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Groshev gave a characterization of the union of domains of partial attraction of 
all Poisson laws in 1941. His classical condition is expressed by the underlying 
distribution function and disguises the role of the mean 2 of the attracting 
distribution. In the present paper we start out from results of the recent 
"probabilistic approach" and derive characterizations for any fixed 2 > 0 in 
terms of the underlying quantile function. The approach identifies the portion of 
the sample that contributes the limiting Poisson behavior of the sum, delineates 
the effect of extreme values, and leads to necessary and sufficient conditions all 
involving 2. It turns out that the limiting Poisson distributions arise in two 
qualitatively different ways depending upon whether 2 > 1 or ,~ < 1. A concrete 
construction, illustrating all the results, also shows that in the boundary case 
when 2 = 1 both possibilities may occur. 
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INTRODUCTION, THE RESULTS, AND DISCUSSION 

Let X1, Xz,... be independent random variables with the common distribu- 
tion function F(x) = P{X<<. x}, x ~ R, and corresponding left-continuous 
inverse distribution or quantile function 

Q(s)=inf{x:F(x)>~s} 0<s<~l ,  Q(0)= Q(0+)  

We say that F is in the domain of partial attraction of the Poisson distribu- 
tion with mean 2 > 0 if there exist a subsequence {n') of the sequence {n} 
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of the positive integers and normalizing and centering constants An, > 0 
and Cn, E R such that 

xj , Yx as n ' ~  oo (1.1) 
A,, j 1 

where ~ ,  denotes convergence in distribution and Y~ is a Poisson 
random variable with mean 2, that is, 

2 k 
P { Y ~ = k } = ~ . . e  -~ k--0,  1,2 .... 

In this case we shall write FEDp (Poisson(2)). It is well known that {n'} 
cannot be the whole sequence (n } in (1.1) because only stable distributions 
have non-empty domains of attraction (cf. Gnedenko and Kolmogorov (4) 
or CsSrg6, Haeusler, and Mason, ~2) abbreviated as CsHM from here on). 
On the other hand, every infinitely divisible distribution has a non-empty 
domain of partial attraction by a basic theorem of Khinchin (Gnedenko 
and Kolmogorov, (4/ p. 184) and hence Dp (Poisson(2)) is not void. 
Furthermore, the Poisson distribution is the most important infinitely 
divisible distribution in the sense that the class of all infinitely divisible 
distributions is the closure of the distributions of random variables of the 
form cl Y~ + ... + c,~ Y;.m' where cl,..., Cm are constants and Y;,,..., Y;.m are 
independent, and closure is meant with respect to weak convergence 
(Gnedenko and Kolmogorov,/4) pp. 74-75). Therefore, the problem of the 
characterization of Dp (Poisson()0) has a distinctive theoretical appeal. 

Starting out from the classical general criterion of convergence to an 
infinitely divisible distribution that involves a condition to set the variance 
of the normal component and two conditions to set the L6vy measures of 
the canonical L6vy form of the characteristic function of the limiting 
distribution (Gnedenko and Kolmogorov, (4) p. 124), Groshev (5) has proved 
that 

if and only if 

lim inf f 
h ~ c ~  Ix-- 

FE U Dp(Poisson(2)) 
2 > 0  

x2 /f 
~F>, l + x 2dF(hx)  I~ - l l<~dF(hx)=0  for any e > 0 

This nice looking condition (cited also in Gnedenko and Kolmogorov, (4) 
p. 190) is not quite informative as it stands. The referee of the present paper 
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has pointed out that it is equivalent to the following: For  each e > 0 there 
exists a sequence h,---hn(~) such that 

P{X> (1 + ~ ) h , } / P { X >  ( l - e )  hn} ~ 0  

E{X2I(-hn < X <  (1 - e) h.)}/(h]P{X> (1 - e) h,,}) ~ 0 

and 

P{X<~ -hn} /P{X> ( 1 - ~ )  hn} --*0 

as n ~ 0, where I( . )  is the indicator function. The proof of this fact is 
elementary, and part of this observation is implicit in Groshev. (5) 

The recent study by CsHM (2) of a "probabilistic approach" to the 
problem of convergence of centered and normalized sums of the form in 
(1.1) revealed that whatever infinitely divisible random variable we have as 
a limit in (1.1), there are two basic possibilities concerning the size of the 
normalizing factor An,. One is when, informally speaking, An, is com- 
parable to 

a(n') = ~ a(1/n') (1.2) 

1 where the "truncated variance" function 12( - ) is defined for 0 < s < 5 as 

fs -s fs 1-s a2(s) = (u /x v -- uv) dQ (u) dQ (v) 

fs -- s =s{QZ(s)+QZ(1-s )}+ QZ(u) du 

( ;s '-s - s { Q ( s ) + Q ( 1 - s ) } +  Q(u) du (1.3) 

with u A v = min(u, v), while the other is when a sequence An, diverging to 
infinity faster than a(n') is needed, that is, when a(n')/A,, ~ 0 as n ' ~  m. 
For example, it is shown in CsHM (2) that for stochastically compact F's 
the correct normalizing sequence is always {a(n')}, but a rather com- 
plicated construction also shows that the second possibility also occurs. 
While the program of characterizing Dp(Poisson(2)) within the 
probabilistic approach of CsHM (2) has some interest in itself, and in fact 
requires some augmentations, given in Cs6rg6 (1) (hereafter abbreviated 
Cs), of the original theory, one of our primary motivations for the research 
reported here was to see whether A,, = a(n') is always sufficient in (1.1) or 
not. 
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Let X~,n ~< .-. ~<Xn,. denote the order statistics based on the sample 
XI ..... X,. The probabilistic approach in CsHM (2) generally allows to see 
which portions of the sum Z~'=~Xj.,, contribute the ingredients of the 
limiting infinitely divisible law or do not contribute anything at all. At the 
same time, it also delineates the effect of extreme values. In order to cover 
these in the present situation, we need some more notation. 

