (23) and Lemma 2.3, we obtain the following convergence rate

estimate.

Theorem 2.1. Suppose that { x k } k = 0 is generated by (MMA). Then,
for all xedom f, k>1,

Let uk+1 e d f k + 1 (x k + 1) such that

is a strongly monotone mapping with modulus 1 / [ a k / ( a k ( 1 -ak))], there
is a unique solution xk+1 such that
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This inequality combined with (32) yields

Proof. From the boundedness of 5k, we have M>0 such that, for all
k>Q, |8k| <M. From the definition of Akj we have that, for all j: 1 <j<k,

which implies that {xk } k e K is a minimizing sequence for f. The same property
can be obtained for { y k } k e K . D

The following result indicates that, for any bounded sequence
{ < 5 k } k = 0 , we can choose ake(0, 1) such that (35) and (36) hold.

Lemma 2.4. Suppose that {|5k| }k=0 is bounded.

(I) If there is a > 0 such that, for all k > 0, ak > a > 0, then (35) holds
and {|ek|}k=0 is bounded.

(II) If ak->1, then (36) holds.

Then, {xk}keK[{yuk}k€K] is a minimizing sequence for f.

Proof. From the assumption that f k ( x ) < f k + 1 ( x ) , we have, for
xedom f and k>0, that S k ( x ) < 8 k and fk(x)<ek. From Theorem 2.1 and
the assumptions in this corollary, we have, for all xedom f,

Suppose that
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which implies that {|ek|}k=0 is bounded. Since

(35) holds. Since the condition in (II) implies the condition in (I), the conclu-
sion (II) follows from ak^1 and the fact that {|ek|}k=0 is bounded. D

Denote

Corollary 2.2. Suppose that { x k } k = 0 is generated by (MMA) with
f k ( x ) < f k + 1 ( x ) for xedom f and k>0; let f*>-oo and f*>-oo. Suppose
that fk satisfies the following condition:

(A2)* For all k>0, there is a constant bk>0, dependent on k and f,
such that, for any xedom f,

Then, the following results hold.
(I) For any xedom f,

In particular, we have the convergence rate estimate

(II) If

and if (35) and (36) hold, then {xk }k=0 is a minimizing sequence
for f. In particular, if there is re(0, 1) such that Ok=\—r and
bk =rk, for all k>0, then {xk }k=0 is a minimizing sequence for
/. Moreover,



where

Remark 2.1. Noting the definitions of ek and ek(x), we can prove that
results similar to Corollary 2.2 hold even when f k(x)<f k +1 (x) is not true.

and (MMA) converges [ f (x k ) -» f* ] i f / 3 k - 0 . Furthermore, (MMA) has
the following global convergence rate estimate:

Consequently,

which implies (42). Conclusion (III) follows from the fact that {xk }k=0 is a
minimizing sequence for / and that X* is compact. D

If fk=f, for all k>0, then 8k = 0. In this case, we can choose bk = 0. By
noting Theorem 2.1, we have the following corollary.

Corollary 2.3. Suppose that { x k } k = 0 is generated by (MMA). If fk =
f, for any k > 0, then

This inequality combined with /?k = rk and (39) yields

The above relations and (33) yield

Proof. It is easy to prove conclusions (I) by Theorem 2.1. From (39),
we have that [xk }k=0 is a minimizing sequence for /if (35), (36), and (41)
hold. We prove (42) now. Suppose that k > 1. From the definitions of
8°, Akj, and (38), we have

(III) Suppose that (35), (36), and (41) hold. If X* is a nonempty
compact subset in Rn, then { x k } k = 0 is bounded and every accu-
mulation point of { x k } k = 0 is a minimizer for f.
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where Q is a compact subset of Rm and F( ., .): Rn x RmxR is of bounded
variation on Q in the sense of Hardy and Krause; F(. ,y) is convex for any
given yeQ. In this case, according to some integration rules (see Refs. 35-
38 for details), we can choose, fkcn and ykefk, for j such that 0<j<k— 1,

and solve (1) by (MMA). If hj(x)>0 or pj>0 is not true, we can also solve
this example by noting Remark 2.1.

