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The one-dimensional Helmholtz equation, 2y —u = f(x), arises in many applications,
often as a component of three-dimensional fluids codes. Unfortunately, it is difficult to solve
for ¢ <« 1 because the homogeneous solutions are exp(z£x/e), which have boundary layers
of thickness O(1/¢). By analyzing the asymptotic Chebyshev coefficients of exponentials, we
rederive the Orszag—Israeli rule [16] that N ~ 3/./e Chebyshev polynomials are needed to
obtain an accuracy of 1% or better for the homogeneous solutions. (Interestingly, this is iden-
tical with the boundary layer rule-of-thumb in [5], which was derived for singular functions
like tanh([x — 1]/¢).) Two strategies for small ¢ are described. The first is the method of mul-
tiple scales, which is very general, and applies to variable coefficient differential equations,
too. The second, when f(x) is a polynomial, is to compute an exact particular integral of the
Helmholtz equation as a polynomial of the same degree in the form of a Chebyshev series
by solving triangular pentadiagonal systems. This can be combined with the analytic homo-
geneous solutions to synthesize the general solution. However, the multiple scales method is
more efficient than the Chebyshev algorithm when ¢ is very, very tiny.
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1. Introduction

Through dimension-splitting, large semi-implicit hydrodynamics often must solve
the one-dimensional Helmholtz equation,repeatedly at every timestep. If a fluid model
is periodic in two dimensions, discretized by a Fourier spectral method with basis func-
tions of the form exp(iky + imz), then to treat the viscous terms in the Navier—Stokes
equations, it is necessary to solve the Helmholtz equation in the third dimension,

82uxx —u= f(x), (D
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for each degree-of-freedom in the other two coordinates and at every time step — millions
of one-dimensional Helmholtz solves in the course of the integration. The parameter ¢
is

1
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where v is the viscosity coefficient and § is the timestep. For a high Reynolds number
flow (v « 1), ¢ is in the range of 1/10,000 to 1/1000 [7], [Diamessis and Domaradzki,
submitted]. The homogeneous solutions to the Helmholtz equation are exp(+x/¢e). If
these boundary layers are not adequately resolved, the numerical solution will display
spurious oscillations.

An obvious remedy is a change of coordinates so that an evenly spaced set of
subdomains or grid points in the computational coordinate is equivalent to variable
resolution with several grid points in the boundary layer itself. Whole books and re-
views have been written on numerical resolution of boundary layer problems such as
[13] and [12], and there have been plenty of articles in spectral methods realm on vari-
able resolution/change-of-coordinate strategies including [10,11,14,17]. However, these
strategies are unsatisfactory when the Helmholtz equations arise as part of a multidimen-
sional hydrodynamics code.

First, the boundary layers are spurious because their width is controlled in part by
the timestep, and therefore has nothing to do with the physics. Second, the “parent”
multidimensional model has its own spacing of subdomains, grid points and so on, and
it is obviously unpleasant to superimpose the complications of a change-of-coordinate
just to resolve spurious boundary layers.

In this article, we describe two better alternatives. The multiple scales singular
perturbation strategy can be combined with any discretization of derivatives, not merely
spectral, and it can be applied to differential equations with variable coefficients, not
merely the constant coefficient Helmholtz equation. It is, however, based on a (usually
divergent) asymptotic expansion in &, and therefore is inaccurate unless ¢ is small.

The second strategy, which assumes that f(x) is a polynomial or can be approx-
imated by a polynomial, computes an exact particular integral through a very efficient
sparse matrix/Chebyshev polynomial procedure. Although restricted to the Helmholtz
equation only, the Chebyshev algorithm is (ignoring roundoff) of unlimited precision.

When N is sufficiently large to explicitly resolve the boundary layers, neither of
these strategies is needed. Orszag and Israeli derived a criterion for resolving boundary
layers but merely quoted the relevant formulas without a detailed discussion. Because
the boundary layer rule-of-thumb is so important, we offer a detailed derivation and
analysis in the next section.