Let El,  E2,... be independent random variables having the exponential 
distribution with mean 1 and consider the standard left-continuous Poisson 
process 

N(u)=  ~ I(S/<u) u>>,O (1.4) 
j = l  

with jump-points Sj = E~ + - . .  + Ej ,  j = 1, 2 ..... Also, set 

Vk(2)= ~ I(Sj<2)+min(k+l, 2 ) -2  2 > 0 ; k = 0 , 1 , 2  .... (1.5) 
j ~ k + l  

so thaf we have the distributional equality 

V(2) := V0(2) ~= Y~ + min(1, 2) - 2 (1.6) 

For a given 2 > 0, we finally introduce 

r1(2 ) = min{r: r integer and r2 > 1 } (1.7) 

so that r1(2)= 1 whenever 2 > 1 and r l (1)=  2. 
Our first result, connecting the special Poisson situation with the 

general theory in CsHM (2) and Cs, (1) is the following: 

Theorem 1. F~  Dp(Poisson(2)) if and only if for each r/> ri(2) there 
exists a genuine subsequence {n'} of the positive integers such that 

a(rn,) Q ~ ~0  f o r e a c h s > 0  (1.8) 

a(rn') 1 - ~  --* if s > 2  

as n' --* 0% where ~, > 0 is some constant, and 

c r ( h / n ' )  _ 
lim lim sup ~(1/(rn')) lira lim sup a(h/n')--O (1.10a) 

a(rn') 
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If conditions (1.8), (1.9) and (1.10a) are satisfied, then 

t ( ) a(rn') 1 ~l/r.' Q(U) du ~ '  er Yx + r (1.11) 

as n ' ~  ~ ,  and there exists a subsequence {n"} ~ {n'} such that 

1 n" f i 1In" } 
{j~=l~fJ-n" Q(u) du ~ a(rn") ~/n', ' O~r V ( 2 )  (1.12) 

and, furthermore, there exists a sequence {In,, } of positive integers such that 
l,,, --+ o% 1,,,In" --, 0 and for each fixed integer k >/0, 

j~ l  X i ~ " - n "  ~1/~,, Q(u) du , 0 (1.13) 

and 

X+,n,,- n" f Q(u) du e ,  7~ Vk(2) (1.14) 
a(rn") j=n , ,  ln,,+ 1 ~  

a s  gift ~ 00. 

We note that condition (1.10a) may be replaced by 

lira liminf a(h/n') _ lira l iminf 'a(h/n ' )=O (1.10b) 
h ~  , ' - ~  a(1/(rn')) h - ~  n ' - ~  a(rn') 

Under (1.8), (1.9), and (1.10b) we generally have (1.11) only along a sub- 
sequence {n"} c {n'} already, and (1.12), (1.13), and (1.14) hold along a 
further subsequence {n'"} c {n"}. This will be straightforward to see from 
the proof given in Section 2, where an analysis will lead us to the following 
main result of the paper. 

Theorem 2. There exists a subsequence {n'} of the positive integers 
such that conditions (1.8), (1.9), and (1.10a) hold, and hence 
FeDp(Poisson(2)),  if and only if 

lira inf a2(es) + o-2((2 + e)s) + sQ2(es) _ 1 
s+o ~2((2-~)s) 

for every 0 < e ~< 2/2 (1.15) 

Using the fact that aZ(es)/o-2((2 - e)s) 1> 1 for any 0 < e <~ 2/2 and s > 0 
for which (2 - ~)s < l, and hence that this lim inf condition is equivalent to 
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three lim inf conditions as in (1.18)-(1.20) below, the monotonicity of the 
functions a(-) and Q(-) easily imply that (1.15) is equivalent to 

lim inf a2(e/n) + a2((2 + e)/n) + Q2(e/n)/n 1 for every 0 < e ~< 2/2 
~ ~ ~ ( ( , ~  - ~ ) / n )  - 

(1.16) 

Using again the fact that for any n > 32 and 0 < e ~< 2/2 this whole ratio is 
never smaller than 1, and for each n large enough it is a nonincreasing 
function of e on (0, 2/2] whenever Q(-) is negative near enough to 0 
[otherwise QZ(e/n)/n ~ 0 as n --+ Go and hence the third term in the numerator 
can completely be neglected], a trivial modification of the argument in the 
proof of Corollary 2 in CsHM (2) shows that condition (l.16) in turn holds 
if and only if there exists a subsequence {n'} of the positive integers such 
that 

lim a z ( e / n ' ) + a z ( ( 2 + e ) / n ' ) + Q 2 ( a / n ' ) / n ' -  1 forevery 0<e~<2/2 
,'-~ ~ a2((2 - ~)/n') 

(1.17) 

which holds if and only if the three conditions 

lira G 2 ( ~ / n ' ) / ~ 7 2 (  ()~ - -  e)/n') = 1 
n '  ~ c~3 

lira a2((2 + e)/n')/a2((2 - e)/n') = 0 

lim QZ(e/n')/[n'a2( ( 2 -  e)/n') ) ] = 0 
n ' ~ o o  

0<e~<2/2 (1.18) 

0<e~<2/2 (1.19) 

0<e~<2/2 (1.20) 

hold simultaneously along the same {n'}. 
The proofs will show that if we have (1.18)-(1.20) or, equivalently, 

(1.17) along some {n'}, then (1.8)-(1.10a) and hence (1.11) hold along 
some subsequence {n"} of the given {n'}. Conversely, if (1.1) holds along 
some {n'}, then (1.8)-(1.10a) hold along a subsequence {n"} of the given 
{n'} and (1.17) or, what is the same, (1.18)-(1.20) are satisfied along the 
same subsequence {n"} c {n'}. Then (1.18) and (1.19), holding along sub- 
sequences, will easily imply the second statement of the following. 