Example 2.2. Another problem is

Let

(B3) fory>l , Pj>0 and

Assume that:

(B1) for j>0, hj: R n - » R is a convex function;
(B2) for j> 1, hj(x)>0 and there is a constant M0>0 such that

where £<=Rn is a nonempty compact convex subset of Rn and 0x is the
indicator function of x, i.e.,

Example 2.1. Suppose that f has the following structure:

Remark 2.2. The results in Corollary 2.2 or Remark 2.1 are useful for
solving some convex complex problems. The following examples can be
viewed as general models arising from stochastic programming (see Refs.
27-34).
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which combined with (48) yields (47).

On the other hand, from (46), we have

and (46) imply that

Proof. The inequality

Then,

From Remark 2.1, we can solve (45) by (MMA).

3. New Proximal Point Algorithms

A new family of proximal point algorithms with four parameters (A k ,
ak, O4k, O5k) is proposed in this section by introducing a new solution
method for (28). In fact, Giiler (Ref. 10) gave method (6) for solving (28).
We use (10) here to solve (28). The method described below is based on
Lemma 3.1, which claims that we can choose Ak, O4k, a5k such that the
solution set of (10) is contained in the solution set of (28).

Lemma 3.1. Let u and v be vectors of Rn; let re[0, 1] and te[0, 1).
Assume that

satisfies the following conditions:

so that
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Step 3. Increase k by 1, and go to Step 1.

Theorem 3.1. Suppose that a 4 ke[0, 1] and O5k€[0, 1). If ( x k + 1 , ik+1)
with u k + 1 e o f k + 1 (xk +1) is a solution of (50), then

Step 2. Generate f k + 1 satisfying (Al). Then, compute xk+l with
uk+1 e dfk +, (xk+1) such that

Step 1. Choose Ak>0, 0ke(0, 1), 04ke[0, 1], and <T5ke[0, 1) such that

From Corollary 3.1, we now state our general proximal point algorithm.

Algorithm 3.1. General Proximal Point Algorithm (GPPA).

Step 0. Initialization. Select an initial point x0edom f. Let v0 = x0,
a0 = a>0, and A: = 0.

Let

Then,

From Lemma 3.1, we have the following corollary.

Corollary 3.1. Let u, v, w be vectors of Rn; let A>0, re[0, 1], and
te[0, 1). Suppose that
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Therefore, if (49) holds, then ( x k + 1 , u k + 1 ) is a solution for (28). Moreover,

Proof. For any given k, let

From Lemma 3.1, we have (51). From the definition of qMMA and (51), if
(49) holds, then qMMA>0, so that ( x k + 1 , u k + 1 ) is a solution for (28); (52)
follows the definitions of qMMA and qGPPA D

We are interested in finding a4k, ask, and ak such that (ik tends to 0
as fast as possible for any given sequence {A k} k = 0 (see Ref. 10). From the
definition of ftk, this is equivalent to having a* as large as possible. To find
such ak, for any c>0, set

or

Therefore,

Similarly to the proof of Lemma 2.2 in Ref. 10, we can prove the
following lemma.

Lemma 3.2. For all k,

Let

Since for any ce(0, 2],

E(u) = 0- From Corollary 2.3, we have the following convergence rate result.



Therefore, c = 2, i.e.,

ak(c) is an increasing function of c. On the other hand, since *P(0, 0) = 1
and /e(0, 1), for all re(0, 1],

Since

In particular, if A k >A>0, for all k>0, then

Algorithm (GPPA) for any c converges [ f ( x k ) - f * ] if

Therefore,

Theorem 3.2. Suppose that, for all k, fk=f, ak satisfies (53). If
(ej4k, C5k)eL(c), then for any xedom f, (GPPA) for any c has the global
convergence rate estimate
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is the best choice for /?k->0 as fast as possible for a given sequence
{Ak}k=0 . From Lemma 3.2, we have

and the following result.

