
GeoInformatica 1:2, 125±159 (1997)

# 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands

A Hierarchical Path View Model for Path Finding in
Intelligent Transportation Systems

YUN-WU HUANG, NING JING* AND ELKE A. RUNDENSTEINER{

University of Michigan, ywh@eecs.umich.edu
Chagsha Institute of Technology, ningjing@pdns.nudt.edu.cn
Worcester Polytechnic Insitute, rundenst@cs.wpi.edu

Received July 2, 1996; Revised January 31, 1997; Accepted March 21, 1997

Abstract

Effective path ®nding has been identi®ed as an important requirement for dynamic route guidance in Intelligent

Transportation Systems (ITS). Path ®nding is most ef®cient if the all-pair (shortest) paths are precomputed

because path search requires only simple lookups of the precomputed path views. Such an approach however

incurs path view maintenance (computation and update) and storage costs which can be unrealistically high for

large ITS networks. To lower these costs, we propose a Hierarchical Path View Model (HPVM) that partitions an

ITS road map, and then creates a hierarchical structure based on the road type classi®cation. HPVM includes a

map partition algorithm for creating the hierarchy, path view maintenance algorithms, and a heuristic hierarchical

path ®nding algorithm that searches paths by traversing the hierarchy. HPVM captures the dynamicity of traf®c

change patterns better than the ITS path ®nding systems that use the hierarchical A* approach because: (1) during

path search, HPVM traverses the hierarchy by dynamically selecting the connection points between two levels

based on up-to-date traf®c, and (2) HPVM can reroute the high-speed road traf®c through local streets if needed.

In this paper, we also present experimental results used to benchmark HPVM and to compare HPVM with

alternative ITS path ®nding approaches, using both synthetic and real ITS maps that include a large Detroit map

( 4 28,000 nodes). The results show that the HPVM incurs much lower costs in path view maintenance and

storage than the non-hierarchical path precomputation approach, and is more ef®cient in path search than the

traditional ITS path ®nding using A* or hierarchical A* algorithms.

Keywords: path queries, path search, digital map databases, intelligent transportation systems

1. Introduction

1.1. Path ®nding issues for ITS

Centralized path ®nding has been recognized as one of the potential solutions to dynamic
route guidance1 for road networks in Intelligent Transportation Systems (ITS). In vehicle-

based path ®nding [8], each vehicle conducts its own path ®nding using on-board

computers and static road maps in CD-ROMs. In contrast, the centralized path ®nding

relies on central stations such as the Traf®c Management Centers (TMCs) to answer path

queries submitted by the vehicles (see ®gure 1). Compared to the vehicle-based approach,

the centralized path ®nding demands a lower per-vehicle cost for route guidance

* This work was performed while the author was a visitor at the University of Michigan.
{ This work was performed while the author was a faculty member of the University of Michigan.



equipment in three ways. First, vehicles do not need computation devices because paths

are computed by the TMCs. Second, vehicles do not need substantial storage in order

to manage the map data which are typically large in size. Third, vehicles do not need to

retrieve and analyze the up-to-date traf®c information in order to monitor the changing

traf®c conditions across the network. Owing to the low cost of route guidance equipment

for each vehicle, a greater market penetration of ITS route guidance is expected for

centralized path ®nding.

In the centralized ITS architecture proposed in [20], the guided vehicles communicate

with the TMCs through road-side beacons installed at every major intersection. A

successful path query exchange means that a vehicle submits a path query to a beacon it

encounters, and then receives the computed path information from the TMC through the

same beacon where the query is submitted (see ®gure 1). The computed path information

may consist only of the instruction that directs the guided vehicle where to turn next. A

guided vehicle navigates a road network by continuously submitting path queries to

the beacons it encounters, and following the next-turn instructions it receives, until the

destination is reached.

Figure 1. Centralized ITS path ®nding.

126 HUANG, JING AND RUNDENSTEINER



Each path query exchange must be completed within a very short time. Otherwise, a

vehicle may pass the beacon, to which the query was submitted, before the computed path

information is returned. Furthermore, during one trip, a guided vehicle may issue many

path queriesÐtypically proportional to the number of beacons the vehicle encounters. If

many guided vehicles are on the road, likely during the rush hours, the TMCs may receive

altogether a large number of path queries within a short time. Therefore, a very stringent

time constraint must be imposed on path query processing by the TMCs.

1.2. Problems of current approaches

Traditional ITS path ®nding solutions use variations of the heuristic A* single-pair path

search algorithm to compute paths [23], [25]. The A* algorithm computes a shortest

path by expanding links starting from the origin node until it reaches the destination node.