Corollary. Suppose (1.1). If 2 > 1 ,  then for each subsequence 
{n"} c {n'} there exist a further subsequence {n"} c {n"} and a finite con- 
stant 6 = 6(n,,,~ > 0 such that a(n')/An,,, ~ 6 as n"  --* oo. On the other hand, 
if 2 < 1 ,  then a(n') /An,-~O as n'--.oo, and for each subsequence 
{n"}c{n ' }  and each r>~r~(2) there exist a further subsequence 
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{n'"} c {n"} and a finite constant c5 = 6~n,,,~ > 0 such that a(rn"')/An,,, ~ 6 as 

The corollary demonstrates that limiting Poisson distributions in (1.1) 
arise in two qualitatively different ways depending on whether 2 > 1 or 
2 <  1. The latter case provides what is probably the simplest possible 
example for showing that Theorem 2 in CsHM (2) is not empty. 

In Section 3, we illustrate the above results by a concrete construction 
of a quantile function in the domain of partial attraction of a Poisson(2) 
with particular reference to the Corollary. This construction works for all 
)~ > 0 and it turns out that the case when 2 = 1 is a boundary case in the 
sense that both possibilities in the behavior of the normalizing sequence 
may in fact show up. 

It follows from the transitivity theorem of Gnedenko (3~ (cited also in 
Gnedenko and Kolmogorov, (4) p. 189; for a new proof see Cs (1~) that if 
FEDp(Poisson(2)) for some )~ > 0, then F is also in the domain of partial 
attraction Dp(2) of the normal law. Thus our necessary and sufficient con- 
ditions should somehow imply that 

lira inf a2(s/n)/az(1/n) = 1 for all 0 < s < 1 (1.21) 
n ~ o o  

which, according to Corollary 2 in CsHM, (z) is necessary and sufficient for 
F~ Dp(2). At this point we meet again the principal difference between the 
two cases ,~>1 and 2~< 1. Namely, if ,~> 1, then (1.21) follows directly 
from (2.10) below, that is, from conditions (1.8), (1.9), and (1.10a) with 
r = 1. The implication is not so direct if 2 <~ 1 and can be seen only by extra 
work. 

While conditions expressed in terms of the underlying quantile 
function are completely natural in our approach, it would perhaps be 
interesting to obtain equivalent conditions expressed through F. These are 
probably uninformative just as Groshev's condition above and to produce 
them appears to be a nontrivial analytic problem. 

As a final remark we note that, starting out from Theorem 12 in Cs, (1) 
it is possible to characterize in the manner of the present paper the set of 
infinitely divisible laws partially attracted by a given Poisson law. We will 
consider this elsewhere. 

2. PROOFS 

Let ~ be a nonpositive, nondecreasing, right-continuous function on 
(0, oo) such that 

fe ~ O2(S) ds < ~ for e > 0 any 
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In the notation of CsHM (2) and Cs, (1) for each integer k />0 consider the 
random variable 

f ~  ('Sk+l Vo, x(O, ~h, O) = (N(u) - u) d~h (u) -~  I1 u dip (u) 
k+l 

fl +kO(S~+~)- O(~)du-O(1) 

= .  (N(u) - u) d o (u) + N(u) d o (u) 
+1 

k + l  
+k0(Sk+l)-f 0(.) du- ~,(1) 

1 

where N(.)  is the Poisson process defined in (1.4). For  k = 0 ,  this is a 
spectrally one-sided infinitely divisible random variable without a normal 
component. For  2 > 0, set 

0 ;~(u)={O1 if if u~>20<u<2 

If 2 ~< 1, then we have 

Vo, k(O, ~ ,  O) = f l  N(u) dO~ (u) + kO2(Sk+ 1) 
Sk+ 1 

= I(Se+l < 2 )  N(2)--I(Sk+I < 2 ) k  

=I(8k+1<2 ) I ( S j < 2 ) - k +  I(Sy < 2) 
j 1 j = k + l  

k 

= 2 {I(Si<2) I (Sk+I<2) - I (Sk+I<2)}  
j = l  

+ ~ I(Sj<)t)I(gk+l <2) 
j = k + l  

= ~ 1(Sj<2) 
j k + l  

and if 2 > 1, then, using the above lines in the last step, we have 

~ Sk+ 1 
Vo, k( O, ~2, 0) = (N(2) -- 2) -- N(u) dO;~(u ) - kI(Sk + 1 < 2) 

f min(k + 1,2) 
O~(u) du + 1 

- -  "Jl 

= N(2) - 2 - N(2) I(Sk+ i >1 2) -- kI(Sk+ 1 < 2 )  -~- min(k + 1, 2) 

= I(Sk+ ~ < 2 )  N(2)-I(Sk+~ < 2)k + min(k + 1, 2 ) - 2  

= ~, I (S j<2)+min(k+l ,  2 ) - 2  
j = k + l  
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Putting the two cases together and recalling (1.5), we see that 

Vo,~(o, qJ~, o)= v~(,~) 

In particular, by (1.6), 

2 > 0 ; k = 0 ,  1, 2,... (2.1) 