Corollary 3.2. Suppose that, for all k , f k =f, c = 2, and ak satisfies (53).
If <4k = &5k = 0, then for any xedom f, (GPPA) for c=2 has the global
convergence rate estimate

Therefore,

In Ref. 10, Guler selected c= 1 and gave the convergence rate results
(56)-(59) with the calculation of xk+1 performed exactly by (6). Let

Since ¥(0; 1/3) = Y( 1/3,0) = 1/2,

is decreasing for fe[0, 1), re[0,1/3), S £ 1S(l) . Therefore, we have the
following corollary.

Corollary 3.3. Suppose that, for all k, fk=f, c=l , and ak satisfies
(53). If (CT4k, f5k)eZ£1, then for any xedom f, (GPPA) has the global
convergence rate estimate (56), (57), and (59) for the case c= 1.

From (62) and (57) with c= 1, we can deduce that the convergence rate
of (GPPA) obtained for c-2 is twice faster than that obtained for c= 1.



Step 3. Increase k by 1, and go to Step 1.

It is not hard to show that Algorithm 3.2 is a special case of Algorithm
3.1. In fact, since

Step 2. Compute

Step 1. For xk, vk, ak, kk, set

Remark 3.1. From Theorem 3.2 in this paper and Theorem 2.3 in Ref.
10, we obtained, for (GPPA) with c= 1 the same convergence rates as those
obtained in Ref. 10 for the proximal point algorithm (PPA), but (GPPA)
with c = 1 can be executed inexactly and the convergence rate obtained in
this paper is higher than the convergence rate obtained for the algorithm
with inexact minimization in Ref. 10; see Theorem 3.2 in this paper and
Theorem 3.3 in Ref. 10; furthermore, we do not need that a4k and a5k tend
to 0. Of course, from a practical point of view, it is also essential to replace
c4k = 0 and £k=0 s5k < I [see (4)] by the looser relation which allows G4k

and S5k bounded away from zero. The looser relation in this paper yields
that (GPPA) is not always a standard proximal point algorithm, since xk+1

cannot be an approximate minimizer of f ( x ) + ( 1 / 2 A k ) \ \ x — y k \ \ 2 .

In the following, we will give another choice for ak and prove that
{ x k } k = 0 is an asymptotically regular sequence [\\xk+1-xk||->0] under the
condition that X* is a compact set. This result has not been discussed in
Ref. 10 and does not appear clear for this type of algorithm. We only prove
it in a special case of the choice for ak.

Algorithm 3.2. Special case of (GPPA).

Step 0. Initialization. Select an initial point x0e dom f. Let v0 =
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we have

which implies that (49) holds; on the other hand, in this algorithm, we can
let

therefore,

This relation combined with the definition of Kk and the construction of ak

yields

which implies that

From the above discussions, we can deduce that Algorithm 3.2 is a special
case of Algorithm 3.1.

Lemma 3.3. Suppose that {Uk }k=0, {ak}k=0, and {&k }k=0 are gener-
ated by Algorithm 3.2. Then, the following results hold:

Proof.

(I) Forany given i>0, from 1 -a,= 1/(1 +aiAi) and ai+1 = (1 -ai)ai,
we have

i.e..



(64) follows from the assumption. D

Lemma 3.4. Suppose that {xk }k=0 and {yk }k=0 are generated by Algo-
rithm 3.2. If the conditions of Lemma 3.3 hold, X* is a nonempty compact
set, and

Since

Conclusion (63) follows using

Noting that Ai>0, for all i>0, we have

Since is bounded, there is M1 >0, such that, for all i> 1,

Then,

which combined with a0 = a and fik = ak/a yields conclusion (I).

(II) Set

Hence,
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Proof. From Corollary 2.3, we have

From (65) and Corollary 2.2, we have that {xk }f=o is a bounded sequence;
since X* is nonempty, f*>-oo, which implies that {f(xk)}k=0 is bounded
from below. Set x = Xk in (66); we have

which implies that {f(xk)}k=0 is bounded from above. The boundedness
of {Xk}k=0 and {|f(xk)|}k=0 with (67) yield the desired conclusion. D

Theorem 3.3. Suppose that the conditions of Lemma 3.4 hold. Then,
{xk}k=0 is an asymptotically regular sequence.