During link expansion, it gives expansion priority to the link that leads to a node for which

the actual expanded cost from the origin node to this node plus the estimated cost from this

node to the destination node is the minimum among all unexpanded links. If the estimated

cost between any given two nodes always under-estimates the real cost, the A* algorithm

guarantees ®nding an optimal shortest path.

Using the A* algorithm to process path queries, a TMC needs to invoke one single-pair

path search for each path query composed of a different Origin-Destination (O-D) pair.

The potentially large number of path ®nding requests received by a TMC during rush

hours may amount to a huge collection of computational tasks. As a result, the stringent

constraint of the path query response time may not be satis®ed. The ITS dynamic route

guidance function may not operate properly.

Although incorporating a hierarchy into the A* algorithm can improve path query

response time [25], such an approach usually assumes a rigid hierarchical structure that

may not be reorganized dynamically. Typically, each local node is associated with a ®xed

point which connects this local node to high-speed links. Such an approach does not allow

for the selection of the best connecting points based on up-to-date traf®c, neither for the

rerouting of vehicles from high-speed links to local streets if the high-speed links are

blocked by traf®c.

An alternative solution to the centralized path ®nding is to precompute the best paths for

all O-D pairs and store them on-line [13]. Upon receiving a path query request, the TMC

needs only to look up the requested path from the precomputed path view structure.

Therefore path queries can be processed very ef®ciently. However, to capture the

dynamicity of changing traf®c, each next-turn instruction received by the guided vehicles

must be computed based on the most up-to-date traf®c conditions. Therefore, very

frequent updates of the precomputed path views is necessary for road networks where

traf®c conditions change continuously. Such a necessity dictates that updating a path view

must be completed within a short time.2

Among the shortest path transitive closure algorithms in the literature [6], [24] the

Dijkstra algorithm [6] is one of the preferred for ITS applications because it has a worst-

case time complexity of O�n2log�n�� for ITS road networks.3 Such a high computation

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 127



complexity means that computing the path view will take a long time for large networks

such as the Detroit map (4 28,000 nodes) and the Chicago map (4 50,000 nodes).

Consequently, the path view for large networks may not be up-to-date.

Furthermore, a path view modeled by the shortest path transitive closure has to capture

at a minimum the aggregated path labels for all O-D pairs. This n� n adjacency matrix

requires O�n2� storage where n is the number of nodes in the network. Therefore the

storage cost of a path view may become unrealistically high for large networks.

1.3. The hierarchical path view solution

This paper presents a Hierarchical Path View Model (HPVM) that satis®es the query

response time constraint, and, for large networks, requires realistic storage to maintain the

precomputed path views which can be updated frequently. The structure of the hierarchy in

HPVM is based on the following ITS road network characteristics: 1) high-speed roads

usually interconnect different regions of a road network, and 2) road links are mostly short

relative to the entire map, and (3) road links are strongly interconnected which means

nearby nodes are mutually reachable in a few hops. The effectiveness of HPVM is based

on the heuristic that high-speed links are preferred for inter-regional traveling. In other

words, the longer the distance traveled the more coarse-grained the effective map should

be, e.g., from country, to state, to city map, and so on. In HPVM, each granularity of the

network represents a different level in the hierarchy, which is organized in a bottom-up

fashion. First, the ®ne-grained original network (ground level) is divided into multiple

regions. Next, links of higher speed are selected to form a graph of coarser granularity at

the next higher level in the hierarchy. For large networks, the high-level graph is further

divided into multiple regions to form an additional level, and so on.

After the creation of the hierarchy, the path view for each region at all levels in the

hierarchy is then precomputed and stored. Because traf®c conditions may change across

the network continuously, path views should be frequently examined to see if they are

affected by the recent changes. The affected path views are then updated to the latest

traf®c information. We use the term ``path view maintenance'' to represent both path view

precomputation and update. To process a path query, the TMCs conduct path search by

traversing the hierarchy based on path information materialized in the regional path views.

In summary, HPVM achieves ITS dynamic route guidance by performing the following

four tasks:

1. Hierarchy Generation. HPVM creates (or re-creates) the hierarchy only when the

topology of the underlying network is altered. Such events are rare, therefore,

hierarchy generation is a static process (Section 3).

