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Abstract. This Letter reviews four models of associative memory which generalize the operation
of the Hamming associative memory: the grounded Hamming memory, the cellular Hamming
memory, the decoupled Hamming memory, and the two-level decoupled Hamming memory.
These memory models offer high performance and allow for a more practical hardware
realization than the Hamming net and other fully interconnected neural net architectures.
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1. Introduction

Existing models of associative memory suffer from one or more of the following
serious £aws:

. Limited capacity

. Low or unquanti¢able error correction capability

. Large number of spurious memories

. Impractical hardware implementation.

In terms of hardware implementation, dif¢culties arise either from requiring com-
plicated hardware or else requiring an excessive number of interconnection weights
(for example, fully interconnected architectures). In this letter, we describe a class
of associative memory models which can overcome some of these design £aws. These
memory models generalize the operation of the Hamming associative memory by
allowing for a ground state and local distance measures. Four different models
are discussed:

(1) Grounded Hamming Memory
(2) Cellular Hamming Memory
(3) Decoupled Hamming Memory
(4) Two-level decoupled Hamming Memory.

The grounded Hamming memory is similar to the Hamming associative memory,
but allows for a ground state which will attracts all states with very low
signal-to-noise ratio. The cellular Hamming memory utilizes local Hamming dis-
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tance measures rather than a global Hamming distance measure, leading to a cellular
network architecture which is more amenable to VLSI hardware implementation
and ¢ne-grained parallel implementations. The decoupled Hamming memory also
uses local Hamming distance computations, but requires less hardware than the
cellular Hamming memory because the local windows do not overlap. Finally,
the two-level decoupled Hamming memory combines the decoupled Hamming dis-
tance computations with a higher-level decision making stage.

These associative memory models have been individually described and analyzed
in the literature in recent years [1^7]. The purpose of this letter is to give a complete
summary and comparison of the various models, highlighting their advantages
and limitations in terms of memory capacity and hardware implementation.

In the following, we consider the binary autoassociative memory problem. In this
case, the given fundamental memory set is of the form fx1; x2; . . . ; xmg, where each
pattern xi is an N-bit binary vector, i.e. xi 2 f0; 1gN ; i � 1; 2; . . . ;m. The task is
to design a system which associates every fundamental pattern with itself. That
is, when presented with xi as input, the system should produce xi at the output.
In addition, when presented with a noisy version of xi at the input, the system should
also produce xi at the output.

Let the Hamming distance between two binary vectors x and y (of the same
dimension) be denoted as d�x; y�.

The Hamming associative memory [2] is a static model, and operates as follows:
For any memory key x 2 f0; 1gN , the retrieved pattern is obtained by computing
the Hamming distances dk � d�x; yk�, selecting the minimum such distance dk� ,
and outputting the fundamental memory xk

�
(closest match). The most attractive

feature of this model is its exponential capacity [8] and large error correction
capability. There are two serious disadvantages of this model. First, there is no pro-
vision for a ground state. Second, the hardware implementation is cumbersome
because the computation of the required Hamming distances is a global and
sequential operation, and hence not immediately suitable to parallel and distributed
processing systems. The following sections detail generalizations of the Hamming
memory which overcome these limitations.

2. The Grounded Hamming Memory

The operation of the grounded Hamming associative memory model [5] is similar to
the Hamming associative memory, but provides for a ground state (the zero state) to
attract all outlier or `garbage' inputs. That is, the grounded Hamming associative
memory outputs the closest fundamental memory when there is a suf¢ciently close
match between the memory key and one of the fundamental patterns; otherwise,
when no such match occurs, the grounded Hamming memory converges to the
ground state. The Hamming memory, on the other hand, has no such ground state,
and will produce a fundamental memory at the output no matter how noise-
corrupted the memory key. Clearly, there are applications which require such a
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`no decision' state in the presence of excessive noise. Figure 1 shows conceptually the
difference between the Hamming associative memory and the grounded Hamming
memory in terms of state space basins of attraction.

The ¢rst step in the design of the grounded Hamming memory is to choose some
desired level of error correction. The easiest way to do this is to choose a value
for p, the number of correctable bit errors. If the number of correctable bit errors
is to be uniform for all memories in the fundamental memory set, then p must
be chosen such that the following condition is satis¢ed

1W p < 1
2 minfd�xi; xj�g; �1�

where i 6� j 2 f1; . . . ;mg. Once p is chosen, the grounded Hamming memory operates
as follows. Given an input memory key x, we compute d�x; xi� for each
i � 1; 2; . . . ;m. If there is an index i� which satis¢es d�x; xi� �W p, then the output
of the memory is xi

�
; otherwise, the output of the memory is the ground state 0.