In section 3, we describe the multiple scales procedure. The rest of the article is
focused on the Chebyshev polynomial strategy.
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2.  Asymptotic Chebyshev coefficients of the exponential functions

The Chebyshev coefficients of exp(p[x — 1]) are Bessel functions [15]:

exp{pl=1+xl} =) b Tu(x) = eXP(—P){Io(,O) +2) ln(pm(x)}. (3)

n=0 n=1

The “uniform” asymptotic approximation to the Bessel functions [1] gives

[ 2 1 1
by ~ eXP(—,O) 5@ exp(nx(z)){l +O(;>}, 4

where z = p/n and
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In the limit n — oo (z < 1), this simplifies to

bnN,/iexp(—p+n{1+log<£)}—nlog(n)), n>p. ©)
n 2

The boundary layer rule-of-thumb is derived by looking at the opposite limit of
z > 1, thatis, n < p, the bottom line of (5), which yields

2 1 n?
b, ~ | —exp| —=— n<p. @)

Figure 1 shows the contours of relative error of this approximation: as p increases, the
range of accuracy in n increases.

One might suppose that the asymptotic Chebyshev coefficients of cos(px) and
exp{p[—1 + x]} would be very similar. This is true for n > p: the coefficients of
both functions fall proportional to exp(—n log(n)). Figure 2 shows that this assumption
is false for smaller n. The coefficients of exp{p[—1 + x]} decrease monotonically: as a
Gaussian in n for n < p. In contrast, the coefficients of cos(px) are O(1) and oscillatory
until n > p . The quasi-sinusoidal rule-of-thumb in [5] is completely inappropriate for
describing boundary layers.

Somewhat arbitrarily, we define the boundary layer to be resolved when the last
retained coefficient, by, has been reduced to about 1/100 of b;. (Because the coefficients
are falling as a Gaussian function of n and because |7,,(x)| < 1 for all n and all x €
[—1, 1], one can show that the error in truncating after the Nth term is conservatively
bounded by by .)
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Figure 1. Contours of the base-10 logarithm of the relative errors, |(hSX3t — pESYPy /bEX3| in the small-n
approximation, b, ~ /2](p)exp(—n2/(2p)), where the by, (p) are the Chebyshev coefficients of the
function exp(p[x — 1]). The full asymptotic approximation (4) has a much wider range of accuracy

(not shown).
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Figure 2. Lo errors in truncating interpolated Chebyshev series after N for f(x) = cos(300x) and f(x) =

exp(300x)/ exp(300). In the limit p, N — o0, the error curve for cos(px) approaches a step function with
the discontinuity at N = p.

In application to the homogeneous solutions of the Helmholtz equation, p = 1/¢.

This gives the “boundary layer rule-of-thumb”: to resolve a boundary layer of thick-
large so that

ness €, one must use a truncation N of a Chebyshev polynomial basis that is sufficiently

N >3/¢

(boundary layer rule-of-thumb). (8)
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Figure 3. The plotted points in the main graph are the errors in the Chebyshev expansion of f = exp([x —

1]/¢) for various N and e. The graphs for different ¢ were plotted using different N scales so that the

horizontal coordinate is N /¢ rather than N itself. The curves fall almost on top of one another, confirming

that the error is indeed a function of N and ¢ almost entirely through the combination N /e. The e-folding

scale of the inset figure is 1/100; the black disks show the grid points for N = 30, which is equivalent to
N = Npin(e) = 3/4/¢ for this value of ¢.

Orszag and Israeli [16] quoted equation (7) and proposed (8) some thirty years ago. If
N > 3¢7!/2 then the multiple scales algorithm described in the next section is unneces-
sary.