2. Path View Precomputation. This paper presents a new algorithm, called Two Color

Dijkstra (TCD), that computes a path view for an ITS road network (a full network or

a fragmented region). The TCD algorithm takes advantage of the uniformly low out-

degree of the ITS road network by incorporating a 2-color graph painting technique

into the Dijkstra algorithm (Section 2).

128 HUANG, JING AND RUNDENSTEINER



3. Path View Incremental Update. To keep the path views up-to-date, HPVM updates

each path view periodically to account for changes of traf®c conditions of its

underlying regional network. It is possible that within a short time interval, only a

small fraction of road links are affected for a regional network. To exploit this

situation, this paper presents two incremental update algorithms, called

IUA_Decrease and IUA_Increase. The two incremental update algorithms can

update a path view faster than recomputing it using the TCD algorithm if traf®c

condition for only a small number of road links has changed. Based on the number of

links affected since the last update, HPVM can choose the appropriate algorithms, the

TCD or the ICU algorithms, to perform the path view update (Section 2).

4. Path Search. In HPVM, a path query is processed by executing a single-pair path

search algorithm, called Heuristic Hierarchical Path Search, or short, HHPS. The

HHPS searches intra-regional paths by looking up the path view for this region. It

searches the inter-regional paths by traversing the hierarchy in HPVM (Section 4).

This paper differs in many respects from its preliminary conference version [14]. First,

we present a new and more effective graph fragmentation algorithm that divides a network

into multiple regions in this paper (instead of assuming graph partitioning is done by

hand). Second, we now propose incremental update algorithms that were not reported

previously. Third, the HHPS algorithm presents in this paper is more ef®cient than the path

search algorithm presented previously. This paper also presents formal de®nitions of the

HPVM model, as well as extensive sets of experiments evaluating the HPVM that were not

available in previous reports.

The paper is organized as follows. Section 2 gives the path view maintenance

algorithms. Section 3 outlines the hierarchical path view model. Section 4 gives the

hierarchical path search algorithm whereas the experimental results are presented in

Section 5. We discuss the related work in Section 6, and conclude in Section 7.

2. Path view maintenance algorithms

In this section, we introduce some basic notations and de®nitions. We then present the

TCD algorithm followed by the incremental update algorithms.

2.1. Basic notations

An ITS road map can be modeled as a labeled directed graph G� (N, L, W). A node in N
corresponds to a map object (intersection) in the road map; a link in L corresponds to a

one-directional connection between two neighboring nodes in N, and a label in W
corresponds to the traversal cost (e.g., estimated link travel time, link distance, etc) for

each link.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 129



De®nition 1: An ITS network is a graph G� (N, L, W), where

N � fij0 � i5ng is the set of nodes, where n is the number of nodes, and

L � f5i; j;w4ji; j 2 N; i 6� j;w 2 Wg is the set of weighted links, and

W is the set of all possible link traversal costs.

We require i 6� j because we disallow self-loops. We say i is the source node of link

5i; j;w4 and j is the destination node. We say the link traversal cost w of5i; j;w4 is the

link weight of the link from i to j, denoted by LWij in this paper.

A path in G is an ordered sequence of nodes. The weight of a path is the sum of the

weight associated with each link along the path. We de®ne PV G to be the path view of

G below.

De®nition 2: PV G is a n� n matrix where n � jNj; N in G. Each element PV G
ij in PV G

is the weight of the shortest path from i to j, where i; j 2 N of G.

2.2. The TCD algorithmÐcreating a path view

The TCD algorithm integrates the Dijkstra shortest path transitive algorithm with a 2-color

graph painting technique to reduce the path view computation time for an ITS network. For

sparse graphs, such as the ITS networks, the Dijkstra algorithm [6] is preferable because it

has a worst-case time complexity of O�n2 � log�n��, where n is the number of nodes in the

network, as compared to the O(n3) complexity of other algorithms such as Warshall's [24],

Depth-®rst search and Breadth-®rst search.

The TCD algorithm ®rst assigns each node in the ITS graph one of the two colors,

GREEN and RED, such that every child (direct descendent node) of a GREEN node is a

RED node. We then run the single-source Dijkstra shortest path algorithm for RED nodes

only. When this process is complete, the single-source transitive closure for a GREEN

node can be easily derived because the single-source transitive closures for all its children

are computed (Appendix A).

ITS graphs typically resemble grid patterns in that they are sparse with uniformly low

out-degree for each node. For perfect grid patterns, the coloring process will result in equal

numbers for GREEN ad RED nodes. For ITS graphs, the coloring process will likely result

in a signi®cant number of GREEN nodes.4 For ITS graphs, the time complexity of

computing the transitive closure is O�n� log�n�� for a RED node, and O�n� for a GREEN

node. Since the computation complexity for a GREEN node is lower than that for a RED

node, and the number of GREEN nodes is signi®cant, TCD can improve computation time

over the Dijkstra algorithm.

