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Observational data are often used to address prevention questions such as, “If alcohol ini-
tiation could be delayed, would that in turn cause a delay in marijuana initiation?” This
question is concerned with the total causal effect of the timing of alcohol initiation on the
timing of marijuana initiation. Unfortunately, when observational data are used to address
a question such as the above, alternative explanations for the observed relationship be-
tween the predictor, here timing of alcohol initiation, and the response abound. These al-
ternative explanations are due to the presence of confounders. Adjusting for confounders
when using observational data is a particularly challenging problem when the predictor
and confounders are time-varying. When time-varying confounders are present, the stan-
dard method of adjusting for confounders may fail to reduce bias and indeed can increase
bias. In this paper, an intuitive and accessible graphical approach is used to illustrate how
the standard method of controlling for confounders may result in biased total causal ef-
fect estimates. The graphical approach also provides an intuitive justification for an alter-
nate method proposed by James Robins [Robins, J. M. (1998). 1997 Proceedings of the
American Statistical Association, section on Bayesian statistical science (pp. 1-10). Retrieved
from http://www.biostat.harvard.edu/robins/research.html; Robins, J. M., Hernan, M., &
Brumback, B. (2000). Epidemiology, 11(5), 550-560]. The above two methods are illustrated
by addressing the motivating question. Implications for prevention researchers who wish to

estimate total causal effects using longitudinal observational data are discussed.
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Observational data areoften used to address
prevention questions concerning the consequences
of an adolescent’s actions on drug use. Consider the
motivating question, “If alcohol initiation could be
delayed, would that in turn cause a delay in mari-
juana initiation?” The answer to this question could

'The Methodology Center, Department of Human Development
and Family Studies, The Pennsylvania State University, Univer-
sity Park, Pennsylvania.

2Institute for Social Research, Department of Statistics, The Uni-
versity of Michigan, Ann Arbor, Michigan.

3Departments of Communication and Psychology, The University
of Kentucky, Lexington, Kentucky.

“Correspondence should be directed to Bethany Cara Bray The
Methodology Center, Pennsylvania State University, 204 E.
Calder Way Suite 400, State College, Pennsylvania 16801; e-mail:
bcbray@psu.edu.

be used to anticipate whether an alcohol use preven-
tion program implemented during adolescence might
also have effects on marijuana use. The answer is pro-
vided by the total causal effect of delaying the timing
of alcohol initiation (predictor) on the timing of mar-
ijuana initiation (response). As is well known, a fun-
damental problem in addressing this question with
observational data is the presence of confounders.
Confounders are common correlates of the
predictor and response, and often provide alternate
explanations for the observed relation between the
two. An example of a common correlate of alcohol
and marijuana initiation is peer pressure resistance.
Adolescents with high levels of peer pressure resis-
tance may be less likely to initiate both alcohol and
marijuana use. In this case, failing to take peer pres-
sure resistance into account would result in a biased
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estimate of the total causal effect of alcohol initiation
on marijuana initiation. For example, the coefficient
of alcohol initiation in a simple regression of mari-
juana initiation on alcohol initiation would reflect a
combination of (a) the compositional differences in
the types of individuals who choose to initiate or not
initiate alcohol use due to peer pressure resistance
and (b) the true total causal effect of alcohol initia-
tion on marijuana initiation. Thus, when confounding
is not controlled, the coefficient of alcohol initiation
could not be regarded as an unbiased estimate of the
total causal effect of alcohol initiation on marijuana
initiation.

It follows that, in order to make valid causal in-
ference concerning the effect of a predictor on an
outcome using observational data, confounders must
be controlled in some way. This problem is well rec-
ognized in the social science, statistical, and econo-
metric literatures (Cochran & Rubin, 1973; Shadish
et al., 2002; Winship & Morgan, 1999). Indeed, a va-
riety of statistical adjustment procedures have been
proposed to account for confounding in the non-
longitudinal setting. These nonexperimental meth-
ods for estimating causal effects include standard co-
variate adjustment methods (Bohrnstedt & Knoke,
1982; Bollen, 1989), selection models (Heckman &
Hotz, 1989; Winship & Mare, 1992), and instrumen-
tal variable approaches (Angrist et al., 1996; Little
& Yau, 1998), as well as propensity score methods
including propensity score stratification and match-
ing (Rosenbaum & Rubin, 1984, 1985). Standard co-
variate adjustment is perhaps the most commonly
used method to adjust for confounding. With this
method, baseline variables that are thought to be
confounders of the observed effect of the predictor
on the response are included as covariates in a re-
gression model; we call this the standard method.

The problem of adjusting for confounders us-
ing observational data is more challenging in the lon-
gitudinal setting, when values of both the predictor
and the set of confounders can change over time
(i.e., they are time-varying). In this setting and in the
presence of unmeasured confounders, the standard
method of adjusting for confounders may fail to re-
duce bias and can cause further bias.

Robins and colleagues (Hernan et al., 2000, 2001;
Robins, 1998; Robins et al., 2000) have developed a
weighting method that allows researchers, using rela-
tively parsimonious models and “over the counter”
statistical software, to adjust for time-varying con-
founders without the problems associated with the
standard method. Despite the weighting method’s
ease of implementation and its availability for al-
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most a decade, however, it has not found ready adop-
tion among researchers outside epidemiology. The
few exceptions include Barber et al. (2004), Agerbo
(2005), and work using marginal structural models to
assess neighborhood-level causal effects (e.g., Oakes,
2004).

The fundamental contribution of this paper
is to elucidate for the prevention community the
potential for bias in assessing the effects of time-
varying predictors, and to explicate and disseminate
a technique from the field of epidemiology that can
be used to mitigate these biases. This is achieved
by meeting the following objectives. The primary
objective of this paper is the presentation of an
intuitive and accessible graphical approach (Pearl,
1998) to illustrate how the standard method may
produce bias in the presence of unmeasured indirect
confounders. The graphical approach is used to
define three types of confounders; in particular, it is
used to discuss the issues surrounding unmeasured
time-varying confounders. The second objective
of this paper is to use the graphical approach to
illustrate that, unlike the standard method, Robins’
weighting method does not produce biased effects
in the presence of unmeasured indirect confounders.
We illustrate, using the graphical approach, that
both methods may produce biased effects if there
are unmeasured direct confounders.

In addition, an application of the weighting
method using real data is presented. This exam-
ple provides a detailed illustration of the tech-
nique, including how to construct the weights and
how to obtain robust standard errors, as well as
some guidance for researchers interested in car-
rying out the weighting method within levels of
baseline covariates (i.e., using models that con-
dition on sex and/or race, for example). These
steps and more are elaborated upon in the ap-
pendix and in an accompanying web-appendix
(which can be found at http://methodology.psu.
edu/publications/tvpappen.html). The web-appendix
contains example hypothesized data, as well as SAS
programming code for data manipulation, weight
creation, and analysis.