The inset in figure 3, which illustrates the three grid points nearest the boundary for
a typical small value of ¢, visualizes equation (8). The N > 3/./e criterion is identical
with the rule-of-thumb stated in [5, p. 59 ], even though the latter is justified using the
singular function tanh([x — 1]/¢), whereas the exponential is an entire function, free of
singularities except at infinity. The universality of the N > 3s~!/?/two grid points-in-
the-boundary layer criterion is rather pleasing.

3. The method of multiple scales

3.1. One-dimensional Helmholtz equation

Expanding u(x; €) as a series in powers of ¢ for the Helmholtz equation, &%u,, —
u = f(x), gives the particular integral

P==> & fr(x), ©)

j=0

where f>;, denotes the x-derivative of order 2j. This solution is an example of the
method of multiple scales [3, chapter 2] and [2]. The key assumption is that the particular
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integral is not a function of the “fast” variable, x /e, but rather varies only on a “slow”
O(1) length scale so that the second derivative of the particular integral is O(e?) smaller
than the undifferential term. When f is a polynomial, this series terminates and P must
then be a polynomial, too. The general solution can be synthesized by adding arbitrary
multiples of the homogeneous solutions, cosh(x/¢) and sinh(x/¢).

The series is an expansion in &2, not &, so when 2 ~ O(107% — 10%) as common
in applications, the two-term approximation

P~—=fx)— 82fxx (10)

will be accurate to near machine precision!

The weakness of the multiple scales series is that when ¢ is only moderately small,
one must use many terms, which requires computing higher derivatives of f. It is well
known that it is difficult to numerically differentiate functions to high order. Indeed, even
when f(x) is a polynomial, the size of the corrections becomes large and considerable
ill-conditioning occurs (not illustrated). When f is a function with singularities at any
finite location in the complex plane, the multiple scales series diverges [3,4].

Thus, for moderate ¢, such as ¢ =~ 1/5, the Chebyshev particular integral strategy
is the only option. For very small ¢, though, the multiple scales series is better.

3.2. Generalization

The multiple scales algorithm can be extended to variable coefficient equations
such as

1y, — q(¥)u = f(x), (1D

where g(x) > 0.
When ¢ < 1 and Chebyshev expansion of the homogeneous solutions is too ex-
pensive, the WKB approximation [2] is very accurate:

ul,hom(x) W CO h(/ Q(y )
vg(y )

u2,hom(~x) 1/4 ( (12)

Higher order WKB terms can be calculated [2] to obtain extremely high accuracy for
¢ < 1, even though the WKB series is usually divergent.

Similarly, a particular integral P can be generated by the method of multiple scales
[3, chapter 2] and [2]. Assume

P=> eu®(x), (13)

J=0
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where
2 © — _J® (14)
q(x)
and where higher order terms are
. 4@
Ut (x) = = (15)
q(x)

The necessary derivatives can be computed to spectral accuracy by using Chebyshev
interpolation [5].

3.3. Uniformity in ¢

The road to a robust spectral method, uniformly accurate in ¢, is to test-and-switch.
First, choose the Chebyshev truncation N and let g, denote the largest values of g in
the boundary layers. (The boundary layers will then have a thickness no smaller than

£/ /) If
T (16)

N2 = Eswitch

then the boundary layers can be explicitly resolved, and one applies Chebyshev methods
as in [5] without the need to treat the homogeneous and particular solutions individually.
If & < &gwitch, apply the WKB method and the multiple scales series, or combine the an-
alytic homogeneous solutions for the Helmholtz equation with the Chebyshev particular
integral strategy explained in the next section.

