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Abstract. Sudden process changes occurring during automobile body assembly processes will influence the down- 
stream assembly process and the functionality and final appearance of the vehicle. Furthermore, these faults could 
result in a decreased production rate and an increase in the cost if sudden process changes are so serious that 
the production line has to be stopped for investigation. Thus, sudden process changes should be detected and 
eliminated as soon as possible to prevent defective products from being produced and to reduce the cost of repairs/ 
reworks. A monitoring algorithm is developed to detect, classify, and group process changes by analyzing the 
dimensional data of ear bodies. The results of this monitoring algorithm can help diagnose the root causes of 
variation according to the locations of measurement points, body structure, assembly sequence, and tooling layout. 
Measurement data obtained from an optical coordinate measuring machine (OCMM) are used to demonstrate 
the monitoring ~echnique. 

Key Words: sudden process change, OCMM, BIV~, detection algorithm, monitoring algorithm, mean shift, sporadic 
jump, variance change. 

1. Introduct ion 

An automobile body-in-white (BIW) is the frame of  an automobile body before panels are 
fitted. Dimensional variation of the BIW will  influence quality and functionality of the 
vehicle, for example, wind noise, water leakage, door  closing effort, gap, and flush varia- 
tion, etc. Therefore, dimensional variations on the BIWs must be detected and eliminated 
to prevent defective cars from being produced and to improve the dimensional quality of  
automobile bodies. 

One cause of the dimensional variation is sudden process changes during the assembly 
process. The most frequently occurring sudden process changes are sustained mean shifts, 
sporadic jumps,  variance changes, and/or any combination of these three. Figure 1 shows 
an example of  a mean shift at point B-U/D at the motor rail. The horizontal and vertical 
axes represent the car number and measured deviation from design nominal (in mm). A 
case of  sporadic jumps  is shown in figure 2. Figure 3 Shows a variance change and a mean 
shift occurring simultaneously at point D. 

The availability of 100% measurement data from an in-line optical coordinate measuring 
machine (OCMM) allows on-line detection of sudden process changes on the dimensions 
of a BIW. The OCMM was introduced to the automobile industry in the 1980s. An  O C M M  
can measure every car assembled, resulting in 100% measurement data (Wu and Hu 1990). 
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Figure 1. A mean shift occurred at measurement point B-U/D. 

An OCMM can also measure a large number of points, say, 70 to 100, on every car. Be- 
cause of its high speed and reliability, the OCMM has become popular in many automobile 
assembly plants. 

However, because of the lack of automatic monitoring and alarm systems in an OCMM, 
process faults such as those shown in figure 1 were usually undetected until the bodies 
reached later stages of the assembly process. In such cases, hundreds of cars with dimen- 
sional faults could be produced, significantly influencing the downstream assembly process 
and even requiring expensive repairs and reworks. Also, it is tedious and time consuming 
to manually handle the huge amounts of data generated by the OCMM. 

Many authors have argued the concepts and methodologies of process control to improve 
the quality of the products before, during, and after manufacturing. Statistical process con- 
trol (SPC) based on sampling inspection after products are manufactured was introduced 
by Shewhart (1931). The basic idea is to plot the sample mean and sample range (X and 
R chart) to determine if the process is in control. If the process is out of control, one tries 
to locate the root cause and makes corrections. Taguchi (1986) used statistically designed 
experiments to design the product/process to be insensitive to environmental noise and com- 
ponent variation before manufacturing. Recently, simultaneous engineering tools have been 
used to reduce product development time and cost and to achieve higher quality by concur- 
rently integrating a wide spectrum of product life cycle concerns. 

Wu et al. (1989) suggested that real-time defect prevention in manufacturing can be 
achieved by fully utilizing 100% measurement data. Keats (1989) and Contreras (1989) 
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Figure 2. An example of sporadic jumps that occurred at the deck lid opening. 

emphasize the important roles of SPC and on-line SPC in computer-integrated manufac- 
turing. In addition, the integration of SPC and automatic process control is recognized 
as a technique for total system improvement (Box and Kramer 1992). Also, the fact that 
large volumes of data are involved suggests that computer processing action would make 
the information more effective (Hawkins 1974). 