THE TOTAL CAUSAL EFFECT

A question about the effect of a putative cause
A on a response of interest B, without reference to
how the effect is transmitted from A to B, refers to a
question about the fotal causal effect of A on B. Total
causal effects encompass the full (net) effect of A on
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B, every way in which this effect can take place. This
includes, for instance, direct effects of A on B, as well
as indirect effects transmitted through intermediate
variables that are observed or unobserved, known or
unknown. The notion of a direct or indirect causal ef-
fect can arise only when additional causal hypotheses
are put forth concerning intermediate variables (of-
ten called mediators) that are said to carry some or all
of the effect of A on B. This paper does not concern
itself with assessing direct or indirect effects. Instead,
the answer to the motivating question of this paper
is provided by the total causal effect, which encom-
passes the effect transmitted through all causal path-
ways whereby alcohol initiation may alter the timing
of marijuana initiation.

It is useful to consider the total causal effect of
alcohol initiation on marijuana initiation for at least
two reasons. For example, if the initiation of alcohol
use has a strong effect on the timing of marijuana ini-
tiation, then interventions designed to decrease mar-
jjuana initiation might fruitfully include components
developed for preventing alcohol initiation. Further
it is often useful to understand the derivative effects
from already established alcohol misuse prevention
programs; evidence that reinforces the causal effect
of alcohol initiation on marijuana initiation will pro-
vide an indication that such programs have additional
positive consequences.

A GRAPHICAL APPROACH TO CONFOUNDING

A graphical approach is used here to define,
illustrate, and discuss three classes of confounders
and their role in the estimation of total causal
effects. The graphical approach used throughout re-
sembles the one used in structural equations mod-
eling (SEM; Bollen, 1989), but has a different pur-
pose. The graphs are employed as a heuristic tool to
discuss and highlight issues concerning time-varying
confounding. The graphs are not used, as they are
in SEM, to describe full structural systems of causal
effects to be estimated. As we have stated, we are
interested in estimating the total causal effect. The
weighting method that is presented in later sections
does not require estimating a full structural system
of equations in order to assess this effect.

Consider studying the total causal effect of a pu-
tative cause, alcohol initiation (Alc), on a response of
interest, marijuana initiation (Mj). Denote the com-
plete set of variables existing before the measure-
ment of Alc by V. Further, within the set of variables

V denote the subset of all observed variables by 0.
Let the subset U denote the complement of O—that
is, U is the subset of all unobserved or unknown vari-
ables in V. Using this notation, V = (0O, U). To be
clear about the role of time, the temporal order of the
objects just defined is (V, Alc, Mj). In our example,
the subset O may include sex, race, and ability to re-
sist peer pressure (PPress). U may include variables
that are either too difficult or too expensive to mea-
sure in a particular study, such as family functioning
status. In addition, U includes variables that are un-
known to the scientist.

Any variable in V that is related to both Alc and
Mj is a confounder of the total causal effect of Alc
on Mj. For example, in the context of our motivating
question, peer pressure resistance is an example of
a confounder (as discussed in the introduction) be-
longing to V. Depending on whether a confounder
is observed (i.e., belongs to O) or unobserved (i.e.,
belongs to U) determines whether the variable is a
measured or unmeasured confounder, respectively.

This paper considers data structures like (V, Alc,
Mj) in the time-varying longitudinal setting. Partic-
ularly, we consider time event history or “survival”
data in which both the putative cause (alcohol ini-
tiation) and the response (marijuana initiation) are
time-varying, as are other measured and unmeasured
variables. Thus, henceforth, we index the variables
(V, Alc, Mj) by time ¢. The survival methods used to
fit the models in later sections model the probability
of marijuana initiation at time ¢ given no marijuana
initiation up to and including time ¢ — 1 as a function
of alcohol initiation (and possibly other variables) at
time . This probability is sometimes known as the
hazard probability of initiating marijuana at time .
That is, the basic model considered throughout this
paper is a discrete-time survival logistic regression
model of the form

14
lo
& <1 — Pt
where p, denotes the hazard probability of marijuana
initiation at time ¢ (Allison, 1995; Singer & Willet,

1993).% This model, however, is modified through-
out the paper to make several points about the

) = o; + 1 Alcy, (1)

SIn this paper, we assume that all variables in the subset O are
measured precisely. Consequently, we consider neither measure-
ment error nor measurement models.

This model makes the proportional hazards assumption that the
effect of alcohol initiation is the same at all time points. This
modeling assumption is maintained throughout the paper; it has
no bearing on the causal issues that are discussed throughout.



inclusion of confounders; for instance, additional
terms for confounders or time-invariant covariates
(e.g., sex and race) may be added.

Panel A of Fig. 1 depicts an example of mea-
sured confounding by peer pressure resistance in
the longitudinal setting, using a graphical approach.
Figure 1 uses Alc;, Mj,, PPress;, and U, to represent
alcohol initiation, marijuana initiation, peer pressure
resistance, and unobserved variables at time ¢, re-
spectively. For example, Alc; is alcohol initiation at
time 1 and Alc; is alcohol initiation at time 2. Fur-
ther, in this figure, the subvector O, has only one ele-
ment, namely peer pressure resistance, and any other
variables are assumed unobserved and are included
in U,. PPress; is enclosed in a rectangle to indicate
that it is an observed variable; the subvector U, is
enclosed in an oval to indicate that it is an unob-
served variable and to differentiate it from PPress;.
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Figure 1 includes arrows from peer pressure resis-
tance (PPress;) to both alcohol initiation (Alc,) and
marijuana initiation (Mj;) at both times—indicating
that there is an effect of peer pressure resistance
on both and that peer pressure resistance is a con-
founder of the effect of alcohol initiation on mar-
jjuana initiation at times 1 and 2. Observe that, in
Panel A, U, is not a confounder because U, does not
affect both Alc, and Mj;,.

Panels B and C of Fig. 1 illustrate examples of
unmeasured confounding (in addition to the mea-
sured confounding by PPress;). In both panels, U; is
related to both Alc, and Mj,. An important distinc-
tion has been made in Panels B and C, however, with
regard to how unmeasured confounding takes place.
In Panel B, the effect of U, on Alc, is a direct one, not
passing through an intermediate variable. In Panel C,
the effect of U; on Alc, is an indirect one, passing

Panel A- Measured Confounding

< <«

PPress,

M\H|T PPress,

Panel B- Unmeasured Direct Confounding

Fig. 1. Sample scenarios depicting three classes of confounding in observational
studies.
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through the observed variable PPress,. In Panel B, U;
is referred to as an unmeasured direct confounder; in
Panel C, U; is referred to as an unmeasured indirect
confounder.