Proof. Since

Using (64), we have

This result and Lemma 3.3 yield that ak||uk||--0. Hence,

we have
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This conclusion, the fact that

and Lemma 3.4 yield xk+1 -xk->0. D

From Theorem 3.3, Remark 14.1.1 in Ref. 39, and the boundedness of
{ x k } k = 0 , we have the following corollary.

Corollary 3.4. Suppose that the conditions of Lemma 3.4 hold. Then,
either the accumulation set of {xk }k=0 is a singleton or it is a connected set.

Remark 3.2. From (66), we can deduce that the convergence rate
obtained for Algorithm 3.2 is lower than the convergence rate obtained for
Algorithm 3.1 with cs(0, 2], so we may hope that, for any CE(0, 2]. Algo-
rithm 3.1 with fk-f has also the properties that | |xk+1—yk||--0 and
IIk=1 ~xk||->0 if X* is a nonempty compact set.

Remark 3.3. From (66) and (I) of Lemma 3.3, we obtain for Algo-
rithm 3.2 the same global convergence rate estimate

as obtained for (2) in Ref. 9. In Ref. 9, it was shown that the condition (65)
is necessary and sufficient for the convergence of the classical proximal point
algorithm (2), but we do not know whether (65) is still a necessary condition
for convergence of Algorithm 3.2.

4. Proximal Bundle Method Algorithm

In this section, we give a variant proximal bundle method algorithm
by combining (GPPA) with the bundle method. In iteration k+1, xk+1 is
calculated by the formula

where fk+1 is a bundle linearization function of f. More precisely, for K>0,



Then, {xk}keK is a minimizing sequence for f.

Proof. From the convexity of f and the construction of fk, we have,
for all A: >0, for all xeRn,

Step 3. Increase k by 1, and go to Step 1.

It is not hard to show that (PBMA) is a special case of (GPPA). From
Corollary 2.1 and Lemma 2.4, we have the following property for (PBMA),
but the global convergence of (PBMA) under some more reasonable condi-
tions is not clear for us at this moment.

Proposition 4.1. Suppose that {xk }k=0 is generated by (PBMA). Sup-
pose that, for all A:>0, we choose ak= 1 -rk, where re(0, 1) is a constant.
Assume that:

Step 2. Compute g k e d f ( x k ) . Generatefk+1 by the formula (68). Com-
pute

Step 1. For xk, vk, ak, choose Xk>§ and a ke(0, 1) such that

and g k e d f ( x k ) .

Algorithm 4.1. Proximal Bundle Method Algorithm (PBMA).

Step 0. Initialization. Select an initial point x0edom f. Let v0 = x0,

where
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(i) { f ( x k ) - f k (x k )} k = 0 is bounded from above;
(ii) there is an index K, such that
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which implies that

Hence,

From assumption (i), { | S k | } k = 0 is bounded. From the definitions of ak and
Kk, we can deduce that (35) and (36) hold by using Lemma 2.4. Using the
construction of fk once again, we have

which combined with assumption (ii) yields that

Hence, the conclusion follows from Corollary 2.1. D

Remark 4.1. It is worth noting that, in Proposition 4.1, we must
assume that ak is close enough to one and Xk is big enough. Furthermore,
we assume conditions (i) and (ii). These are disadvantages of this method,
but the method has one difference from the original bundle methods (see
Refs. 15, 19, and 21 for details): the calculations of {xk}f=0 are based on
(12), not based on (8). Since the convergence rates obtained up to now for
the original proximal algorithm [{xk}^0 generated by (2)] are lower than
the convergence rate obtained for (GPPA) (see Refs. 9, 10, and Section 2
of this paper), we hope that (PBMA) has a higher convergence rate than
the original bundle methods. Modifications of the convergence assumptions
by using null-step techniques (Refs. 18-25) and numerical texts will be our
further research topic.

Remark 4.2. It is possible to give another chocie for fk. In fact, we
can choose

where gkedf(yk). From Corollary 2.1 and Lemma 2.4, we can give the same
property as Proposition 4.1 for this method.
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