Vo, o(0, ~0~, 0 ) =  V(2 ) ~ Y;+min(1,2)- )o  2 > 0  (2.2) 

Now we are ready to use Theorem 6 of Cs (1) to prove Theorem 1 here. 
If 2 > 1, we are in case (ii) of that theorem, while if 2 ~< 1, we are in case 
(iii). The ambiguity of the latter case will presently be resolved by the well- 
known fact that if y~l),..., y ~ / a r e  independent copies of Yx, then 

@ y~l)+ ... q_ y~r) = y~  

Proof of Theorem 1. To prove necessity, 
r~>q(2), and let ~v (m)l~ be independent ( ~ j  J j= 1 
{Xj}j~ 1, m =  1,..., r. Then by (1.1) and (2.3), 

(2.3) 

suppose (1.1). Take any 
copies of the sequence 

860/'4/I-12 

and 

Z(j_l)r+m=X) m) l<~m<<.r,j=l,2 .... (2.4) 

and introducing C.* = rC . , -  (1 - r2) A.,, the convergence relation can be 
rewritten as 

1 r.' } 
{ ~  Z j - C *  ~) V(r2) 

An' 1 

Therefore, by (2.2), the fact that r2 > 1, and by case (ii) of Theorem 6 in 
Cs (1) there exist an {n"} c {n'} and a constant a~>0 such that 

,!im Q ~ a(rn )=0 t>O 

( t ) /  . {~r 0 < t < r 2  
lira Q 1 - r ~  a(rn ) =  

,,,,oo 0 t > r2 

lira lim sup a a = 0 

X m) rC,, - -  - -  ) Y r ) .  as n' --+ oo 
An' j l 1 

Writing Z1, Z2 .... for the sequence X~I),...,X~ r), v(1) v(r) that is, 
writing 
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However, these three conditions are clearly equivalent to (1.8), (1.9), and 
(1.10a) with n' replaced by n". 

Now we turn to the sufficiency statements. Assume (1.8), (1.9), and 
(1.10a). Then by (2.2) and the sufficiency part of case (ii) of Theorem 6 in 
Cs, (1) we have 

,{rnJ 11Jrn 1 
a(rn'i j ~ ~l/r,,' , ~rV(r2) 

as n' ~ 0% where Z~, Z 2 .... are independent with the common distribution 
function F. Breaking up the sequence {Zi}j~ ~ into the union of r 
independent sequences [j((m))~ of independent variables, m = l  ..... r, t - - j  J j =  1 

according to the rule in (2.4), this can be rewritten as 

~ [ 1 {~= x!m) n, Il l/~n'Q(u) du}] 
~a(rn') J Jl/rn' m = l  j 1 

, y ( m ) +  

m = l  

as n ' ~ o o .  This clearly implies (1.11) and hence also that F e  
Dp(Poisson(2)). 

To prove the further statements, we rewrite (1.11) as 

1 
c~ra(rn') j 1 Xj-- Cn, ~, V(2) n' ~ oo 

where 

Q(u)du+ - r a i n ( l ,  2) + 2 ~ra(rn') 
~l/rn' r 

and recall (2.2) again. If 2 > 1, and hence we are in case (ii) of Theorem 6 
in Cs (1) or if 2 ~< 1 but we are in the first subcase of case (iii) of the same 
theorem, then by necessity there exist a subsequence {n"} c {n'} and a 
constant 6r > 0 such that 

, ( s )  
a(n") Q ~ --*0 s > 0  

a(n") 
~ra(rn") 

1 (  -~)--,~r s>O,s#,t a(n"-----) Q 1 s 1 
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and 

1 f ; 1 - v." ] 
~n" | Q(u) du - C.,, f ~ 0 

a(n") ~ ~/~,, 

as n" ~ ~ ,  and 
a(h/n") 

lira lim sup 
h ~  , , " ~  a(1/n") 

If, on the other hand, 2 ~< 1 and we are in the second subcase of case (iii) 
of Theorem 6 in Cs, (1) then, along some subsequence {n"} c {n'}, we have 

a(rn')  Q ~ 0 

1 

a(rn") 
- -  Q 1 - - - '  ~ r ~ ' ~ ( s )  

a(n")/a(rn") ~ 0 

s > 0  

s > 0 ,  s r  

and 

1 f 71 -- 1/n" ] 
~n" | Q(u) du - C.,,; ~ 0 

a(rn") t 'Jl/n" 

Using now the sufficiency part  of Theorem 6 in Cs (1~ once more, we obtain 
all the three statements (1.12)-(1.13) along the chosen {n"} and hence the 
whole theorem. [] 

The proof  of Theorem 2 requires some preliminary lemmas, the first of 
which is of some independent interest. 

L e m m a  1. If  0 < s < t < �89 then for an arbitrary quantile function 

a 2 ( s ) -  a2(t) ~< t ( Q ( t ) -  Q(s)) 2 + t(Q(1 - s ) -  Q(1 - t)) 2 

+ 2 t ( Q ( t ) -  Q(s))(Q(1 - s )  - Q(t))  

+ 2t(Q(1 - s )  - Q(1 - t))(Q(1 - t) - Q(t))  

and 

S 
aZ(s) - a2(t) >~ ~ (Q(t)  - Q(s)) 2 + 2 (Q(1 - s) - Q(1 - t)) 2 

+ 2 s Z ( Q ( t ) -  Q(s))(Q(1 - s ) -  Q(t))  

+ 2st(Q(1 - s ) -  Q(1 - t))(Q(1 - t ) -  Q(t))  