There exists a large body of literature emphasizing improving the strategies to increase 
the efficiency of conventional control charts, such as X and R charts and Cusum chart, 
but, still, they can only determine if the process is in control. Dooley and Kapoor (1990a, 
1990b) went one step further. They introduced an enhanced quality evaluation system which 
can detect and classify changes of continuous manufacturing processes using time series 
models, Cusum charts, chi-squared tests, autocorrelation charts, and a role-based classi- 
fier. In addition, it was stated that "Experience shows that many SPC attempts fail to pro- 
duce meaningful results because of the lack of diagnostic support for the effort" (Guo and 
Dooley 1992). 

In this paper, a monitoring algorithm is proposed to detect sudden process changes and 
help diagnose the root causes using the knowledge of the hierarchical structure of the BIW. 
This monitoring algorithm, implemented in the form of a computer program, is developed 
to detect and classify sudden process changes, and group the measurement points with 
sudden process changes within a few BIWs after changes occur by recursively monitoring 
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Figure 3. A variance change and a mean shift occurred simultaneously at point D-U/D. 

OCMM data on-line. This algorithm, based on statistical techniques and the knowledge 
of body structure and body assembly process, can 

1. Detect which BIW and which measurement point have sudden process changes 
2. Classify the process changes as mean shift, sporadic jump, variance change, or any 

combination of these three 
3. Group the points, classified as having the same process change, based on the character- 

istic location for root cause diagnosis. 

After a BIW is measured by the OCMM, three statistical indices (data index, sample mean 
index, and sample variance index) of each measurement point on the current BIW are esti- 
mated. These three indices of each measurement point on the current BIW will lead to 
certain assumptions, e.g., a point had a mean shift or a point had a sporadic jump. These 
assumptions are checked by decision-making rules and more statistics. After a process 
change is confirmed and classified, the points with the same process change will be grouped 
together according to their characteristic location for root cause diagnosis. According to 
the assembly process knowledge, a specific fault in a certain station can only cause a spe- 
cific type of process change at certain measurement points. Then, root causes can be sys- 
tematically located once the measurement points with the same process change are grouped 
based on the characteristics of the direction, opening, subassembly, or part. After the dimen- 
sional fault is detected, classified, and grouped in the shortest time by this algorithm, root 
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causes can be investigated and located, and improvement action made to minimize the pro- 
duction of defective products. 

This paper is organized as follows. The automobile body assembly process and the char- 
acteristic matrices of the measurement points on the BIW are described in section 2. Sec- 
tion 3 introduces the algorithm for monitoring. In section 4 examples are used to demonstrate 
the monitoring technique. 

2. Automobile body assembly process and characteristic matrices 

In this section, the body structure, assembly process, and dimensional measurement sys- 
tems are introduced. Characteristics matrices are established to relate the product and pro- 
cess knowledge with measurement location. 

2.1. Automobile body assembly process 

Figure 4 is the flowchart of the automobile body assembly process. Subassemblies (under- 
body, left and right lay-down side frames, roof, shelf, and rear end panel) are manufac- 
tured in different subassembly lines. These subassemblies are welded together to form a 
BIW at the body framing station. The relative positions among subassemblies before they 
are welded is shown in figure 5. After each BIW is produced, re-spot welding is applied 
to increase its dimensional integrity. The measurement system is located after the re-spot 
welding stage. Either coordinate measuring machine (CMMs) or OCMMs are used to meas- 
ure the critical points on BIWs to check their dimensional quality. After being measured, 
the BIW is transferred to the panel hanging process. 

Measurement locations on a BIW are determined jointly by product engineers and man- 
ufacturing engineers early before the product launch. In general, the measurements are 
located so that both the product characteristics and process characteristics are monitored 
simultaneously. The product characteristics of a BIW are the size and shapes of its openings 
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Figure 4. Flowchart of the body-in-white manufacturing process. 
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Figure 5. Structure of a B1W and its coordimte convention. 

(e.g., door openings), because panels and trim parts will be fitted to these openings in 
the final assembly. The process characteristics are the locations of each subassembly rela- 
tive to each other. 

There are eight openings for a BIW of a four-door sedan. They are: (1) Motor compart- 
ment; (2) windshield; (3) left-side front door; (4) right-side front door; (5) left-side rear 
door; (6) right-side rear door; (7) back light; and (8) deck lid opening (figure 6). As shown 
in figure 5, the coordinate system of the measurements is: fore/aft (F/A or X), in/out (I/O 
or Y), and up/down (U/D or Z). 