& >

4. Chebyshev series computation of an exact particular integral
4.1. Rescaling and simplification

Galerkin and pseudospectral Chebyshev discretizations of the Helmholtz equation
yield dense matrices which are relatively expensive to factor and solve. Clenshaw [6]
showed nearly a half a century ago that one could obtain a sparse Chebyshev discretiza-
tion by formally integrating the equation twice to transform it to

o ffoeff

/T (X)dx = l Z‘[.H(X) _ Zi—l(X)
' a n+1 n_l

and twice applying the identity

> }, n =2 (18)
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4.2. Parity

As explained at greater length in [5, chapter 8], an arbitrary function f(x) can al-
ways be decomposed into its parts which are symmetric and antisymmetric with respect
to the origin. The symmetric or “even parity” part is fs = (1/2)(f(x) + f(—x)) and is
symmetric in the sense that fg(—x) = fs(x). The odd partis f4 = (1/2)[ f(x)— f(—x)]
which is antisymmetric in the sense that f4(—x) = — fa(x).

By similarly decomposing the solution into #g and u 4, the Helmholtz problem can
be reduced to the uncoupled pair of equations

82“5—//145:/ fss 82MA_f/uA :f Sfa- (19)

The even degree Chebyshev polynomials 73, are symmetric while the 75,_; are an-
tisymmetric. Furthermore, the exponentials which are homogeneous solutions of the
Helmholtz equation can be rearranged into hyperbolic functions of definite symmetry.
Thus,

us = Acosh(x/e) + Y puTon(x),  fs =Y fuuTu(x) (20)

n=0 n=0

and similarly for the antisymmetric problem. By exploiting symmetry, one can reduce
the bandwidth of the discretization matrices (by forming two matrices of half the size
and smaller bandwidth) and thereby reduce the cost.

4.3. Galerkin/tau method

When the usual Chebyshev—Galerkin method (called the “tau method” in [9]) is ap-
plied to each of the two twice-integrated subproblems of definite symmetry, the result is
a pair of nearly-tridiagonal matrices, one for the even degee coefficients (ay, az, aq, . . .)
of u and the other for the odd degree coefficients [5,8,9]. Introducing the auxiliary array
¢, wWhere ¢y = 2, all other ¢, = 1, the condition that the inner product of 7, (x) with the
residual of the twice-integrated Helmholtz equation is zero gives

1 1 1
2 —_——_— —_—
T - T o T I+

1 1 1
fot Jnt2, 2D

= -0 T 3w " T e
where the formula generates rows of both the even and odd problems, depending on
whether 7 is even or odd.! It is understood that terms in f, and a, with n > N, where
N is the truncation of the Chebyshev series, will be omitted from these equations. The
n = 0 and n = 1 cases are replaced by the boundary conditions when the whole solution
is approximated by a truncated Chebyshev series.

n+2

! Note that (15.88) [5, p. 313] gives this formula with some sign errors.
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If f(x) is a polynomial of degree N, the general solution is
u(x) = Acosh<f) + Bsinh<f> +P(x), (22)
€ €

where A and B are the arbitrary constants multiplying the homogeneous solutions (to be
determined by imposing the boundary conditions) and P is a particular integral that is
also a polynomial of degree N:

N
7) = Z Pn 7—;‘1 (X) (23)
n=0

Because P is computed as the sum of two separate series, it is convenient to write the
homogeneous solutions so that each has definite symmetry with respect to the origin
also. (Note that cosh(x/e) = cosh(—x/¢) whereas sinh(x/¢) = — sinh(—x/¢).)

The same sparse equations still apply with a, replaced by p,. However, because
no boundary conditions are imposed on the particular integral, it follows that (i) the in-
ner products with 7; (for the even degree problem) and 73 (for the odd degree problem)
are now the first rows of the symmetric and antisymmetric problems, respectively, and
(i1) we must also demand that the doubly-integrated differential equation should be or-
thogonal to Ty, and Ty, instead of only orthogonal to 7T and polynomials of lower
degree.