180 Csi~rg6 and Dodunekova 

Proof Using the definition in (1.3), as in identity (2.29) in C s H M ,  <2) 
we have 

aZ(s) - a2(t) = (u A v - uv) dQ (u) dQ (v) 

+ (u A v - uv) dQ (u) dQ (v) 
"J l - -  t "~ l - -  t 

+ ~  u ( 1 - v )  dQ(v )  dQ(u)  
" t  1 - - t  

= :  Ii(s, t)+ Iz(s, t )+  2{I3(s, t)+ I4(s, t )}  

Clearly, Ii(s, t) <~ t(Q(t) - Q(s)) 2 and 

I i ( s , t ) = f s t ( 1 - u ) ( f f  v d Q ( v ) ) d Q ( u )  

; ) + u ( 1 - v )  d Q ( v )  dQ(u)  

>~s(1-t)  ( Q ( u ) - Q ( s ) ) d Q ( ~ ) +  ( Q ( t ) - Q ( u ) ) d Q ( u )  

= s(1 - t ) {Q( t ) (Q( t ) -  Q ( s ) t  - Q(s)(Q(t) - Q ( s ) / }  

s 
~ (Q(t)  - Q(s)) z 

Exactly the same way, using u A v - uv <~ 1 - u A v for the upper  bound,  we 
obtain  

s 
(Q(1 - s) - Q(1 - 0 )  2 ~< I2(s, t) <<. t(Q(1 - s) - Q(1 - t)) 2 

Similarly, 

s Z ( Q ( t ) -  Q(s)) (Q(t  - s ) -  Q(t))  

<<. I3(s, t)<~ t(Q( t ) -  Q(s))(Q(1 - s ) -  Q( t)) 
and 

st(Q(1 - s ) -  Q(1 - t))(Q(1 - t ) -  Q(t)) 

<~ I4(s, t) <~ t(Q(1 - s ) -  Q(1 - t))(Q(1 - t) - Q( t)) 

Collecting the upper  and lower bounds,  the l emma follows. [] 
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Let {n'} be a subsequence of the positive integers tending to infinity, 
let x ~> 1 be any fixed number, and s > 0 be an arbitrary number. Replacing 
s by s/xn' and t by sin' and using (1.2), it will be advantageous to rewrite 
the inequalities of Lemma 1 as 

aZ(s/xn ') -- a2(s/n ') 

~ra(1/n ') 

<<. s \ a--(n• a(n') 

Q(s/n') - Q(s/xn') Q(1 - s / x n ' ) -  Q(s/n') 
+ 2~ 

a(n') a(n') 

+ 2s Q(1 - s / x n ' ) -  Q(1 - s/n') Q(1 - s / n ' ) -  Q(s/n') (2.5) 
a(n') a(n') 

and 

a2(s/xn ') - a2(s/n ') 

~r2(1/n') 

, ( Q ( , / n ' ! = Q _ ( s / x n ' ! )  2 
>1 ~x \ a(n') / 

s ( Q ( 1 - s / x n ' ) - Q ( 1 - s / n ' ) )  2 

+ a(-2 i 
s 2 Q(s/n') - Q(s/xn') Q(1 - s/xn') - Q(s/n') 

+ 2 - -  
x2n ' a(n') a(n') 

s 2 Q(1 - s / x n ' ) -  Q(1 - s/n') Q(1 - s / n ' ) -  Q(s/n') 
+ 2  

xn' a(n') a(n') 
(2.6) 

which hold true for all n' large enough. 

Lemma 2. Let A > 1 be a fixed number and suppose that 

Q(s/n')/a(n') -~ 0 s > 0 

{ ;  if 0 < s < A  
Q(1-s /n ' ) /a (n ' ) -+  if s > A  

(2.7) 

(2.8) 

as n' ~ o% where ~ > 0 is some constant, and 

lira lim sup a2(h/n')/a2(1/n ') = 0 (2.9) 
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Then, as n' --, oo, 

and 

Proof 

a2(h/n')/a2(1/n')~ 1 0 < h < A  (2.10) 

a2(h/n')/a2(1/n')~O h > A  (2.11) 

Notice first that  if bo th  s and six are on one and the same side 
of A, that  is, either s < A  or s ix>A,  then by (2.7) and (2.8) the upper  
bound  in (2.5) goes to zero as n' ~ ~ .  

Put  s = 1 in (2.5). Then we get 

a2(1/xn')/a2(1/n ') ~ 1 as n ' ~  

for all x ~> 1, which implies (2.10) for all 0 < h ~< 1. If 1 < h < A, then put t ing 
s=h  and x = h  in (2.5) gives (2.10) for 1 < h < A .  

To prove (2.11), let h > A  and put  s = x h  in (2.5), where x~>l  as 
always. Then, since six > A, we get 

a2(1/n ) a~-(1/n') *0  as ~ 

which implies that  

~(h) : = l i m  sup 2 , 
, , ~  a ( 1 / n )  

a2(xh/n') 
- -  = limn,~sup cr2(1/n, ~ - :  ~(xh) 

for each h > A and x/> 1. N o w  for each fixed h > 0, g(xh) ~ 0 as x --* ~ by 
(2.9), and hence ~ ( h ) = 0  for each h > A  and this is nothing but  (2.11). [] 

Lemma 3. Let A > 1 be a fixed number  and suppose (2.10), (2.11) 
and that  

Q(1/n')/a(n') ~ 0 as n' ~ ~ (2.12) 

Then there exist a subsequence {n"} c {n'} and a constant  ~ > 0 such that  
(2.7), (2.8), and (2.9) are satisfied with n' replaced by n". 