Figure 6 shows the critical points measured by the OCMM on a BIW. Each checkpoint 
could have more than one dimensional measurement depending upon which directional 
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Figure 6. Critical points measured by the OCMM on a BIW. 
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measurement of this checkpoint is/are critical to the dimensional quality of the BIW. For 
example, checkpoint 22 at the left-side front door opening has in/out and up/down meas- 
urements, represented by 22-1/O and 22-U/D because both of the in/out and up/down posi- 
tions of the roof are important. But checkpoints 20 and 21 at the left front door opening 
simply have in/out measurement, represented by 20-I/O and 21-1/O, since only the in/out 
location of these two points is critical to the dimensional quality of the front door opening. 
Here 20-1/O, 21-1/O, 22-1/O, and 22-U/D are called measurement points. 

2.2. Characteristic matrices 

The location characteristics of a measurement point can be represented using a characteristic 
vector that links the architecture of the body and lhe body assembly process. The character- 
istic vector for a measurement point consists of the direction, the opening, and the sub- 
assembly or part that the measurement point is located on. For example, the characteristic 
vector for measurement point 13-F/A is [fore/aft, windshield, roof]. A characteristic vector 
can be constructed for every measurement point on the body. For an opening, because 
a number of points are measured, the characteristic vectors for all these points will consti- 
tute a characteristic matrix. For examples, the characteristic matrices for the left-side front 
door and rear door are shown in tables 1 and 2. Similar matrices are constructed for the 
other six openings. 

After sudden process changes are detected and classified, measurement points with the 
same sudden change are grouped based on their characteristic location. Each group will 
be called a case study. Then, suspect stations can be systematically located according to 
the categories of each case study. For example, if a direction case study consists of measure- 
ment points located at more than one opening or part, only operations at the body framing 

Table L Characteristic maWix for measurement points at theleft-side front 
door opening. 

Checkpoint Direction Opening Part 

19 fore/aft LH front door LH door ring 
19 up/down LH front door LH door ring 
20 in/out LH front door LH door ring 
21 in/out LH front door LH door ring 
22 in/out LH front door roof 
22 up/down LH front door roof 

22 

19 2 • M /  

Left Side Front Door 
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Table 2. Characteristic matrix f~r measurement points at the leti-side rear 
door opening. 

Checkpoint Direction Opening Part 

27 in/out LH rear door roof 
27 up/down LH rear door roof 
28 in/out LH rear door LH door ring 
29 fore/aft LH rear door LH quarter outer 
30 in/out LH rear door LH quarter outer 
31 in/out LH rear door LH quarter outer 

27 
N, 

Left Side Rear Door 

stage could cause a large variation of this nature. Likewise, the body framing stage would 
be the suspect if the size of the motor compartment, windshield, back light, or deck lid 
opening is exhibiting large variation because these openings are determined when the under- 
body, side frames, roof, shelf, and rear end panel are welded together in this station. The 
suspect stations are in the stamping or subassembly process for cases involving any one 
of the door openings because the door ring variation usually results from inconsistencies 
in the stamping or lay-down side frame subassembly process. Because parts are welded 
onto other parts in the subassembly process, the suspect stations for part case studies are 
in the subassembly process. The reason for individual measurement points with large varia- 
tion could be an OCMM sensor problem or local deformation. 

2.3. Change patterns and root causes of variations 

After the suspect station is locatedl root causes can be diagnosed based on the type of 
process changes. Different change patterns in the process correspond to different sources 
of variations. For example, 

1. Sustained means shifts: usually due to tooling failure (e.g., clamp breakage) or material 
change (e.g., batch to batch) 

2. Irregular, sporadic jumps: usually due to interference among parts of interference be- 
tween tooling and parts 

3. Variance changes: usually due to deteriorating tooling condition (e.g., clamp loose). 

Therefore, once a change pattern is classified, the sources of variation can be implicated. 
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3. Algorithm for monitoring 

To improve the dimensional quality of a BIW, an algorithm is developed to detect, classify, 
and group points with process changes by recursive on-line monitoring of the 100 % meas- 
urement data from the OCMM. 

3.1. Algorithm development 

This algorithm is designed to monitor the OCMM data of each measurement point on BIWs. 
This algorithm identifies the dimensional fault using confidence intervals obtained from 
the sample mean and sample variance of each measurement point before any process change 
occurs. The sample mean and sample variance could be different from measurement point 
to measurement point. Therefore, the measurement data from the OCMM for the current 
BIW have to be normalized before they are sent through this algorithm in order to make 
this algorithm robust to each measurement point. 