We now introduce the de®nition of a colored ITS network (see the example in ®gure 2).

De®nition 3: A colored ITS network is a graph Gc��N; L;W;GREEN;RED�; such that

N � fij0 � i5ng is the set of nodes, where n is the number of nodes, and

L �5i; j;w4ji; j 2 N; i 6� j;w;2 Wg is the set of weighted links, and W is the set of all

possible link traversal costs, and

130 HUANG, JING AND RUNDENSTEINER



GREEN;RED � N, and GREEN \ RED � f, and GREEN [ RED � N, and all

children of a node in GREEN are nodes in RED.

Given an ITS graph G, Gc is created by the 2ColorPaint algorithm (Appendix A). This

algorithm paints each node with a color of either GREEN and RED while guaranteeing

that each of the outgoing links of a GREEN node connects to a RED node.

The TCD algorithm (Appendix B) computes the shortest path transitive closure, called

path view, for a colored ITS network Gc. The color sets GREEN and RED in Gc are ®rst

created by the 2ColorPaint algorithm. Then, for each RED set, the TCD algorithm calls the

DijkstraSingleSourceAlgorithm which is the well-known Dijkstra algorithm [3] for

computing its single-source shortest path transitive closure. For each GREEN node, the

TCD algorithm derives its single-source path view by adding its outgoing link weights to

the single-source path views of its children nodes and by choosing a shortest path for each

destination.

Note that while the coloring may only be done once, the TCD algorithm can be repeated

many times to recompute the path views whenever a link weight has changed. Next, we

establish the following theorem.

Theorem 1: Let Gc � �N; L;W;GREEN;RED�, n � jNj, e � jLj, r � jREDj, and

g � jGREENj, the time complexity for the TCD algorithm is max�O�r � n� log�n��;
O�g� n��, where max is the maximum function.

Proof: See Appendix C.

The time complexity for the regular Dijkstra all-pair shortest path algorithm is

O�n2 � log�n�� for ITS networks. If g > r � log�n�, then the time complexity for the TCD

algorithm is O�g� n�. Otherwise, the time complexity of the TCD algorithm is

O�r � n� log�n��. Since r � g � n, in either case the time complexity of the TCD does

not exceed that of the Dijkstra algorithm. For typical ITS graphs, n > r; g > 0 and

g � r � log�n� (more likely r > g as in the Troy map where n � 1590, r � 958,

and g � 632) will likely hold, giving the TCD has a time complexity of O�r � n� log�n��.

Figure 2. A sample two-color painted graph.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 131



If g40 (such as in the Troy map where g � 632), then r5n and a signi®cant improvement

by the TCD algorithm over the Dijkstra algorithm in computation time is expected.

2.3. The incremental update algorithmsÐupdating the path views

In order for the path views to be up-to-date, their update interval must be small. It is

possible that during such a short interval, only a small number of link weights have

changed. To recompute the affected path views using the TCD algorithm requires ®xed

CPU time independent of the number of affected links. To exploit the small number of

links that are affected, we develop update algorithms that update the path views

incrementally. As a result, the fewer link weights have changed, the faster the update takes.

However, link weight increase and link weight decrease have to be updated separately

because the propagation pattern of their incremental path search is different. Therefore,

we propose two different incremental update algorithms, the IUA±Decrease algorithm

(Appendix D) for link weight decrease and the IUA±Increase algorithm (Appendix E) for

link weight increase situations. In Section 5.3, we conduct experiments to show when

the query processor should use incremental update algorithms instead of the TCD

algorithm.

3. Hierarchical path view model

A ¯at path view for a large network demands unrealistically large storage and long

computation time. To solve both the storage and computation time problems for large ITS

networks, we propose a hierarchical path view model (HPVM) based on the road-type

classi®cation of the ITS networks and the assumption that roads of higher speed are

preferred for long-distance traveling. We argue that typical long-distance traveling is

hierarchical in a sense that the travelers ®rst travel local streets to go on main roads in

order to connect to highways that are some distance away. Once on a highway, travelers

typically travel a relatively long distance while staying on highways until they are near

their destinations. At this point, the travelers get off the highways, go down to the main

roads, and then back on the local streets in order to reach their destinations. This travel

pattern therefore is hierarchical by viewing all roads as the ®rst level links, main roads

and faster roads (e.g., highways) as the second level links, and highways as the highest

level links.