Proof Take  any s<A.  Since also s ix<A,  (2.10) implies that  the 
left-hand side of  (2.6) goes to zero as n ' ~  ~ .  Because all the terms in 
the lower bound  there are nonnegative,  they all go to zero separately. In 
particular,  

(Q(s /n ' ) -Q(s /xn ' ) ) /a(n ' )~O 0 < s < A ,  x>~ 1 (2.13) 

( Q ( 1 - s / x n ' ) - Q ( 1 - s / n ' ) ) / a ( n ' ) ~ O  0 < s < A ,  x~>l  (2.14) 
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as n' ~ oo. Put t ing s = 1 in (2.13), by (2.12) we obtain  

Q(1/xn')/a(n')-,O as n ' ~ o o ,  f o r a l l x > ~ l  

N o w  if s > 0 is arbi t rary,  then we can choose  x >/1 so that  s > 1Ix and, 
provided that  Q(- )  is negative near  enough to zero, we get 

I Q(s/n')l/a(n') <<. I Q(1 /xn ' ) l / a (n ' )  --* 0 

If Q( . )  is never negative, then of course (2.7) is trivial, and hence we have 
(2.7) along the original {n'}. 

Consider  now an s > A. Then,  using (2.11), 

Q ( 1 - s / n ' )  Q ( 1 - s / n ' )  cr(s/n') n' 
---~0 a s  - -~oo  

a(n') w/~  a(s/n') a(1/n ' )  

on account  of the fact that  the first rat io on the r ight-hand side is bounded  
by L e m m a  2.4 in CsHM.  (2) Thus we have (2.8) for s >  A, still a long the 
original {n' }. 

N o w  we come to (2.8) for the case s < A. Again by L e m m a  2.4 f rom 
C s H M  (2) we can choose a subsequence {n"} c {n'} such that  

Q(1 - 1/n")/a(n") ~ c~ as n" ~ oo 

where e>~0. Setting s - - 1  in (2.14), we then have 

Q(1-1/xn")/a(n")--*c~ as n"--*o% x>~l 
which implies 

Q(1-s/n")/a(n")--*c~ 0 < s < ~ l  (2.15) 

as n " ~  oo. If  1 < s < A ,  then we find an x >  1 so that  s/x<~ 1. Using (2.15) 
in conjunct ion with (2.14), we see that  (2.15) also holds for 1 < s < A. Thus  
we have (2.8) also for all 0 < s < A, along {n"}, with a possibly zero limit ~. 

We claim that  c~ > 0. Suppose,  on the contrary,  that  ~ = 0. Then  the 
already proved  (2.7) and (2.8), holding along {n"}, the latter with ~ = 0 ,  
imply in accordance with case (i) of  Theorem 1 in C s H M  (2) or Theorem 1" 
in Cs (1) that  

1 } 
(J--- , N ( 0 , 1 )  as n " o  a(n") 1 "V," Q(u) du oo 

Thus, by an appl icat ion of the augmented  case (ii) of the same theorem 
(Theorem 1" in Cs(1)), we also have 

a2(h/n ") ~r2(h/n ") 
lim lim inf - -  - 1 = lira lira sup 

h ~  ,"~oo o-2(1/n ") t,~oo n " ~  o2(1/n ") 
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Since {n"} ~ {n'}, this obviously contradicts (2.11). Therefore c~ > 0, and 
we have (2.7) and (2.8) along {n"}. 

Finally, it is trivial that (2.11) implies (2.9) along the original {n'}, 
which then holds along {n"} afortiori. [] 

Lemma 4. Suppose that (2.10), (2.11), and (2.12) hold true for some 
A > 1 and {n'}. Then we have (1.18), (1.19), and (1.20), and hence (1.17), 
for the same {n'} and with 2 replaced by A. 

Proof Consider any 0<e~<A/2.  Then by (2.10), 

a2(e/n ') _ a2(~/n ') (a2((A -- e)/n')'~ -1 
a2((A--~)/n') a2(1/n ') \ ~ 1 / ~  } -~ 1 

as  Y/~ --* 0(3 

that is, we have (1.18) with 2 = A .  Further, by (2.10) and (2.11), 

a2( (A + e)/n') a2( (A + e)/n') ((r2( (A-- e)/n') ~ ~ -~ 0 
a2((A - e)/n') a2(1/n ') \ o'2 (1/n ') } 

as n ' ~  0% that is, we have (1.19) with 2 = A. Finally, we know from the 
proof of Lemma 3 that (2.10) and (2.12) imply that (2.7) holds along {n'}. 
Therefore, by (2.7) and (2.10) again, 

n,a2((A_,)/n,) a2(n ,) \ ~5-(=~) j - - + 0  as --++ 

which is (1.20) with 2 = A .  [] 

Lemma 5. Suppose that (1.17), and hence (1.18), (1.19), and (1.20) 
hold true for some 2 = A  > 2  and {n'}. Then we have (2.10), (2.11), and 
(2.12) for the same {n'} and A. 

Proof Since A - i > 1 or A - 1 >A/2, by (1.18) with 2 = A  we have 

~2(~/n') .< a2(e/n') 
1 <~ cr2(1/n,------- ~ ..~ cr2((A _ c)/n') + 1 

and 

.< a2(1/n' ) 
1 ~ ~2(~ /n ' )  

which together give 

~r2(~/n ') 
~2(1/n') 

0 < e ~ l  

~2(1/n') 
- -  <~ ae (  ( A _ l ) /n , )  --+ l l < e <~ A / 2  

- - - - , 1  as n'---,oc, O<e<<_A/2 (2.16) 
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Also, by (1.18) again and (2.16), 

7( 2y - 

. 1  O<e<~A/2 (2.17) 

as n' ~ 0% and now (2.16) and (2.17) together  imply (2.10). 
Fur thermore ,  using (1.19) with 2 =  A and (2.17), 

~2((A + a)/n') ~2((A + e)/n') a2((A -- e)/n') 
o2(1/n ') o-2((A - a)/n') crz(1/n, ) ~ 0 0 < a ~< A/2 

as n ' ~ o o .  Since for any h > A  one can find a small ~ > 0  such that  
A + ~ < h, this clearly implies (2.11). 