This algorithm consists of three parts. The first part uses three different indices simulta- 
neously, a data index, a sample mean index, and a sample variance index, lo check whether 
process changes have occurred. These three indices are represented by a vector as (a, b, c). 
The second part confirms the occurrence of sudden process changes and classifies them 
using decision-making mles. The last part groups the measurement points with the same 
process change into the direction, opening, and subassembly or part group for root cause 
diagnosis. First, the three monitoring indexes are defined. 

The data index is determined by comparing the data with the upper and lower limits 
of the data range of a 100(1 - 00% confidence interval. These upper and lower limits 
can be found by 

Xupper limit = t~/2,  v 

Xlower limit ~ l l _ e d 2 ,  v 

where t~/2# is the critical value of the t distribution with tailed area cd2 and degree of 
freedom v. The data index will be 

1. 0 if the data is bet~aeen the upper and the lower limit of the data range 
2. 1 if the data is larger than the upper limit of the data range 
3. -1  if the data is smaller than the lower limit of the data range. 

The sample mean index is assigned based on the comparison between the sample mean 
and the mean range of a 100(1 - o0 % confidence interval. The sample mean is the average 
value of the data for a fixed sample size. The upper and lower limits can be found by 

~lower  limit = fC - -  ted2, n _  1 
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where Y is the mean value using the sample size of n; t=/2,n_ 1 is the critical value of the 
t distribution with tailed area cd2 and n - 1 degrees of freedom; and s is the sample stan- 
dard deviation. The sample mean index is 

1. 0 if the sample mean is within the mean range 
2. 1 if the sample mean is larger than the upper limit of the mean range 
3. -1  if the sample mean is smaller than the lower limit of the mean range. 

The sample variance index is determined by examining the sample variance and the upper 
and lower limits of the variance with a 100(1 - oz)% confidence interval. The sample var- 
iance is the variance of the data for a fixed sample size n. The upper and lower limits 
can be found by 

~uupper limit (n - 1)s 2 
--  X21_t~/2,n_ l 

O~lower limit (n - 1)s 2 
Xal2 ,n-  1 

where n is the sample size for calculating the sample variance; s 2 is the sample variance; 
and X 2 is the critical value of the X 2 distribution. The sample variance index is deter- 
mined as 

1. 0 if the sample variance is within the variance range, i.e., the sample variance is between 
the upper and lower limit of the variance range 

2. 1 if the sample variance is larger than the upper limit of the variance range 
3. -1  if the sample variance is smaller than the lower limit of the variance range. 

In order to detect any sudden process change quickly, a moving window is used to calcu- 
late the sample mean and sample variance. For example, the sample mean at car number 
20 for a specific measurement point is the average value of the measurements from car 
number 1 to 20, the sample mean of car number 21 is the average value from car number 
2 to 21, etc. 

Table 3 summarizes the upper and lower limits for the data range, mean, and variance. 
A 95 % confidence interval and a sample size of 20 for calculating the sample mean and 
variance are used when a set of normalized data with mean 0 and variance I is considered. 

Table 3. Stmamary of lower and upper ILrrfits of data, sample mean, and 
sample variance with a 95% confidence interval and a sample size of 20 
for the moving window. 

Data Sample Mean Sample Variance 

Lower limit -2.09 -0.47 0.58 

Upper limit 2.09 0.47 2.13 
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The sample size, which is used to calculate the sample mean and variance, will influence 
the sensitivity and the detection speed of this algorithm, which will be discussed in sec- 
tions 3.2 and 3.3, respectively. 

A second part of the monitoring algorithm is needed to identify the types of changes 
once any part of the three-digit index is out of the predetermined range, since the three- 
digit index only gives an indication that a process change may have occurred. If the three- 
digit index is (0 0 0), which indicates no change in the process, then the second part of the 
monitoring method will not be triggered. On the other hand, if the three-digit index is 
(1 0 0) for some specific measurement point for the current assembled car, it means that 
this raw data is outside the control limits, but the sample mean and sample variance are 
still within range. At this moment, instead of concluding that this measurement point has 
a sporadic jump, the second part of the monitoring will filter ambiguous information from 
the first part of monitoring. In fact, if the raw data is identified as out of range by the 
first part of monitoring (three-digit index), it could be the beginning of a mean shift, a 
sporadic jump, a variance change, or any combination of these. Therefore, the second part 
of the monitoring is necessary to delermine what type of dimensional fault has occurred, 
using some decision-making rules and more sample statistics. Similarly, if the sample mean 
or sample variance is out of range, more statistics need to be checked before any conclu- 
sions can be drawn. 