Note that additional arrows may be appended
to each system of relations depicted in Panels A, B,
and C, which may or may not change a variable’s sta-
tus as a measured confounder, an unmeasured direct
confounder, or an unmeasured indirect confounder.
In turn, changing a variable’s status may or may
not change a panel’s interpretation. For example, in
Panel A, an additional arrow from U, to Mj; does not
change its status as depicting measured confounding,
nor does adding an arrow from U, to PPress,. Adding
both of these arrows simultaneously, however, would
illustrate both measured and unmeasured indirect
confounding. Similarly, in Panel B, adding an addi-
tional arrow from U, to PPress, does not change its
status as depicting unmeasured direct confounding,
but the panel would then illustrate both unmeasured
direct and unmeasured indirect confounding. Finally,
adding an additional arrow from Alc,; to Mj; in any of
the panels does not change any of their interpreta-
tions.

An important point is that in addition to includ-
ing variables that are either too expensive or too dif-
ficult to measure, U, includes unknown confounders
of the effect of alcohol initiation on marijuana initi-
ation. In other words, U; may include variables re-
lated to both Alc, and Mj, that are part of prevention
theories not yet discovered, or U; may include undis-
covered or unidentified bio-psychosocial confound-
ing variables of importance to prevention scientists.
Only to the extent that a scientist believes all possible
variables related to both alcohol initiation and mar-
ijjuana initiation are observed in a study, can he or
she believe that a relation such as the one depicted in
either Panel B or Panel C does not exist. Our posi-
tion in this paper is that unknown confounding vari-
ables always exist—that is, U, is always a nonempty
set with at least one element that is related to both
alcohol initiation (the predictor and putative cause)
and marijuana initiation (the response). The question
that remains, then, is whether U, acts as an indirect
or direct confounder, and what the consequences of
that may be when assessing the total causal effect.

If we assume that any one of the three hypo-
thetical scenarios in Panels A, B, and C (without
the dotted arrow) depicts the true structural system,
alcohol initiation has no true total causal effect on
marijuana initiation. This is because there is no
causal path from either Alc; or Alc; to either Mj;

or Mj,. Despite the lack of a true total causal effect,
a simple regression of marijuana initiation on alco-
hol initiation under all three scenarios would yield a
nonzero coefficient for alcohol initiation. In all three
panels, the apparent effects reflect an imbalance in
the number of participants who initiate alcohol use
due to peer pressure resistance. In addition, in Panels
B and C, the apparent effects reflect an imbalance in
the number of participants who initiate alcohol use
due to variables that are unobserved, U,. These ap-
parent effects are often called spurious effects or ef-
fects due to confounding bias; they do not reflect true
total causal effects of alcohol initiation on marijuana
initiation.

Various statistical strategies exist that can be
used to correct for spurious effects resulting from
measured confounding like that depicted in Fig. 1,
Panel A. When it is assumed that Panel A depicts
the true structural system, the most common strategy
is to include the observed confounders as additional
variables in the regression of the response on the pu-
tative cause (predictor). In the context of Panel A,
this strategy would involve a discrete-time survival
logistic regression model such as,

log (1 ptp ) = a; + B Alc, + B, PPress,.  (2)
— Pt

By including PPress, in Eq. (2), the imbalance in the
number of participants who initiate alcohol due to
peer pressure resistance is accounted for, leaving the
total causal effect of alcohol initiation on marijuana
initiation untainted (in this case there would be a null
effect). Provided the functional form specified on the
right-hand side of Eq. (2) is correct, the parameter
B1 has a valid interpretation as the total causal effect
of alcohol initiation on marijuana initiation (on the
log-odds scale).” We call this the standard method of
adjusting for confounders.

As we have noted, however, confounding in
Panels B and C is a result of both observed (PPress;)
and unobserved (U;) variables. So, does the standard
method work under the hypothetical scenarios de-
picted in Panels B and C, as it did in Panel A?

In the presence of unmeasured direct con-
founders, that is, assuming that Panel B depicts the
true structural system, the standard method cannot
be used to obtain a valid estimate of the total causal

"If an arrow from Alc, to PPress, were present in Fig. 1, Panel A,
then B; in Eq. (2) would be interpreted as the direct causal effect
of alcohol initiation on marijuana initiation.



effect of alcohol initiation on marijuana initiation be-
cause there is no way to use information from the
measured variables, as we did in Eq. (2), to elim-
inate the bias due to U;. In other words, there is
no way to break the relation between U, and either
Alc, or Mj, at both times using PPress,. Other meth-
ods such as selection models and their extensions,
prominent in the econometrics literature (Heckman,
1979; Heckman & Hotz, 1989), can be used to adjust
for unmeasured direct confounding. These methods,
however, make additional distributional assumptions
about the unmeasured (including unknown) vari-
ables. Our point here is that the standard method of
adjusting for confounders, by itself, does not adjust
for direct confounding by U, as it does in the scenario
in Panel A.

Finally, assume that Panel C depicts the true
structural system of relations. In the presence of un-
measured indirect confounders, as depicted here, the
standard method may or may not be used to adjust
for confounding by PPress;, and U,. Its use depends
on the existence of the dotted arrow from Alc; to
PPress,.

In the absence of the dotted arrow, the stan-
dard method can be used to adjust for confounding
by PPress,; for exactly the same reasons as in Panel
A, discussed above. In addition, the standard method
adjusts for the spurious effects resulting from con-
founding by U;, in the absence of the dotted arrow.
This is because confounding due to U, in Panel C
acts only through the measured confounder PPress;.
By conditioning on PPress,, as in Eq. (2), the corre-
lation between U, and Alc, is broken at both times,
thereby eliminating U, as a confounder of the to-
tal causal effect of alcohol initiation on marijuana
initiation.

In the presence of the dotted arrow from Alc,_;
to PPress, (here Alc; to PPress;), however, the stan-
dard method fails to adjust for confounding due to U,
and may cause more bias.® The dotted arrow is likely
to exist in prevention settings; for example, this effect
is likely to exist in our setting because participants
who initiate alcohol use may be less likely to resist
peer pressure in the future. Given this, it is impor-
tant to understand how the standard method may fail
in the presence of the dotted arrow and time-varying
unmeasured indirect confounders, as in Panel C. This
is the topic of the next section.