The symmetric subproblem, truncated after the fifth symmetric term, is

Loy ! 1 0 . 1f 1f L ,
4 ° 76 24 470 T g2 T o)t
1 1 1 1 1 1
0 _ 2 o _ 0 Po _ _ _
s T %0 ol | 87730 sl
0 - 82_|_i _L pa| = Lf_if_kif
120 70 168 1207~ 707° " 16878
0 . 1 ), | Do 1 P 1 P
—_—— 8 _— —_— _— —
224 126 | | P8 22477 1267%
1 1
0 0 0 —— —
360 360"

(24)

We see that the matrix is in upper triangular/pentadiagonal form and may be solved by
Gaussian elimination (Cholesky factorization) in O(N) operations. The antisymmetric
subproblem is of similar pentadiagonal/triangular form. As long as f(x) is a polynomial
of degree N or less, (22) is an exact solution. The sole role of the auxiliary array c, is to
multiply the coefficients of py and f; by a factor of two in the first row of the matrix.

5. The particular integral as a filter for spurious boundary layers

When the parameter ¢ is controlled by the timestep, the boundary layers have a
thickness which is not controlled by the physics, but only by the time-marching algo-
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rithm. If the homogeneous solutions with their O(g)-thick unphysical boundary layers
are included in the Helmholtz solution, then this spurious narrow length scale will be
carried through later timesteps. The forcing function f(x) will then vary on an O(e)
length scale and the spectral algorithm will fail unless N > 3/./e, which is likely to be
prohibitively large.

It follows that the homogeneous solutions must be ignored when ¢ is controlled by
the timestep. Both the multiple scale and Chebyshev particular integral strategies have
the virtue of generating a particular integral which varies only on the slow scale of the
forcing function, free of spurious boundary layers. To approximate u(x) by the particular
integral P is to filter the boundary layers contained in the homogeneous solutions.

6. Summary

We have shown that for the one-dimensional Helmholtz equation, Uy —u = f,
it is possible to obtain a spectral discretization which is uniformly accurate as ¢ — 0 by
computing a particular solution which depends only on the smoothness of the forcing,
not the boundary layers of the homogeneous solutions. We have presented two strategies
for generating such a slowly-varying particular integeral: the method of multiple scales
and a Chebyshev—Galerkin algorithm.

When the width of these boundary layers is controlled by the timestep and these
layers are spurious, they can be filtered out simply by approximating u(x) by the partic-
ular integral. When ¢ is independent of numerical parameters and the boundary layers
are physical, the general solution can be obtained by adding in the homogeneous so-
lutions so that the boundary conditions are satisfied. The homogeneous solutions can
be generated analytically as hyperbolic functions (for the Helmholtz equation) and by
WKB approximations for variable coefficient equations. In all cases, it is unnecessary to
explicitly resolve the boundary layers through Chebyshev polynomial series.

By using the identities fx P,(y)dy = (Pys1(x) — P,_1(x))/2n +1),n > 1 and
fx Pydy = P, one can easily derive a similar Legendre—Galerkin algorithm to compute
the particular integral when f(x) is a polynomial. We leave the details to the reader
because there is no computational advantage even when the Helmholtz—Chebyshev rou-
tine is embedded in a Legendre spectral element code. The reason is that when the
number of degrees of freedom per subdomain is moderate, all transformations from grid
point values to Chebyshev or Legendre coefficients must be done by a matrix—vector
multiply where the transformation matrix needs only to be computed once and stored,
and likewise for the inverse transformation. The matrix that takes values of f(x) at the
Legendre—Lobatto points to Chebyshev coefficients is slightly different from that which
yields the Legendre coefficients of f, but both matrix multiplications are of identical
cost.

We have not presented numerical examples of the Chebyshev algorithm to compute
a polynomial particular integral because the resulting Helmholtz solution is exact. We
have not offered numerical examples of the accuracy and limitations of the method of
multiple scales either since a full discussion is given in the books [2,3] and review [4].
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Nevertheless, it would be interesting to see these ideas applied in the context of three-
dimensional hydrodynamics code and other demanding applications, but this is beyond
the scope of this note.
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