Figure 7 is the flowchart for the first and second parts of the monitoring, which detect 
and classify process changes. Note that a sample size of 20 is utilized to estimate the sam- 
ple mean and variance. For each BIW, the grouping stage (the third part of monitoring) 
will not be triggered until all measurement points go through the first and second parts 
of monitoring. The procedures to detect and classify process changes are listed as follows: 

~ ~Salculate sampta r------- 
meanand ] ] De~ 

sample varianct~'~ 3-d 
for last 20 data] ] !n 

,git I 

Figure 7. Flowchart for detecting and classifying sudden process changes. 
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1. Calculate the sample mean and sample variance once data are available for the current 
BIW using a sample size of 20. 

2. Form the three-digit index by comparing raw data, sample mean, and sample variance 
with the upper and louer limits of their corresponding 95 % confidence interval. These 
upper and lower limits are determined based on the mean and variance of each measure- 
ment when no process change has occurred. 

3. If the three-digit index is: 
a. (0 0 0), the process is in control. 
b. (0 1 1) or (0 - 1 1), then find sample mean and sample variance for the last 20 data, 

excluding sporadic jump data. A mean shift and/or variance change is identified if 
the sample mean and/or sample variance are/is outside the limits. 

c. (0 0 1), then find sample variance for the last 20 data excluding sporadic jump data. 
A variance change is detected if sample variance is outside the limits. 

d. (0 1 0) or (0 - 1 0), then find sample mean for the last 20 data excluding sporadic 
jump data. A mean shift is identified if the sample mean is outside the limits. 

e. (1 i j) or ( - 1  i j), where i is -1, 0, or 1 andj  is 0 or 1, then 
I. Find sample mean and sample variance for the next 5 measurements. A mean 

shift and/or variance change are/is detected if the sample mean and/or sample 
variance are/is out of range. 

II. A sporadic jump is detected if the two three-digit indexes before and after are 
all (0 x y), where x and y are -1,  0, or 1. 

The third part of the monitoring algorithm groups the process faults according to the 
characteristic locations of the measurement points if multiple points experience the same 
process change for the current BIV~. Figure 8 is the flowchart for the grouping stage. 

1. After each measurement point is investigated by the first and second parts of monitor- 
ing, group the points with process changes into mean shift, sporadic jump, and vari- 
ance change groups. 

2. Group the points with the same process change into the direction, opening, and sub- 
assembly or part groups according to their characteristic locations. 

Root causes can be investigated after process changes are delected, classified, and grouped. 
Based on the characteristic location of each group, the suspect station in the assembly proc- 
ess can be located. Once the suspect station is located, the specific fault in this station 
can be identified on the type of process change. 

3.2. Sensitivity of the algorithm 

The sensitivity of the algorithm for monitoring depends upon two factors. Here, the sensi- 
tivity means the minimum magnitude of process change which can be de~ected. For exam- 
ple, a mean shift greater than 1.5 mm can be successfully detected, while a mean shift 
less than 1.5 mm cannot be detected. Thus, the sensitivity for detecting mean shifts is 
1.5 ram. The first factor influencing the sensitivity is the sample size chosen for the moving 
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Figure 8. Flowchart for grouping the points with process charges. 

window. The other factor is the sample variance of each measurement point when no change 
has occurred. 

Figures 9, 10, and 11 show the 3-D and contour plots of sensitivity for determining the 
data, mean, and variance indexes when standard deviation and sample size of window are 
considered simultaneously. As seen in the figures, the bigger the sample size is, the greater 
the sensitivity of the algorithm will be. That is, to detect smaller changes, a moving win- 
dow with larger sample size is needed. In addition, the sensitivity will increase (i.e., a 
change of smaller magnitude can be detected), when the measurement points have smaller 
variance before any change occurs. 
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Figure 9. (a) 3-D plot of sensitivty for data range; and (b) ¢ortour plot of sensitivity for data range. 
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Figure 10. (a) 3-D plot of sensitivity for mean shift; and (b) contour plot of sensitivity for mean shift, 
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Figure 11. (a) 3-D plot of sensitivity for upper limit of variance change; and (b) contour plot of sensitivity for 
upper limit of variance change. 
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3.3. Detection speed  

One of  the purposes for developing the monitoring algorithm is to improve the quality and 
reduce the cost of  BIWs in the shortest time. Therefore, quickly detecting process changes 
is important to this algorithm. In this section, the detection speed for mean shift, sporadic 
jump, and variance change are investigated using simulation data. 