Note that by the condition established in (1), if i� exits, then it is unique.
In Watta, Wang, and Hassoun [7], it was shown that an explicit Boolean

expression for the grounded Hamming memory operation can be derived. In this
case, the system may be implemented with digital hardware, as shown schematically
in Figure 2. Here, each lxi �x� block is a collection of AND and OR gates; see [7] for
details. Unfortunately, this design is not practical for high dimensional systems
because it requires an excessive number of gates.

A more ef¢cient design of the grounded Hamming memory may be obtained by
using linear threshold gates (LTGs). The neural architecture for this system is shown
in Figure 3. Here, each of the mLTGs is `tuned' to respond to a single fundamental
memory. In this case, we require at most m(N � 1) LTGs, which scales linearly
in N. Note the incredible savings in hardware for this LTG-realization of the
grounded Hamming memory as opposed to the digital logic realization, which
required an exponential number of gates. In this sense, and as mentioned in [9]
in a different context, the LTG is exponentially more powerful than digital logic
gates.

Figure 1. Basins of attraction of the (a) the Hamming memory and (b) the grounded Hamming memory.
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Another attractive feature of the architecture shown in Figure 3 is the ease with
which the size of the basin of attraction for all fundamental memories can be
changed. Here, to change p, we need only adjust the threshold of each neuron
in the hidden layer. In fact, in this case, we don't require a uniform value of p
for all memories: we can de¢ne a nonuniform error correction for each fundamental
memory, pj; j � 1; 2; . . . ;m, where

1W pj < 1
2 minfd�xj; xk�: k � 1; . . . ;m; k 6� jg: �1�

Figure 2. Circuit diagram of the grounded Hamming memory. Each lxi �x� is a block of AND and OR gates.

Figure 3. LTG-realization of the grounded Hamming memory.
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The state space structure for the grounded Hamming memory with nonuniform
error correction is shown schematically in Figure 4. Note that the grounded
Hamming memory with uniform error correction uses the most conservative value
of p; i.e. p � minfpj : k � 1; . . . ;mg. The nonuniform grounded Hamming memory,
though, is able to handle (for some images) much more noise.

3. Cellular Hamming Memory

Notice that for the grounded Hamming net formulated above, each output bit is a
function of the entire input vector; i.e. yi � yi�x1; x2; . . . ; xN � for each
i � 1; 2; . . .N, Substantial savings in hardware may be achieved by restricting
the dependence of each output to a small fraction of all possible inputs. giving rise
to the notion of a local Hamming distance measures. Since our application will
be for image processing. we will suppose that the memory input pattern is
2-dimensional. In this case, the cellular Hamming model is actually a two-
dimensional nonuniform cellular automaton in which neighboring pixels interact
locally, as shown in Figure 5(a). Here, the pixel interconnectivity structure is shown
as a 2� 2 Von Neumann-type neighborhood, but larger neighborhoods, such as
the 3� 3 Moore neighborhood. or extended Moore neighborhoods may be formed,
as well.

Previous studies of 2-dimensional cellular automata [10] concentrated on uniform
systems in which each automaton (pixel element) employs the same transition or
updating function. Here, to obtain the operation of associative recall, each automa-
ton may employ a different transition function, formulated as follows. First, each
pixel senses the state of the pixels in its neighborhood. For example, suppose
the pixel marked with a circle in Figure 5(b) is chosen for updating and suppose
we employ a 3� 3 neighborhood (shown as the shaded region surrounding the
updating pixel). The updating pixel updates itself as follows:

1. Compute the Hamming distance between its neighborhood con¢guration and the
corresponding pixels in all the memory patterns. For example, in Figure 5(b), the
distances {d1; d2; . . . ; dm} are computed.

Figure 4. The grounded Hamming memory with nonuniform error correction.
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2. Choose the smallest such distance dk�.
3. Assume the value of the center pixel in that closest pixel pattern.

A simple heuristic may be employed in case of a tie in the minimum Hamming
distance computation. For example, if there is a tie between two images and if
the two fundamental memories agree at pixel (i; j), then we simply assign the pixel
to the common value. If, however, they disagree at (i; j), then heuristically, we
can keep the input image pixel at its present value. Similar rules can be formulated
in the case of a tie among several memory patterns.