8In addition, 8; would be interpreted as the direct causal effect
of alcohol initiation on marijuana initiation. For simplicity and
reasons of space, this is not elaborated upon in this paper.
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WHY THE STANDARD METHOD MAY FAIL
IN LONGITUDINAL SETTINGS

Although it is possible to use the standard
method when there is no unmeasured confounding
(Fig. 1, Panel A), the standard method of adjusting
for confounders cannot be used in the presence of un-
measured direct confounders (Fig. 1, Panel B). Thus,
it is necessary to assume that unmeasured direct con-
founders do not exist. The purpose of this section is
to show that, in addition, it may not be possible to
use the standard method to adjust for confounding
in the time-varying setting in the presence of unmea-
sured indirect confounders (Fig. 1, Panel C). Specifi-
cally, we show graphically why the standard method
fails to adjust for confounding and, in fact, may cause
additional bias when (1) unmeasured indirect con-
founders exist and (2) at least one of the observed
variables through which unmeasured indirect con-
founding occurs is also affected by past levels of the
predictor.

To understand how the standard method may
fail, consider Fig. 2. Panel A of Fig. 2 shows a full
structural system of relations among alcohol initia-
tion, peer pressure resistance, marijuana initiation,
and unobserved variables at two times. In this hypo-
thetical scenario, every variable is affected by every
other variable that precedes it, including the U,s, with
the following two exceptions: U; does not affect Alc;
or Alc; directly, and U, does not affect Alc, directly.
In contrast, U; and U, can affect the predictors Alc,
and Alc, indirectly via observed variables PPress;
and PPress;. Therefore, Panel A of Fig. 2 presents a
scenario in which both measured and unmeasured in-
direct confounding is present, but unmeasured direct
confounders do not exist. In the time-varying setting,
the standard method of adjusting for confounders in
this scenario involves a regression model like Eq. (2),
for the hazard probability of marijuana initiation at
time 7.

Including PPress; in Eq. (2) is used to elim-
inate or help reduce the confounding bias due
to the measured confounders PPress; and PPress;.
Typically, B; is used to describe the total causal
effect of alcohol initiation on marijuana initia-
tion. However, when Conditions 1 and 2 are
satisfied, conditioning on the measured confounder
PPress; may actually induce a spurious correla-
tion between alcohol initiation and marijuana initi-
ation, so that 8; cannot be used to obtain the to-
tal causal effect of alcohol initiation on marijuana
initiation.
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Panel A - Hypothetical model in two time points assuming no unmeasured
direct confounding

PPress; |

Panel B- Subset of Panel Aused to describe the main issues surrounding
the spurious correlation created by conditioning on PPress

Alc

N
\ﬁ

Fig. 2. The conditions under which adjusting for PPress, results in a spurious
correlation.

To see how this spurious correlation arises, con-
sider Panel B of Fig. 2, which shows a subset of the
relations from Panel A. In particular, Panel B high-
lights Conditions 1 and 2, which can be seen from
the solid arrows illustrating that U; and U, are un-
measured indirect confounders and the dashed ar-
row illustrating that Alc; affects the observed vari-
able PPress;.

Recall that the standard method includes Alc;
and PPress, in a model for the hazard probability
of marijuana initiation. The problem with the stan-
dard method is that by conditioning on both Alc; and
PPress;, as Eq. (2) does, additional noncausal paths
from Alc; to Mj, become part of the contribution of
the effect of Alc; on Mj; to the observed total causal
effect of alcohol initiation on marijuana initiation, S;.
This is seen in Panel B of Fig. 2 in that condition-
ing on PPress; has the effect of “opening” noncausal
paths from Alc; to Mj, via both U; and Us. In other
words, because U; and U, both affect PPress, (Con-
dition 1) and Alc; affects PPress, (Condition 2), the
observed effect of alcohol initiation on marijuana ini-
tiation (B;) includes the correlations that make up
the noncausal paths Alc; to PPress; to U; to Mj, and
Alc; to PPress; to U; to Mj,. Therefore, the total
causal effect of alcohol initiation on marijuana ini-
tiation cannot be based on ;. The noncausal associ-

ations (bias) incurred in 8; as a result of condition-
ing on PPress, is an example of Berkson’s Paradox
(Berkson, 1946), from the epidemiological literature.
This phenomenon is also related to Pearl’s (1998)
collider issue.”

USING WEIGHTS TO ADJUST FOR TIME-VARYING
CONFOUNDING

In this section, we describe a weighting method
first developed by Robins (1999)!° for assessing to-
tal causal effects in the longitudinal setting. This
method uses sample design weights to adjust for
time-varying confounders of total causal effects.

“Here, PPress, is known as a collider in Panel B of Fig. 2 because
it is affected by the U,s and Alc;. As Pearl notes, conditioning
on colliders has the effect of inducing noncausal relations among
parents of the collider (the U,s and Alc;) that are otherwise not
related causally. Because we are unable to condition further on
the unobserved or unknown variables (the U,s) in our setting,
the induced noncausal relations become part of the observed re-
lation between the collider’s observed parent (Alc,) and the re-
sponse (Mj,).

0The weighting method is also known as inverse-probability-of-
treatment-weighting, or IPTW, where “treatment” refers to the
exposure or putative cause.



Robins et al. (2000) and Joffe et al. (2004) pro-
vide a more detailed presentation and review, re-
spectively, of the weighting method and its associ-
ated class of causal models, the marginal structural
models.

One way to understand the weighting method is
to consider a hypothetical randomized experiment—
the gold standard for assessing total causal effects.
In a randomized experiment, one would randomize
adolescents to initiate or not initiate alcohol; the re-
searcher would decide the probability of alcohol ini-
tiation, p;, for each adolescent i in the sample. Addi-
tionally, the researcher is at liberty to randomize the
full sample of adolescents using a common probabil-
ity, say p; = .5, or the researcher may choose to ran-
domize within levels of particular baseline variables,
such as sex and race: p; = P[Alc;|Sex;, Race;].

Randomization would ensure balance in the al-
cohol initiating and noninitiating groups across all
pre-alcohol initiation variables (including peer pres-
sure resistance) across the full sample or within lev-
els of particular baseline variables. Effectively, ran-
domization would eliminate confounding by elimi-
nating the relation between alcohol initiation and
any pre-alcohol initiation variables. Corresponding
to this design, the researcher would be happy to em-
ploy a simple model of analysis, such as a simple
regression of marijuana initiation on alcohol initia-
tion (Eq. (1)), to assess the total causal effect. (Or,
in the case of randomization probabilities depending
on Sex and Race, a simple regression of marijuana
initiation on alcohol initiation within level combina-
tions of Sex and Race.) That is, the researcher would
not be inclined to adjust for peer pressure resistance
or any other variable in a response regression model
for the total effect of alcohol initiation on marijuana
initiation.

The notion of a randomized experiment has a
natural extension to studies with a time-varying pre-
dictor, where time is measured in discrete intervals.
Essentially, the extension is an experiment in which
randomization to initiate alcohol takes place at var-
ious time points. The effect of sequentially random-
izing in this manner is to ensure balance in the alco-
hol initiating and noninitiating groups at every time
point ¢ across all covariates (observed or unobserved)
occurring prior to time ¢.