Table 4 summarizes the detection speed for processes with a mean shift, n/z represents the 
true amount of  mean shift. S is the standard deviation before process change has occurred. 
The sample size of  the moving window is denoted n. The results listed in Table 4 are based 
on the average value of  10 simulations. In general, the higher the value of the mean shift, 
the faster the process fault can be detected. In addition, no matter what the sample size 
of  the moving window is, a mean shift can always be detected within five car bodies when 
Aiz/S is greater than 2.0. 

The detection speed for a sporadic jump depends upon how the sporadic jump is defined. 
In this paper, sporadic jump is defined as follows: The data index is 1 for the current B1W, 
and the data indexes of  two car bodies before and after are 0. Therefore, the process with 
a sporadic jump can be detected two car bodies later according to this definition of  spo- 
radic jumps. 

Table 5 li~ts the detection speed for detecting a variance change. St represents the stan- 
dard deviation after variance change has occurred. The standard deviation before process 
fault has occurred and the sample size for the moving window are represented by S and n, 
respectively. Similar to table 4, the values in table 5 are based on the average value of  
10 simulations. There is not much difference in the speed of variance change detection, 
especially when (S1/S) 2 is greater than 2.50. 

There is a trade-off between the speed and the accuracy of  detecting a mean shift and 
a variance change if  the three-digit index is (1 i j ) ,  where i a n d j  are -1, 0, or 1. Instead 
of  using the sample size of  20, a sample size of 5 is used to determine if  a dimensional 
fault occurred after the data index is 1 or -1.  Speed is increased but accuracy is decreased 
because the upper and lower limits with a 95 % confidence interval are based on a sample 
size of  20. 

Table 4. Detection speed after mean shift occurred. 

AIzlS n = 10 n = 20 n = 30 

0.5 -- ___ 18 _> 23 
1.0 ->10 _>11 >11 
1.5 -->9 ->9 ->9 

->2.0 _>5 ->5 _>5 

Table 5. Detection speed after variance change occurred. 

(S1/S) ~ n = 10 n = 20 n = 30 

2.25 -- ->7 ->9 
2.50 -- _>6 ->7 
3.00 -- _>6 ->6 

_>3.00 ->6 ->6 ->6 
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4. Examples 

In this section, examples are given to demonstrate that the monitoring algorithm can detect 
and classify sudden process changes by recursively monitoring 100% measurement data 
obtained from some assembly plants. These examples illustrate the wide variety of process 
changes which the algorithm must be able to detect in the shortest time. 

Figure 12 shows the OCMM data of a measurement point located at the front hinge pillar 
for 200 cars. After the data are sent through this algorithm, it will give a warning at car 
number 82 because the data is out of range. Next, the mean shift and variance change are 
detected at car number 86 by the second part of monitoring because the sample mean and 
the sample variance of the next five data (including car number 82) are out of range. 

An example of detecting a mean shift is illustrated in figure 13. A warning is given at 
car number 97 since the data is out of range. The process will then be detected and classified 
as a mean shift at car number 101. 

With reference to figure 14, eight cars with sporadic jump at F-I/O are detected two 
jobs after the sporadic jump has occurred by this detection algorithm. In addition, a mean 
shift that occurred at car number 136 was detected at car number 140. 

Figure 15 shows that a mean shill occurred at four points on the roof. Note that the 
positive directions in the in/out direction at the left and right sides are opposite. Thus, 

-1 

i - 2  
g 

~ - 3  

-4 

' D-U/D ] 

Mean shift is starting 
job number 82 

I job number86 I /  I l !~  I 1 | I I  N ' I~Vt~"II l I~  

Variance change isstarting I !11 1 ' " " "  
• job number a2 and I ' 1 ! 