There are several ways in which the dynamics can be computed. For parallel
update, all the nodes in the network update their state at each time instant. For
sequential update, only one node is updated at each time instant following some
¢xed ordering of the nodes. Block sequential update is a mixture of sequential
and parallel update in which a partition is formed on the set of nodes, and the
updating of the partitions follows sequentially, while the updating of the nodes
within each partition block is performed in parallel. For random update, only
one randomly chosen node is updated at each time instant.

It is important to note that the full Hamming net can be viewed as a special case of
this memory, corresponding to the case where each pixel has a neighborhood con-
sisting of the entire image. We expect the quality of memory retrievals will be best
for larger neighborhoods, approaching the (optimal) performance of the Hamming
net in the limit of maximum neighborhoods.

Figure 5. (a) Structure of local interactions for the local Hamming net, assuming a 2� 2 neighborhood; (b)
Updating of the memory key by local Hamming distance computations (here, a 3� 3 neighborhood is used).
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4. Decoupled Hamming Associative Memory

The local Hamming memory uses overlapping windows and hence requires a lot of
hardware. It is possible, though, to use nonoverlapping windows, giving rise to
the decoupled Hamming associative memory.

The decoupled Hamming associative memory localizes the Hamming distance
computation by partitioning the input vector into nonoverlapping modules or
windows, and performing the Hamming memory operation on each module
independently. To be precise, suppose we partition the N input variables
X � fx1; x2 . . . ; xNg of our memory into w modules: fX1;X2; . . . ;Xwg such that
Xi � X ;[Xi � X , and Xi \ Xj � �; i 6� j. To simplify notation, assume that each
module has the same number of variables, denoted n. In this case, we have
jXij � n; i � 1; 2; . . . ;w, where w � N=n is the total number of windows or modules.
Figure 6 shows the structural difference between (a) the full Hamming memory;
and (b) the decoupled Hamming memory.

Each module is a local Hamming memory and has its own local memory set, which
is obtained by partitioning each fundamental memory xi into w memory subvectors:
xk � �xk�1�; . . . xk�w��, where the ith subvector xk�i� 2 f0; 1gn contains the components xk

speci¢ed by the variables in the ith module Xi. In this case, we can associate with
each module its own local memory set of the form x�i� � fx1�i�; . . . xm�i�g.

The decoupled Hamming memory operates as follows: The memory key x is
partitioned in the same fashion as the fundamental memories: x � �x�1�; . . . x�w��,
and the w module Hamming memories independently (and in parallel) operate
on each of the subvectors of x, computing the Hamming distances
d�x�i�; xk�i��; k � 1; 2; . . . ;m, and outputting the closest matching pattern.

In the case of 2-dimensional patterns, there are many different topologies possible
for the layout of the local Hamming memories. For example, the local Hamming
memories may be arranged by row, by column, or in a checkerboard arrangement,
as shown in Figure 7(a). Here, the 64� 64 binary image is covered with
nonoverlapping 16� 16 windows in a checkerboard-type layout. Each local
Hamming memory then computes 256-bit Hamming distances as opposed to
4096-bit Hamming distances for the entire image.

One clear advantage of the decoupled Hamming memory over the full Hamming
memory is retrieval speed. Since all modules can perform their computations in para-
llel, a w-fold speedup in retrieval time can be achieved by dedicating a processor to
each module. A disadvantage of this stringent parallelism, though, is that the
decoupled Hamming memory may retrieve a pattern which was not part of the mem-
ory set; i.e. spurious memories are possible. For image processing applications, for
example, the decoupled memory may converge to an image which is predominantly
one of the fundamental images, but contains scattered `chunks' of other images,
as shown in Figure 7(b). The full Hamming network, on the other hand, never
retrieves spurious memories.
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5. The Two-Level Decoupled Hamming Associative Memory

To avoid the spurious memory problem of the previous section, a two-level structure
can be used which consists of a decoupled Hamming memory along with a
higher-level decision network. The architecture of this memory (in the case of
2-dimensional memory patterns) is shown in Figure 8(a). Here, each local Hamming
memory or module Xi computes the closest matching pattern and sends the index Ii
of the best match pattern to the decision network. The decision network examines
the indices I1; I2; . . . ; Iw, of all the modules and computes a single best match index
I�. Each memory module then outputs its portion of the fundamental memory

Figure 6. Structure of (a) the full Hamming; and (b) the decoupled Hamming memory.