Finally, putt ing ~ = 1 < A/2 in (1.20), assumed with ~ = A, we have 

Q2(1/n') Q2(1/n') _ , Q 2 ( l / n ' )  , 
a2(n,) n,aZ(1/n,) ~ n  a2-~-_-l i /n  ) ~0 as n' ~ oo 

which is (2.12). 

Proof of Theorem 2. 
)~>0, a fixed r>~rl(2)  of (1.7), and some {n'}. Then  we have 

Q(t/rn')/a(rn') ~ 0 t > 0 

Q ( l _ t / r n , ) / a ( r n , ) ~ { ~  r O<t<r)~t>r2 

as n' ~ o% and 

[] 

First assume (1.8), (1.9), and (1.10a) for some 

(2.18) 

(2.19) 

lira lim sup ~2(h/rn')/~z(1/rn ') = 0 (2.20) 

Using Lemma 2 for the subsequence {rn'} and A = r2 > 1, we obtain 

~r2(h/rn,)/~r2(1/rn,)~{; 0<h<r2h>r2 (2.21) 

and, as a special case of (2.18), 

Q(1/rn')/a(rn') ~ 0 (2.22) 

as n' ~ oo. Lemma 4, also used with { rn' } and A = r2, now gives 

lim ~2(q/rn')+~2((r2+q)/rn ')+(1/n ')Q2(t l /rn ')_l  0 < t/~< r2/2 

, ' ~  0o a2((r2 - t/)/rn') (2.23) 

Setting e = q/r, this is nothing but  (1.17) which implies (1.15). 
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To prove the converse, assume (1.15). Then we have (1.17) for some 
{n'}. Let 

r = r 2 ( ) .  ) = min{m: m integer and m2 > 2} > rl(2) 

and with this r set r/= re in (l.17) to obtain (2.23). Applying Lemma 5 with 
A = r2 > 2 and {rn' }, we obtain (2.21) and (2.22). Now Lemma 3, used for 
{rn'} and A = r 2 > 2 ,  yields (2.18), (2.19), and (2.20) with n' replaced by 
n", where {n"} ~ {n' }. Since (1.10a) is equivalent to (2.20), the substitution 
s =  t/r finally gives (1.8), (1.9), and (1.10a) with n' replaced by n", and 
hence the theorem. [] 

Proof  o f  the Corollary. The first statement follows from Theorem 5 in 
CsHM (2) because if 2 > 1, the function ~;. in (2.2) is not identically zero on 
the half-line [ 1, oo). 

As to the second statement, assume (1.1) for some {n'} and 2<1 .  
Then it holds along an arbitrary subsequence {n"} ~ {n'}. As described 
before the Corollary, we then have (1.8), (1.9), and (1.10a) along some 
{n'"} c {n"}, and hence also (1.18) and (1.19) along the same {n"}. Thus, 
for any e > 0 for which 2 + ~ < 1, 

( 
a2(e/n '') a 2 ( ( 2 - e ) / n  '') \a2((2--a)/n )J 

( - ) /n" )  \ ( - ) /n" )  / 

as n"  ~ oo. Let 

r > max (r1(2), 1 _-~1 2)  

so that, in particular, 2 + ( 1 / r ) < l .  Since (1.1) and ( L l l )  now hold 
jointly along {n'"}, the convergence of types theorem (Gnedenko and 
Kolmogorov, ~4~ pp. 40-42) implies that a(rn")/An., ~ 6 as n " ~  ~ ,  where 
0 < 6 < oo. Therefore, 

a(n") a(rn"') a(1/n'") , 0  as n"  --* 0 
A~ A.,,, . / 7   (r-1/n '') 

Since {n"} = {n'} was arbitrary, it follows that a(n')/A,, ~ 0 as n' ~ oo. [] 

3. A CONSTRUCTION 

Consider a number 0 < c ~< 1 and set 

tj = tj(c) = c2 2J j=O,  1, 2,... 
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Then we have to = c/2 and t//t/_ 1 -+ 0 as j ~ m. Also, set 

bj  ~- b j ( c )  = ( t j  - t j +  1 )  - 1  - 

2 2/ 

c ( 1 - 2  2J) 

and note that bJbj 1--+ c~ as j ~  oo. Now we introduce the quantile 
function 

0 if 0 ~ < u ~ < l - t o  

Q(u)=  bk if 1 - - t k < u < ~ l - - t k + ~ , k = O ,  1,2 .... 

or, what is the same, 

0 if to<~t<.l 
Q ( 1 - t ) =  bk if tk+l<~t<tk, k=O, 1,2,... 

Fix 2 > 0. The crucial element of the construction is the choice of the 
subsequence 

nk=nk()~, c ) =  F2/tk]=min{l:/ integer,  l>)~/t~} k = 0 ,  1, 2,... 