0 20 40 60 80 100 120 140 160 180 200 

Car Number 

F / A ~ " ~  0 

Figure 12. A process with sir~taneous mean shift and variance change at car number 82, identified at car 
number 86. 
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Figure 13. A process with a mean shift at c~¢ number 97, detected at car number 102. 

points 22-I/O and 27-I/O moved to the right while points 26-I/O and 32-I/O also move 
to the right. By using the monitoring algorithm, a mean shift occurring at these four points 
on the same BIW is delected. Then, the third part of moniloring is used to group these 
four points for root cause diagnosis. A mean shitt group is found because these four points 
have the same process change, a mean shift. The next step is to check whether the points 
in the mean shift group are in the same direction, opening, or subassembly or part. Accord- 
ing to their characteristic location, they are located in the I/O direction and on the roof. 
It was concluded that the four measurement points on the roof shift to the right at the same 
time. This mean shift is the result of the movement of the NC blocks at file robogate. The 
NC blocks determine the in/our position of the roof when the underbody, side frames, roof, 
shelf, and rear end panel are welded together. Figure 16 shows the computer output of 
the monitoring algorithm. The number in parentheses is the three-digit index by which 
the second stage of monitoring is triggered. In addition to the mean shift, a number of 
sporadic jumps are detected and grouped. 

5. Conclusions 

1. An algorithm was developed to detect the occurrence of any sudden process change by 
recursively monitoring the 100% measurement data from the OCMM. This algorithm can 
(a) Detect which BIW and which measurement points have a process change; (b) classify 
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Figure 14. A process with eight sporadic jurr~s identified t ~  jobs later. In addition, a mean shift is identified 
at car number 141 which occurred at car number 136. 

the process changes as a mean shift, sporadic jump, variance change, or any combina- 
tion of these three; and (c) group the points with the same process change according 
to their characteristics location for root cause diagnosis. 

2. The sensitivity of the detection algorithm depends on two factors. One factor is the sam- 
ple size of the moving window; the other is the sample mean and variance of each meas- 
urement point before any process change has occurred. 

3. The detection speed of the algorithm is found using simulation data for different types 
and differer~ amounts of process changes, and different sample sizes of the moving win- 
dow when the sample mean and sample variance are calculated. In general, the higher 
the value of the mean shift, the faster it can be detected. A process with a sporadic 
jump can be detected t ,~  cars later based on the definition of sporadic jump. There 
is not much difference in the speed of detecting variance change, especially when the 
ratio of the variances after and before a process change occurs is greater than 2.50. 

4. The monitoring algorithm has been implemented and tested. Three sels of OCMM data 
obtained from assembly plants demonstrate that this detection algorithm can identify 
and classify sudden process changes. Another set of data illustrates the detection, classi- 
fication, and grouping of points having the same process change. 
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Figure 15. Four points located on the roof have simultaneous mean shifts. 
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Current Job Number 44 
Point 22-1/O 
Process has S J(100) at job number 42 with value 5.79 
Point 26-1/O 
Process has S J(-100) at job number 42 with value -2.98 
Point 27-1/O 
Process has S J(-100) at job number 42 with value 5.25 
Point 32-1/O 
Process has SJ(-100) at job number 42 with value -3.02 

Measurement Point 
22-1/O 
26-1/O 
27-1/O 
32-1/O 

on the roof have SPORADIC JUMP simultaneously. 

Current Job Number 52 
Point 22-1/O 
Process has SJ(-100) at job number 50 with value 3.04 
Point 26-1/O 
Process has SJ(100) at job number 50 with value -0.16 
Point 27-1/O 
Process has S J(-100) at job number 50 with value 2.88 
Point 32-1/O 
Process has SJ(100) at job number 50 with value -0.82 

Measurement Point 
22-1/O 
26-1/O 
27-1/O 
32-1/O 

on the roof have SPORADIC JUMP simultaneously. 

Current Job Number 69 
Point 22-1/O 
Process with MS(100) -2.32 was detected at job number 69 
Point 26-1/O 
Process with MS(100) -2.02 was detected at jo b number 69 
Point 27-1/O 
Process with MS(100) -0.93 was detected at job number 69 
Point 32-1/O 
Process with MS(100) 0.62 was detected at job number 69 

Measurement Point 
22-1/O 
26-1/O 
27-1/O 
32-1/O 

on the roof have MEAN SHIFT simultaneously. 

Figure 16. Computer output for the data shown in figure 15. 
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