The weighting procedure we present here can be
used in observational longitudinal studies to mimic
(under certain assumptions) a sequentially random-
ized experiment by creating balance in the alcohol
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initiation and noninitiation groups at each time point.
The weighting procedure achieves this, essentially,
by creating a pseudo-sample in which the associa-
tion between confounders and alcohol initiation is re-
moved at every time point. To understand this, we
discuss the weighting procedure using a graphical ap-
proach, before describing how to form the weights in
more detail.

The goal of the weighting method is to create
a pseudo-sample in which the arrows originating at
PPress, and ending at Alc, at both times in Panel C of
Fig. 1 are eliminated. That is, in our example, the goal
of the weighting method is to use weights to equalize
the composition of participants with different peer
pressure resistance levels (and other confounders)
within the two groups of initiators and noninitiators
of alcohol, thereby mimicking the randomized exper-
iment and breaking the relation between peer pres-
sure resistance (and other confounders) and alcohol
initiation. This idea is shown graphically in Panel A
of Fig. 3.

Once weights have been used to create balance
between the alcohol initiation groups, there is no
longer a correlation between PPress, and Alc, at ei-
ther time, just as in a randomized experiment. The
result is a pseudo-sample in which peer pressure re-
sistance (and other confounders) are not related to
alcohol initiation, as illustrated in Panel B of Fig. 3.
Then, given this new pseudo-sample, exhibiting the
relations pictured in Panel B, the response regression
model can take a simple form—the one described by
Eq. (1).

In contrast to the standard method, the weight-
ing method precludes the necessity of having to con-
dition on time-varying measured confounders to con-
trol confounding. Instead, weights are created that
balance the data in such a way that the relations
between (measured and unmeasured indirect) con-
founders and alcohol initiation are eliminated at each
time point. By eliminating this relation, it is un-
necessary to include the measured confounders in
the response regression model, avoiding the spurious
correlation problem. That is, the researcher avoids
suffering the consequences of Berkson’s Paradox
(Berkson, 1946); or equivalently, the researcher
avoids having to condition on colliders (Pearl, 1988)
that induce noncausal relationships. In sum, the
weighting method adjusts for time-varying measured
and unmeasured indirect confounders, whereas the
standard method fails in the presence of unmeasured
indirect confounders.
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Panel B - Structural system depicting the total causal effect ofalcohol
when PPress ; and PPress, are no longer confounders
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Fig. 3. Using the weighting method to control for confounding.

Creating Weights in the Time-Varying Setting

To create the weights, note that in a survival
analysis setting, such as ours, each participant re-
mains in the data set until he or she initiates mar-
jjuana use at some time t. For every time point ¢
(t=1,2,...,T) that the participant is in the data set,
we construct a weight that takes the form

1—[ P[Alcj|Alc; 4] 3)
_1 P[Alc; |Alc;j_1, Conf; I

where Conf; is a vector of time-varying co-
variates that are possible confounders at
time ¢ and the “overbars” represent history,
so that Ej_l = (Alcy, Alcy, ..., Alcj_;) and
CTnfj = (Confj, Confy, ..., Conf;j). The weights are
essentially the product of ratios of propensity scores,
where at each time point the propensity scores are
a function of measured confounder history and
alcohol initiation history. Observe that because
alcohol initiation is itself a non-repeatable event, a
discrete-time survival analysis model may be used
to obtain the required numerator and denominator
probabilities.

Following Robins (1999) and Robins et al
(2000), the probability of alcohol initiation given

prior alcohol initiation history is used in the nu-
merator of W,. According to Robins et al. (2000),
the numerator may depend on any function of prior
alcohol initiation history, including the unit func-
tion. Defining the weights this way, however, stabi-
lizes the distribution of the W,, which in turn, cor-
responds with a less variable estimator of the total
causal effect. In addition, defining W; this way pro-
vides a nice interpretation of the weights: observe
that if Alc; is independent of Conf; (that is, Conf; is
not a confounder) at every time j up to time 7, the
P[Alc;|Alc; 1, Conf;] = P[Alc;|Alc;_;] for every j,
so that W, = 1, implying that every adolescent in the
sample contributes only one copy of himself or her-
self to the pseudo-sample, thereby leaving the sample
unchanged.

The form of W, may be modified slightly in a
way that is dictated by the form of the final re-
sponse model of interest, or equivalently, by the sci-
entific question of interest. Put another way, the fi-
nal form of the weights (in particular, the numera-
tor) may be dictated by the ideal randomized trial
the researcher is interested in simulating. For exam-
ple, the research scientist may be interested in as-
sessing the total causal effect of time-varying alcohol
initiation on marijuana initiation within levels of Sex
and Race. That is, the scientist may be interested in a
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final response regression model of the form

log ( P > = a, + y1 Sex + y» Race + ;1 Alc,,

1—p;

(4)
or some other linear function of the variables Alc;,
Sex, and Race, such as a model that explores how Sex
alters the effect of, or interacts with, Alc,. [Note that
Eq. (4) is simply a modified version of Eq. (1) that
includes Sex and Race as covariates.] In this case, the
weights would take the following form:

T P[Alg; |Ej_1, Sex, Race]

w.=T] = :
Pl P[Alc;|Alc;_1, Conf;, Sex, Race]

)

The effect of weighting the sample in this way is,
essentially, to create a pseudo-sample in which con-
founding according to Conf; is taken care of within
levels of Sex and Race. That is, the weighted sam-
ple resembles data collected from a sequentially ran-
domized trial in which the numerator probabilities
are the randomization probabilities. Note that, in this
case, any confounding bias due to Sex and Race is
adjusted for by the response model itself. This is the
strategy we employ, for example, in the next sec-
tion of this paper in which we illustrate the weighting
method with real data.

Observe that the final response regression
model of Eq. (4) does not condition on time-varying
confounders, but does condition on the baseline co-
variates. We may condition on the baseline covari-
ates without suffering the effects of spurious correla-
tions such as those described in the previous section.
This is because the baseline variables are observed
prior to any instance of alcohol initiation. The intu-
ition here is that we should reweight the data to re-
flect the subpopulations of interest, described by the
baseline covariates, in the final response regression
model. Note that in Eq. (5), the effect is to balance
the data with respect to an analysis that takes place
within levels of combinations of Sex and Race.

AN EXAMPLE

In this section, we illustrate the weighting
methodology by addressing the research question
“Does delaying alcohol initiation lead to a delay in
marijuana initiation?” That is, the goal is to assess
the total causal effect of the timing of alcohol ini-
tiation (Alc,) on the timing of marijuana initiation
(Mj;). Data from the Lexington Longitudinal Study,
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a longitudinal study of etiological pathways to sub-
stance use, deviant behavior, and psychopathology,
are used for this purpose.

