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We show that the zeros of the hypergeometric polynomials F (−n, kn + 1; kn + 2; z),
k,n ∈ N, cluster on the loop of the lemniscate {z: |zk(1− z)| = kk/(k + 1)k+1, Re(z) >
k/(k + 1)} as n → ∞. We also state the equations of the curves on which the zeros of
F (−n, kn+ 1; (k+ `)n+ 2; z), k, `,n ∈ N, lie asymptotically as n→∞. Auxiliary results
for the asymptotic zero distribution of other functions related to hypergeometric polynomials
are proved, including Jacobi polynomials with varying parameters and associated Legendre
functions. Graphical evidence is provided using Mathematica.
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1. Introduction

The Gauss hypergeometric function is defined by

F (a, b; c; z) = 1 +
∞∑
m=1

(a)m(b)m
(c)m

zm

m!
, |z| < 1,

where

(α)m = α(α+ 1) · · · (α+m− 1) =
Γ(α+m)

Γ(α)
, α ∈ C,

is Pochhammer’s symbol. If, for instance, the parameter a is equal to a negative
integer, say a = −n, the series terminates and reduces to a polynomial of degree n.
Very little is known about the location of the zeros of hypergeometric polynomials
except in cases where they are linked to classical orthogonal polynomials. For further
discussion on this connection, see, for instance, [1, p. 561].

The purpose of this paper is to determine the equations of the critical curves
on which the zeros of some classes of hypergeometric polynomials of degree n
cluster as n→∞ and to provide graphical evidence for the validity of our results
using Mathematica. Our main result concerns the asymptotic zero distribution of
F (−n, kn+ 1; kn+ 2; z), k,n ∈ N, as n tends to infinity. We also state an asymptotic
result for the zeros of the more general class F (−n, kn+1; (k+`)n+2; z), k, `,n ∈ N,
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as n→∞, without giving a detailed proof. Auxiliary results exploit the connection be-
tween hypergeometric polynomials and associated functions. In particular, we find the
asymptotic zero distribution of a class of Jacobi polynomials with varying parameters,
and of associated Legendre functions.

2. Critical curves

Our analysis rests on the Euler integral representation (see, for instance, [5, p. 47])

F (a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− zt)−a dt, (1)

Re(c) > Re(b) > 0, |z| < 1, together with the following theorem of Borwein and
Chen (cf. [2, theorem 5.1]).

Theorem A. Let

In(z) =

∫ 1

0

[
Qz(t)

]n
dt,

where n = 1, 2, . . . , and Qz(t) = tkfz(t) is a polynomial in t and z with exactly one
nontrivial critical point. Here, k is a positive integer. Let

t? = t?(z)

be the nontrivial zero of (d/dt)Qz(t). Then, as n→∞, the zeros of In(z) will cluster
on the critical curve {

z:
∣∣Qz(t?(z)

)∣∣ =
∣∣Qz(1)

∣∣}. (2)

Moreover, the function {In(z)}1/n converges either to Qz
(
t?(z)

)
or to Qz(1) uni-

formly on compact subsets of each region in the complex plane bounded by the crit-
ical curve (2). The zeros of In(z) will cluster on those sections of (2) that form a
boundary between regions R and S, where {In(z)}1/n converges to Qz

(
t?(z)

)
on R

and to Qz(1) on S.

3. Main results

Theorem 1. Let k and n ∈ N. Then, as n→∞, the zeros of F (−n, kn+1; kn+2; z)
cluster on the loop of the lemniscate{

z:
∣∣zk(1− z)

∣∣ =
kk

(k + 1)k+1 , Re(z) >
k

k + 1

}
. (3)
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Proof. From the integral representation (1) with a = −n, b = kn + 1, c = kn+ 2,
we have

F (−n, kn+ 1; kn + 2; z) = (kn+ 1)
∫ 1

0

[
tk(1− zt)

]n
dt

= (kn+ 1)
∫ 1

0

[
Qz(t)

]n
dt,

where Qz(t) = tk(1− zt) is a polynomial in t and z. Then

d
dt
Qz(t) = tk−1(k − (k + 1)zt

)
,

which has the nontrivial zero t? = t?(z) = k/((k + 1)z). It follows immediately from
theorem A that the critical curve (2) is given by{

z:
∣∣zk(1− z)

∣∣ =
kk

(k + 1)k+1

}
.