By elementary considerations we obtain that for all k large enough, 

t~ + l < s/n~ < t k if s<)~ 

t~+l<)o/nk<tk if 2/tk<F)~/tk] 

t~+,<)~/nk=tk if )~/t~=F2/tk] 

t~ < s/n~ < tk 1 if s>;~ 

(3.1) 

Setting now Ank = bk, we obviously have 

Q (s/n~)/A nk --+ 0 s > 0  (3.2) 

and from (3.1), 

Q ( 1 - s / n k ) / A n , ~ { O  s>2s<2 (3.3) 

as k-+ ~ .  
The next step is to analyze the function a2(h/nk), h > 0, and in doing 

so, we have to separate three cases. We always use first the second formula 
for o2(.) given in (1.3), then the corresponding case of (3.1), and the final 
asymptotic equalities are obtained by simple computation. 
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If h < 2, or h = 2 and 2/tk < F2/tkT, then for all k large enough, 

= - -  + f Q2(u )  du 
nk q - to 

-- + Q ( u )  du 
1 t o 

F/k j=l 

__ h bk..~_ ( t j _ l _ _ t j . )  b j_ l_ . l .  - t k - -  h bk 
j=i 

1 22k 
C 

(3.4) 

If h = 2 and 2/t~ = F2/t~ 7, then for all k large enough, 

-- 1 ~- 2 (gJ l--tj) b2-1 0"2 ~k nk k-- j= i 

j~l 

~_1 L 22'-*/( 1 - 2 - 2 ' - '  ) 
Cj=I 

(3.5) 

Finally, if h > 2, then for all k large enough, 

0" 2 h _ h b2 - % ~ b 2  t Z~-Z~ k-,+ Z (t, 1-t,)bLl+ t~_l , ,k] ~_ 
j=l 

(nk k--1 ( h )  )2 h bk 1 ~- Z (lJ -1 tJ)bJ -1-~- t k - '  b k - I  
j=l 

~122k 1 (3.6) 
r 

Now we are in the position to draw the conclusions, distinguishing 
four cases. 

Case 1. 2 > 1. Combining (3.6) and (3.4), for all h > 2 we obtain that 

~ (  h/n~ )/~2(1/n~ ) ~ 2 ~ ~/2 ~ --~ 0 
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and by (3.4), 

aZ(nk) nka2(1/nk)-2 as k - + o o  
A]k b~K 

for all 0<c~< 1. These relations together with (3.2) and (3.3) provide an 
illustration of Theorem 1 and the first case of the corollary. 

Case 2. 
have 

2 <  1. Again by (3.4), with h =  1/r<2, where r>~rl(2), we 

a(rnk) -- V /~  22k-- x/~2 bk = x/-~ An~ 
c 

a(h/nk)/a(1/rn~)--+0 for all h > 1 by (3 .4 )and  (3.6), and, finally, 

a2(nk)/A 2 ~ 222k22. -~/22~ +~ __+ 0 

for all 0< c ~< l ,  as k--+oo. Together with (3.2) and (3.3) again, these 
illustrate Theorem 1 and the second case of the corollary. 

Case 3. ). = 1 and we choose 0 < c < 1 so that 1/r is not an integer. 
By (3.4), 

! 
a2(nk) ~-~ 22k+1~ b2 = A2k 

and by (3.6) and (3.4), for all h > 1, 

a 2 ( h / n k ) / o 2 ( 1 / n k )  ~ 2 ~ -  ~/2 ~ --, 0 

as k--+ oo. Together with (3.2) and (3.3), these show that we are in the 
situation of Case 1. 

Case 4. 2 = 1  and we c h o o s e c = l .  We have by (3.5) that 

ai(nk) nka2(1/nk) 22k•k=,22, 1/( 1 - 2  -2j-t) 

A]k b~ 22k+l 

2 a 2a 1/22,+' ~<2k2 2 --+0 as k--*oo 

Furthermore, for each r ~> 2, by (3.4) 

2 ,~2 T M  a ( F H k )  ~ Z 2 2 b k = A,, k 
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and for all h > 1, by (3.6) and (3.4), 

a2(h/nk) /a2(1/rnk)~22k- l /22k~O as k--* 

These,  t aken  toge ther  wi th  (3.2) a n d  (3.3), show tha t  we are in the 

s i t ua t i on  of Case  2. 

ACKNOWLEDGMENTS 

S. Cs6rg6 was partially supported by the Hungarian National 
Foundation for Scientific Research, Grants 1808/86 and 457/88, while 
R. Dodunekova was partially supported by the Ministry of Culture, 
Science, and Education of Bulgaria, Contract No. 1035. We are grateful to 
Vilmos Totik of the University of Szeged for his initial help in the construc- 
tion and to V.V. Vinogradov of Moscow State University for sending us 
copies of the Gnedenko ~3) and Groshev ~5) papers. The insightful comments 
of a referee are also appreciated. 

REFERENCES 

1. Cs6rg6, S. (1990). A probabilistic approach to domains of partial attraction. Adv. AppL 
Math. 11, 282-327. 

2. Cs6rg6, S., Haeusler, E., and Mason, D. M. (1988). A probabilistic approach to the 
asymptotic distribution of sums of independent, identically distributed random variables. 
Adv. Appl. Math. 9, 259-333. 

3. Gnedenko, B. V. (1940). Some theorems on the powers of distribution functions. Uchen. 
Zap. Moskov. Gos. Univ. Mat. 45, 61 72. [Russian.] 

4. Gnedenko, B. V., and Kolmogorov, A. N. (1954). Limit Distributions for Sums of Inde- 
pendent Random Variables, Addison-Wesley, Reading, Massachusetts. 

5. Groshev, A. V. (1941). The domain of attraction of the Poisson law. Izvestija Akad. Nauk 
USSR, Ser. Mat. 5, 165 172. [Russian.] 