Participants

The participants are a convenience sample!!
(N = 210) of a cohort who were part of the Lexington
Longitudinal Study. Note that these data are for illus-
tration purposes only and should not be used to make
accurate inference about the substantive relation be-
tween alcohol and marijuana initiation. Participants
were assessed via written questionnaires beginning
in the 1987-88 school year, prior to starting the sixth
grade (see Clayton et al., 1996, for a detailed descrip-
tion of the initial recruitment and assessment pro-
cedures). Individuals in the current study completed
this questionnaire and follow-up questionnaires on
at least three of five data collection occasions (post-
6th grade, 7th or 8th grade, and 9th or 10th grade),
a mailed survey at age 19-20, and a laboratory pro-
tocol completed at age 20-21. Data for the current
study were taken from the early school-based assess-
ments and the most recent laboratory assessment.

Confounders

The following are the confounders (Conf;), and
their related measures, that are used in forming the
weights. For detailed information on these measures
see Clayton et al. (1991).

Peer Pressure Resistance (Time-Varying)

This 7-item scale was designed to measure the
ability to resist negative peer pressure and higher
scores indicate a stronger ability to resist or ignore
peer pressure. Peer pressure resistance was measured
six times over the course of the study; if a partici-
pant had a missing measurement, the last available
measurement was carried forward to the subsequent
time.'?

"The analyses presented here include only those participants who
had no missing data on heart rate, performance 1Q, verbal 1Q,
average sensation seeking, first peer pressure resistance mea-
surement, and time of initiation of alcohol, cigarettes, conduct
disorder, and other drug use. Therefore, this sample may not be
representative of any subset of adolescents.

12Last observation carried forward (LOCF) imputation was used
only for peer pressure resistance because it was the only
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Conduct Disorder (Time-Varying)

Conduct disorder is a measure of the time period
in which two or more different incidents of conduct
problems in a single time period first occurred. Par-
ticipants were asked about the presence of 14 specific
conduct problems from the following four general ar-
eas: aggression against people or animals, destruction
of property, deceitfulness or theft, and serious viola-
tion of rules.

Cigarette Use (Time-Varying)

Cigarette use is a measure of the time pe-
riod in which the initiation of cigarette use
first occurred.

Other Drug Use (Time-Varying)

Other drug use is a measure of the time period
in which the initiation of any drug other than mar-
ijjuana, alcohol, and tobacco such as cocaine, crack,
inhalants, psychedelics, amphetamines, barbiturates,
tranquilizers, heroin, or other analgesics first oc-
curred.

Sensation Seeking

Sensation Seeking was measured using 18 items
that were based on Zuckerman’s (1994) 40-item sen-
sation seeking scales. For the present analyses, scores
are averaged across administrations to yield one
overall Sensation Seeking score.!?

IQ

IQ was assessed using two subtests from
the Wechsler Adult Intelligence Scale—Revised
(Wechsler, 1981). Scores on the Vocabulary subtest
served as indicators of Verbal I1Q, whereas scores on

time-varying variable for which there was missing data among
the participants in these analyses.

3Sensation Seeking is conceived as a relatively stable personality
trait (Zuckerman, 1994), thus, the average score across assess-
ments is used in these analyses. Empirically, sensation seeking
is quite stable; in the larger sample from which these data are
drawn, the 1-year stabilities for sensation seeking approach the
maximum correlation possible given the reliabilities of the scales
(average 1-year stability = .70).
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the Block Design subtest served as indicators of Per-
formance 1Q.

Heart Rate

Resting heart rate was obtained during the ex-
tensive laboratory assessment. Note that heart rate
is believed to be related to both the predictor and
response (i.e., a confounder) because, although rest-
ing heart rate has not been studied often in substance
use, it is one of the most consistent correlates of an-
tisocial behavior (Raine, 1993). It can be argued that
lower resting heart rate is an index of fearlessness,
which would predispose individuals to any number
of dangerous or harmful activities or that low rest-
ing heart rate reflects autonomic underarousal, which
might facilitate stimulation-seeking behavior. Thus,
heart rate is likely a confounder of the relation be-
tween alcohol and marijuana initiation.

Variables may be considered confounders for a
variety of theoretical reasons, such as the example of
heart rate above. Although not necessary, it is possi-
ble to check if a set of variables is a common corre-
late of both the predictor and the response. Bray et al.
(2003) demonstrate that the above list of variables is
indeed a common correlate of both the timing of al-
cohol and marijuana initiation.

Time

Time is measured every third of a school year
(fall, winter, summer), beginning in sixth grade for
a total of 30 intervals. The variables that are time-
varying are indicated by a subscript ¢. The predic-
tor and response take on the value O prior to
initiation, and take on the value 1 in the period of
initiation and remain 1 thereafter. This is a survival
analysis scenario in the sense that each participant
has one person-period for each time until he or she
initiates marijuana use or the study ends, whichever
occurs first. That is, this is time-to-event data where
the event of interest is the initiation of marijuana use,
after which a participant is no longer at-risk for initi-
ating marijuana use and drops out of the study.

Analyses

Three methods of estimating the total causal
effect are considered. Each of these methods uses
a modified version of Eq. (1) for the response
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regression model and is explained in de-
tail below. The first method is the MNaive
Method. This response regression model in-
cludes sex, race, alcohol initiation, and an in-
tercept term for each school year, but omits
confounders. Logistic regression is used to model the
binary response, Mj,. The probability of initiating
marijuana use at time ¢ among those without previ-
ous marijuana use, p,, is the quantity of interest. The
naive model is

log<1pt ) = a Schyr + g1 Sex + B, Race
— P

+ ﬂ3 AlC[, (6)
and the intercept term « Schyr represents

a Schyr = «; Schyr; 4 a, Schyr, + - - - + a0 Schyr,.
(7)
The second method is the Standard Method.
This response regression model also includes sex,
race, alcohol initiation, and an intercept term for
each school year. Additionally, the response regres-
sion model also includes all measured confounders as
covariates. The standard model is

log(lpt ) = o Schyr + B; Sex + B, Race

— Pt
+ B3 Alc, + ¢/ Conf;, 8)

where the confounders are represented by

Conf, = [PPress,, Odga,, Hr, PIQ, VIQ, Asss,
Cig,, CD/], 9)

and the 8-vector of the confounder regression coef-
ficients is represented by y.

The third method is the Weighting Method. This
response regression model is the same as the one
used with the naive method, but adjusts for con-
founders by weighting the response regression model
(i.e., the model is fit via weighted regression). The
form of the weights used with the weighting method
is discussed in the previous section. A detailed expla-
nation of the weight creation in this particular exam-
ple is provided in the appendix.