To ascertain whether {
∫ 1

0

[
Qz(t)

]n
dt}1/n converges to Qz(t?(z)) or to Qz(1) in the

different regions bounded by the lemniscate (3), we observe that t? = t?(x) =
k/((k + 1)x) ∈ [0, 1] if and only if x > k/(k + 1). Also, it is straightforward to
check that |Qx(t?(x))| > |Qx(1)| only when x ∈ A(x), the segment of the positive real
axis shown in figure 1. It follows by a saddle point argument (cf. [2, theorem 5.2])
that {

∫ 1
0 [Qz(t)]n dt}1/n converges uniformly on compact subsets to Qz(1) on R1 and

R2, and to Qz(t?(z)) on R3. We deduce that the zeros of F (−n, kn + 1; kn + 2; z)
cluster on the loop of the lemniscate B shown in figure 1. This completes the proof
of theorem 1. �

Figure 2 shows the zeros of F (−n, kn + 1; kn + 2; z) and the graphs of the
lemniscates (3) for various values of k, n ∈ N.

Figure 1. The asymptotic lemniscate.



150 K. Driver, P. Duren / Zero distribution of hypergeometric polynomials

Figure 2. Lemniscate |zk(1− z)| = kk/(k + 1)k+1 and zeros of F (−n, kn+ 1; kn+ 2; z).
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Figure 2. (Continued.)
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Figure 3. Lemniscate |zk(1−z)| = kk/(k+ 1)k+1 and zeros of F (−n, kn+ 1; kn+ 2; z), for noninteger
values of k.

Remark. Numerical evidence indicates that theorem 1 remains true for all positive k,
not necessarily an integer (see figure 3). This more general case is not covered by the
Borwein–Chen theorem and we intend to return to this question in a later paper.

Another class of polynomials to which different results of Borwein and Chen from
the same paper (cf. [2, theorem 2.5 and corollary 2.6]) can be applied is F (−n, kn+1;
(k+ `)n+ 2; z), k, `,n ∈ N. We state theorem 2 without proof because the idea is the
same as the proof of theorem 1, only the calculations are tedious.

Theorem 2. Let k, `,n ∈ N. Then, as n → ∞, the limit points of the zeros of
F (−n, kn+ 1; (k + `)n+ 2; z) lie on the curve{

z:

∣∣∣∣ (k + 1)z + ν

(k + 1)z + λ

∣∣∣∣k ∣∣∣∣ (1 + k + 2`)z − ν
(1 + k + 2`)z − λ

∣∣∣∣` ∣∣∣∣ (k + 1)z − λ− 2
(k + 1)z − ν − 2

∣∣∣∣ = 1

}
, (4)

where µ = [(k+1)2z2−2(k2 +k`+k−`)z+(k+`)2]1/2, ν = k+`+µ, λ = k+`−µ.
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Figure 4. The owl.

Remark. The special case k = ` in (4) yields the critical curve{
z:

∣∣∣∣ 3
√

3z(z − 1)

(2z − 1)(z + 1)(z − 2)− 2(z2 − z + 1)3/2

∣∣∣∣ = 1

}
,

which can be shown in an elementary way to be identical to the “owl-shaped” curve
C1 ∪ C2 ∪ C3 shown in figure 4, where

C1 =

{
z: |z − 1| = 1, x >

1
2

}
; C2 =

{
z: z =

1
2

+ iy, |y| <
√

3
2

}
and C3 is the reflection of C1 about the line x = 1

2 . The theorem then says that the
zeros of F (−n, kn+1; 2kn+2; z) tend asymptotically to C1. However, this statement
is contained in a much stronger and more general result. It is shown in the authors’
forthcoming paper [3] that for arbitrary λ > − 1

2 , and for every n = 1, 2, . . . , the zeros
of F (−n,λ; 2λ; z) actually lie on the circle |z − 1| = 1 by virtue of their connection
with the zeros of ultraspherical polynomials.