Figure 7. (a) Structure of local memories arranged as an array of nonoverlapping 16� 16 windows; (b) A
spurious memory.
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xI
�
; that is, each module outputs xI

�
�i�; i � 1; 2; . . . ;w. Since the decision network

forces all modules to output the same fundamental memory, the spurious memory
problem of the previous section is eliminated.

For example, in Figure 8(a), the window in the upper left hand corner of the image
best matches image 5 in the memory set, while the window in the lower right hand
corner best matches images 1 and 6 (there is a tie in the Hamming distance).
The decision network examines all the votes from the local windows, determines
that 5 is the most prevalent, and forces all windows to output its portion of image
5, as shown in (b).

There are many ways to design the decision network. In the simplest case, a
majority rule is used, in which I� is chosen to be the most frequent index among
I1; I2; . . . ; Iw. Utilizing the emerging theory of classi¢er combination [11] and sensor
fusion [12], more sophisticated decision rules can be formulated. In this case, it
may be desirable for each module to send an ordered list of, say, the best 3 indices
Ii1 ; Ii2 ; Ii3 , to the decision network. For very noisy patterns, the second and third
choices of each module may contain useful information which can be exploited with
an appropriate combination scheme.

As with the single layer decoupled Hamming network, it is easy to see that the
2-level decoupled Hamming network reduces to the full Hamming network in
the case of a single module: w � 1. But unlike the single layer model, the 2-level
decoupled Hamming memory also reduces to the full Hamming network in the other
extreme case: w � N. So the 2-level decoupled Hamming network achieves the
optimal performance of the Hamming memory for both the maximum and minimum
number of modules.

For intermediate window sizes, the capacity of the two-level decoupled Hamming
memory is not as large as the full Hamming memory. But even so, the two-level
decoupled Hamming memory with intermediate window size has a much higher
capacity and much more error correction than most of the standard neural-based

Figure 8. Structure of the two-level decoupled Hamming network. Numbers in (a) represent the index of the
closest matching pattern(s); and (b) shows the result after the voting.
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associative memories, such as the correlation recorded Hop¢eld network [13], and
other recording algorithms for the same single-layer Hop¢eld-type neural structure.

Besides its performance advantages over standard neural net models, the two-level
decoupled Hamming net is ideal for parallel hardware implementation. Since the
¢rst level is modularized, the computation can be done in parallel. Indeed, special
purpose hardware consisting of a dense array of digital signal processors already
exists which can perform the required computations ef¢ciently (see, for example,
[14]).

6. Summary

In a template matching (Hamming network) approach to pattern recognition, the
input image is compared (using a suitable metric) to each of the prototype images,
and the output is simply the best match image. The sequential computation of comp-
aring the input to each prototype is reminiscent of the serial processing that humans
do when asked to identify people whom they do not know [15]. In a comparison
between a feature based approach and a template matching approach for human
face recognition problems, Poggio and Brunelei [16] found that template matching
provided superior performance, and in fact, gave 100% recognition on their data
set of face images.

The training time for template matching is O(1) complexity, and simply consists of
storing all the images in memory. In other algorithms, such as neural net-based
approaches, the training time is extremely long, but the retrieval time can be very
quick.

An obvious advantage of template-based schemes is that it is easy to add new
individuals by simply storing additional images or delete an individual by deleting
the undesired prototype images. Another advantage is that template-based systems
are not limited to producing just a single output, but can produce an ordered list
containing the best matching, say k, individuals.

The main disadvantages of template-based methods were pointed out in Duda and
Hart [17]: `. . . the complete set of samples must be stored, and must be searched each
time a new feature vector is to be classi¢ed.'

Back in 1973 when this classic text was published, memory and processing speed
were indeed serious constraints. In fact, it would take almost 10 years before
PCs were developed with a clock speeds of a few MHz, 1 MB of RAM, and a
fewMB of hard disk space. Today, however, affordable PCs are available with clock
speeds of 700MHz, 384 MB of RAM, and 50 GB of hard disk storage. Clearly, the
severity of the storage/speed dilemma has diminished in recent years with the avail-
ability these powerful and low cost computers, and hence the template matching
approach of the Hamming network warrants further consideration.

As outlined in this paper, by combining the Hamming net computation with the
parallel and distributed processing methods of neural networks, high performance
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associative memories can be designed. In future work, we will apply these gener-
alized Hamming models to the practical problem of human face recognition.
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