Standard errors normally calculated using stan-
dard weighted-GLM software treat weights as fixed
constants rather than as predicted values. To ac-
count for the sampling variation due to our estima-
tion of the weights, we utilize the robust (or so-called,
Huber—White or sandwich) standard errors (White,
1982) for the total causal effect estimates in the fi-
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nal response model.'* This is easily implemented in
SAS, using the REPEATED and SCWGT options in
PROC GENMOD (Robins et al., 2000).

Results

The convenience sample contains 121 female
and 41 non-White participants, and 5,729 person-
periods. The results obtained using the convenience
sample are for illustration only and are not meant
to be used for accurate inference about the sub-
stantive relation between alcohol and marijuana
initiation. Descriptive statistics for peer pressure re-
sistance, sensation seeking, 1Q, and heart rate are
displayed in Table 1. Table 2 displays coefficient es-
timates and the estimated odds of marijuana initia-
tion, among those without prior marijuana initiation,
for those who have initiated alcohol use. For sim-
plicity, the coefficients for the intercepts and baseline
variables are omitted in Table 2. An o = .05 level of
significance is used for all analyses. The p values re-
ported for the coefficient estimates are based on one-
tailed tests, consistent with the hypothesis stemming
from the research question.

Examining Table 2, it is clear that, depending on
the method used, answers to the question “Does de-
laying alcohol initiation lead to a delay in marijuana
initiation?” are different. The naive method implies
that the estimated odds of marijuana use is signif-
icant and that prior-initiators of alcohol are more
likely to initiate marijuana use than non-initiators
(odds ratio = 5.10, p < .001); the odds of initiating
marijuana for prior alcohol initiators is roughly five
times higher than that for noninitiators of alcohol.
However, the naive method is almost certainly biased
because it does not control for confounders such as
peer pressure resistance.

Examining the results from the standard
method, the odds are also highly significant
(odds ratio =2.28, p =.002). Yet, although it is
the convention, the use of the standard method may
produce bias because of the spurious correlations
discussed earlier.

The weighting method is not subject to the spu-
rious correlations discussed earlier, but it does con-
trol for confounding. Comparing the results of the

“Robins (1998) shows that confidence intervals according to the
robust standard errors calculated in this way have coverage prob-
ability of at least 95%; that is, confidence intervals using this
method are (possibly) conservative.
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Table 1. Descriptive Statistics of Non-Time-Varying Variables and Peer Pressure Resistance

Variable Frequency Percent Mean SD  Minimum Maximum
Sex
Male 89 42.4
Female 121 57.6
Race
White 169 80.5
Non-White 41 19.5
Heart Rate 70.3 11.8 48 111
Performance 1Q 32.8 10.2 10 50
Verbal 1Q 424 126 11 70
Average Sensation 50.4 9.4 24 78
Seeking
Peer Pressure Resistance
Prior to 6th Grade 40.2 6.5 9 45
Post-6th Grade 40.9 5.6 13 45
7th or 8th Grade 38.3 7.3 9 45
9th or 10th Grade 35.8 8.6 9 45
Mailed Survey 342 9.4 9 45
Laboratory Protocol 325 9.4 9 45
Note. Sample size for each variable in this table is N = 210.
weighing method with the other methods, the naive DISCUSSION

method appears to overestimate the total causal
effect of alcohol initiation on marijuana initiation
and the standard method appears to underestimate
the total causal effect. With the weighting method,
among those without prior marijuana use, the odds
of initiating marijuana for prior alcohol-initiators is
estimated at roughly 3 and a third times higher than
for noninitiators of alcohol (oddsratio =3.36, p <
.001). A significant alcohol coefficient is estimated
with all three methods, but we believe that the de-
sired interpretation of the total causal effect of alco-
hol initiation on marijuana initiation is best obtained
from the weighting method. It is purely coinciden-
tal that the result from the weighting method falls
in between the results from the naive and standard
methods. The weighting method may result in coeffi-
cients and p values of different magnitude when com-
pared to the standard or naive methods. It is impor-
tant to note that the method of using sample weights
is not meant to increase significance, but rather to
construct an unbiased estimator of the total effect
of delaying the timing of a predictor on the tim-
ing of a response. Therefore, the significance of a
coefficient may change in either direction when ex-
amining weighted and unweighed coefficients. When
the confounders are time-varying outcomes of past
predictors, the estimate from the weighting method
is the only one that is unbiased and is always
preferred.

Using a graphical approach we have illus-
trated how the standard method may produce biased
estimates of the total causal effect in longitudinal set-
tings. Specifically, we have shown how the standard
method may fail in the presence of unmeasured in-
direct confounders when past levels of the predictor
are related to future levels of confounding variables.
Further, we have illustrated the use of an alternate

Table 2. Response Regression Models with Alcohol Initiation
as the Predictor and Marijuana Initiation as the Response

Naive Standard Weighted

Predictor

Alcohol 1.63%+ 0.82* 1.27%

Odds 5.10 228 3.36
Time-varying confounders

Conduct disorder 0.36

Cigarettes 0.41

Other drug use 1.30*

Peer pressure resistance —0.05**
Non-time-varying confounders

Heart rate —0.01

Verbal IQ —0.03*

Performance 1Q —0.01

Average Sensation Seeking 0.02

Note. Coefficients for intercepts and baseline variables are omit-
ted. The Naive and Standard Models do not include confounders
by definition, see text.

*p < .01. **p < .001 (one-tailed test).



14

approach to estimating total causal effects in longi-
tudinal studies, namely the weighting method. The
graphical approach was used to illustrate how the
weighting method is able to estimate the total causal
effect of a time-varying predictor in the presence
of time-varying measured and unmeasured indirect
confounders. Finally, an example application with
comparisons of total causal effect estimates from
three methods was presented. Several concerns
about the weighting method, however, should be
addressed.

Altering the Data by Weighting

Justifiably, many substantive researchers who
collect their own data are unhappy with any method
that appears to alter the data. It is essential to real-
ize that the weighting method presented here does
not utilize or alter the response, nor does the weight-
ing method alter the predictor-response relation of
any particular individual. That is, the true predictor—
response relation is preserved in the pseudo-sample
created by the weighting method. The weighting
method changes the composition of participants so
that certain predictor-response pairs have a higher
weight and others have a lower weight. This is done
to equalize the composition of types of participants
between the predictor levels. As mentioned earlier,
in an experimental study, randomization of partici-
pants to predictor levels equalizes the composition of
participants between predictor levels on measured,
unmeasured direct, and unmeasured indirect con-
founders. The weighting method attempts to mimic
the effect of randomization.