4. Auxiliary results

Hypergeometric functions satisfy a variety of linear and quadratic transformations
(cf. [1, pp. 559–561]), and hypergeometric polynomials are linked with Jacobi poly-
nomials and associated Legendre functions (cf. [1, pp. 561–562]). These connections
lead to the following corollaries of theorem 1.
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Corollary 1.

(a) As n → ∞, the zeros of the Jacobi polynomials P(kn+1,−n−1)
n (w) cluster on the

loop of the lemniscate{
w:
∣∣(w − 1)k(w + 1)

∣∣ =

(
2

k + 1

)k+1

kk, Re(w) < 0

}
. (5)

(b) As n → ∞, the zeros of the associated Legendre functions P−n−1
n (w) cluster on

the loop of the lemniscate{
w:
∣∣w2 − 1

∣∣ = 1, Re(w) < 0
}
. (6)

Proof. (a) We have (cf. [1, p. 561, equation (15.4.6)])

F (−n, kn+ 1; kn + 2; z) =
n!

(kn+ 2)n
P(kn+1,−n−1)
n (1− 2z). (7)

Putting w = 1− 2z and substituting into the equation of the lemniscate (3), we ob-
tain (5).

(b) Using the identity (cf. [1, p. 562, equation (15.4.17)])

F (−n,n+ 1; n+ 2; z) = (n+ 1)!

(
1− z
z

)(n+1)/2

P−n−1
n (1− 2z), (8)

putting w = 1− 2z and substituting into (3), with k = 1, yields (6).

Remark. Note that when k = 1, the lemniscate given by (5) is identical to that in (6).
In fact, it is clear from (7) with k = 1, and (8), that the zero set of the Jacobi
polynomial of degree n with parameters α = n+ 1, β = −α is identical to that of the
Legendre function of degree n with parameter −n− 1, and, in both cases, the zeros
converge to the lemniscate (6) as n → ∞. Figure 5 provides graphical evidence of
the assertions in (a).

Corollary 2.

(a) The n zeros of the hypergeometric functions F ( 1
2 ,n+ 1;n+ 2;w) and F (1,n+ 3

2 ;
n+ 2;w) cluster on the unit circle |w| = 1 as n→∞.

(b) The n zeros of F (n+ 3
2 ,n+ 1;n+ 2;w) cluster on the vertical line Re(w) = 1

2 as
n→∞.

Proof. (a) Invoking the quadratic transformations (cf. [4, p.112, equations (22), (23)]),
we have

F (−n,n+ 1; n+ 2; z) = (1− z)n+1F

(
1
2

,n+ 1; n+ 2; 4z(1− z)

)
,
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Figure 5. Zeros of Jacobi polynomial P (kn+1,−n−1)
n (w) and lemniscate |(w−1)k(w+1)| = (2/(k+1))kkk .

F (−n,n+ 1;n + 2; z) = (1− z)n+1(1− 2z)F

(
1,n+

3
2

;n+ 2; 4z(1 − z)

)
.

Since the equation of the lemniscate (3) reduces to {z:
∣∣4z(1− z)

∣∣ = 1} when k = 1,
the two identities above immediately yield the stated result.

(b) The transformation (cf. [4, p. 112, equation (24)])

F (−n,n+ 1;n + 2; z)

= (1− z)n+1(1− 2z)−2n−2F

(
n+

3
2

,n+ 1;n + 2; 4z(z − 1)(1 − 2z)−2
)

,

shows that the zeros of F (n+ 3
2 ,n+ 1;n+ 2;w) are related to those of F (−n,n+ 1;

n + 2; z) by w = 4z(z − 1)(1 − 2z)−2. We know from theorem 1 that the zeros
of F (−n,n + 1;n + 2; z) cluster on the curve |4z(1 − z)| = 1 as n → ∞. But, if
|4z(z − 1)| = 1, then 4z(z − 1) = eiθ for some θ, and so

w =
4z(z − 1)

[1 + 4z(z − 1)]
=

eiθ

(1 + eiθ)
.
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An easy simplification gives w = 1
2 + 1

2 i tan(θ/2), and we conclude that the n zeros
of F (n+ 3

2 ,n+ 1;n + 2;w) cluster on the vertical line Re(w) = 1
2 as n→∞.
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