Functional Forms and the “Task”
of the Response Model

The weighting method does not presume a
more complex functional form, as compared to the
standard method, for the conditional mean of the
response given the putative cause and confounder
history. In fact, a response model using the weight-
ing method is necessarily more parsimonious; the
response model used with the weighting method
resembles the more parsimonious model that would
be used in the ideal randomized setting. With the
weighting method, the weights are used to adjust
for confounding bias, whereas the response model
focuses only on modeling the total causal effect
of interest. In contrast, the standard method “asks
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more” of the response model—the response model is
used both to adjust for confounding and to model the
causal phenomena of interest. This is a powerful ad-
vantage of the weighting method over the standard
method. Researchers are able to focus on adjusting
for confounding and modeling in two separate stages
of analysis.

Including Non-Confounders in the Weights

It is possible to check if a measured covariate
by itself is a confounder by studying the relation be-
tween (a) the covariate and the putative cause (al-
cohol initiation) and (b) the covariate and the re-
sponse (marijuana initiation) at each time point. On
the basis of these preliminary bivariate analyses, the
researcher may then decide whether or not to include
the measured covariate in the weights. Even if the re-
searcher failed to do this, however, including a non-
confounder in the weights has no effect on the final
analysis of the effect of the predictor on the response.
The non-confounder will, essentially, make no con-
tribution (in terms of participant-specific copies) to
the pseudo (weighted) sample. For more on this
property of the weights, see Barber et al. (2004).

The Weighting Method Versus Propensity Score
Methods of Rosenbaum—Rubin

Propensity scores refer to the probability of be-
ing exposed (in our context, the probability of initiat-
ing alcohol) given past confounder history. Propen-
sity scores are useful as a dimension reduction tool
for causal inference that summarizes the effect of
confounders on exposure to one score. Although the
probabilities that make up the weights of the method
presented here may be regarded as propensity scores,
the weighting method differs in one important re-
spect when compared to the popular propensity score
based methods of Rosenbaum and Rubin (1984,
1985). The propensity score stratification and match-
ing methods of Rosenbaum and Rubin are applicable
only in the non-time-varying setting, and have no ob-
vious extension to the time-varying setting (Imbens,
2000).

Implications for Prevention

The weighting method requires the assumption
of no unmeasured direct confounders. In contrast,
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the standard method requires the complete absence
of unmeasured confounders (both direct and indi-
rect).””> The main implications of these facts, and of
this research more generally, are twofold. First, be-
cause the set of potential unmeasured confounders
includes unknown variables (including perhaps vari-
ables representing scientific theories not yet discov-
ered), we should guard against these confounders by
using the weighting method when analyzing the ef-
fects of time-varying predictors in the presence of
known time-varying confounders.

The second implication has a more proactive,
design-related recommendation. Although it is im-
possible, in the absence of randomization, to ensure
that the no unmeasured direct confounders assump-
tion of the weighting method is met, we should try
to collect data so as to ameliorate the effects of con-
founding bias due to unmeasured direct confounders.
That is, we should not only collect the measures of
variables that are thought to causally affect the re-
sponse, but also the measures of variables that might
causally affect the predictor. Because the predictor is
time-varying, we can expect that many such variables
will be time-varying as well. Doing so increases the
likelihood of satisfying the main assumption of the
weighting method by decreasing the set of potential
unmeasured direct confounders.

APPENDIX: WEIGHT COMPUTATION

Complete details and explanation of generic
SAS programming code that can be used for the
weight creation, naive method, standard method, and
weighted method are available at http:/ method-
ology.psu.edu/publications/tvpappen.html. Also pro-
vided are two simulated datasets that allow for prac-
tice and analysis in conjunction with a review of the
SAS code. At each measured time point, ¢, where
a participant is at risk for response initiation (e.g.,
marijuana initiation) a weight component is created.
Each weight component is the ratio of two predicted
probabilities. The numerator is the predicted prob-
ability of a participant’s observed predictor initia-
tion or noninitiation in period ¢, given past predictor
initiation status (e.g., alcohol initiation or noninitia-
tion) and baseline variables (e.g., sex and race), for
those still at risk of response initiation. The denom-
inator is the predicted probability of a participant’s

5These assumptions, concerning unmeasured variables, are by
definition not testable.
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observed predictor initiation or noninitiation in pe-
riod ¢, given past predictor initiation status, base-
line variables, and confounders, for those still at risk
of response initiation. Thus, the numerator and de-
nominator models only differ in that the confounders
are present in the denominator predicted probabil-
ity. Note that if alcohol initiation (i.e., predictor ini-
tiation) occurs prior to time ¢, but before marijuana
initiation (i.e., response initiation), the ratio at time
t is 1 because both the numerator and denomina-
tor predicted probabilities are 1 (i.e., the predicted
probability of initiating alcohol use after the initia-
tion of alcohol use is 1 for any values of the con-
founders and baseline variables). Hence, the weight
component does not need to be computed after pre-
dictor or response initiation (whichever occurs first).
Because the numerator and denominator probabili-
ties are computed only for those still at risk of pre-
dictor and response initiation, conditioning on Alc;_,
and Mjiq (complete past predictor and response pat-
terns, respectively), as shown in Eq. (5), is not nec-
essary. Note that conditioning on Mj,_; in Eq. (5)
is implicit because this is a survival analysis setting
in which a participant is no longer in the dataset
if the participant has initiated marijuana use; hence
Mj;_; = 0 for all participants in the dataset at time
i. Thus, the equations below do not include past
Alc or Mj. The model for the numerator regression
model is

log < numpr,

) = a Schyr + g1 Sex; + B, Race;,
1 — numpr,

(A1)
whereas the model for the denominator regression
model is

d ,
log (%) = o Schyr + B; Sex; + B, Race;
+6 Conf;. (A2)

Thus, the weight component for participant i before
alcoholinitiation is

1 — numpr,

- numpr,; (A.3)
1 — denpr,
and the weight component for participant i at alcohol
initiation is

numpr,;

. A4
denpr, (A4)

The weight at time ¢, W, is the product of these
weight components up to time ¢. If at time ¢—1
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participant i has yet to initiate alcohol use then the
weight at time ¢ — 1 is

1 — numpr,; 1 — numpr,;
W_i=—1 o ————5) (A5
- <1 ~ denpr, ),_1 (1— denpr, )1 (A

If at time ¢ participant / initiates alcohol use then the
form of the weight at time ¢ is

W, — (Pumpr, 1 — numpr,
*~ \denpr, /,\ 1 —denpr, /, ,

1 — numpr,
) . A6
( 1 — denpr, )1 (A0

The weight W; for all times, s larger than ¢, re-
mains equal to W; as each weight component is now
equal to 1. Each participant has a weight for each
time point until either the participant initiates the re-
sponse or the study ends.
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