To organize a hierarchy for precomputed path views, the HPVM ®rst fragments a large

network into smaller regions. After fragmentation, the TCD algorithm is used to compute

the path view for each region. After the path views are created, either the TCD algorithm or

the IUA algorithms are used to maintain the path views frequently. Next, some high-speed

links that interconnect different regions are identi®ed and their end nodes collectively

form the network at the next higher level. If the network created at the next higher level

remains too large to manage, fragmentation can be performed at this level. Links of even

132 HUANG, JING AND RUNDENSTEINER



higher speed that interconnect regions at this level are then identi®ed and their end nodes

constitute a network at the next level, and so on.

We next describe the fragmentation procedure, the creation of the HPVM for ITS

networks, and a formal de®nition of the HPVM.

3.1. Graph fragmentation

Fragmentation creates smaller regional graphs for which the path views take less space and

are much faster to compute. Previous work on hierarchical path search [25] did not employ

fragmentation algorithms, thereby assuming graph partition can be done manually. For

large ITS networks, manual fragmentation can be very inef®cient and ineffective because

a good graph fragmentation of a large number of partitions may be hard to ®nd manually.

To address this issue, we ®rst experimented with the optimal data clustering and

decomposition algorithm [21] which minimizes the number of border nodes, but the

exponential computational cost for this algorithm prevents its practical use. More

importantly, our experimentation with this optimal algorithm as well as its sub-optimal

heuristic companion proposed in the same paper [21] revealed that the algorithms are not

adequate for our problem because they generate excessive number of interconnecting

links. The center-based algorithm [11] raises the problem of selecting effective center

nodes for each fragment, which is not intuitive for large ITS networks.

Based on this evaluation, we now propose a node-sorting partition algorithm which

divides an ITS network into regions of about equal sizes5 (see ®gure 4). The partition

algorithm (®gure 3) calls the following procedures:

* NodeSortX�G� sorts all nodes of graph G by their x coordinates.
* NodeSortY�G� sorts all nodes of graph G by their y coordinates.
* Partition�G; f � evenly partitions nodes of graph G into f regions.
* IdentifyLink�G� identi®es two kinds of links: If the two end nodes of a link belong to

the same region, then this link also belongs to this region, called local link. The border

links are links whose two end nodes belong to two different regions.

ALGORITHM Graph Partition �G; fx � fy�
/ / Partition G � �N; L;W� into fx � fy regions, where fx and fy
/ / are the number of regions along the x and y dimensions, respectively.

1 NodeSortX�G�;
2 Partition�G; fx�;
3 8 1 � u � fx do

4 NodeSortY�Gu�;
5 Partition�Gu; fy�;
± od

6 IdentifyLink�G�;
Figure 3. The algorithm to partition a graph.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 133



To create fx � fy different regions for a graph G, where fx and fy denote the number of

regions along the x and y dimensions respectively, we ®rst sort all nodes of the graph by

their x coordinates (line 1). Next, we evenly partition the sorted nodes into fx regions (line

2). For each fragment (line 3), we sort the nodes by their y coordinates (line 4) and evenly

partition them into fy regions (line 5). The above process geographically divides the

original graph into fx � fy regions of approximately equal size. This algorithm is applicable

for many applications as long as the nodes of the graph have a geographical location as

found in GIS and ITS graphs. Figure 4 shows the fragmentation of an ITS graph, namely

the Troy city map, by the proposed fragmentation algorithm.

To assure the effectiveness of our hierarchical path view model, we establish three

desired properties of the fragmented graph. First, each region should be a strongly

connected subgraph. This guarantees complete reachability within the regions. Second,

each region must have at least one high-speed link that leads to other regions. This is

important since it gives opportunity to exit and enter a local region. Third, the nodes at

each higher level must also be strongly connected. For the real maps of Troy city and

Detroit city we tested for this paper, all three properties are satis®ed. We do not claim that

all ITS graphs satisfy such constraints trivially. However, because the fragmentation

process is an off-line one-time process that is independent of the traf®c changes, manual

adjustment could be applied in order to satisfy the constraints.

Figure 4. A fragmentation of the Troy City map by the node-sorting algorithm.

134 HUANG, JING AND RUNDENSTEINER



3.2. Hierarchical graph generation

3.2.1. Classi®cation of links and nodes according to road types. Generally, the ITS

roads can be classi®ed by a series of road types such as residential streets, main roads, state

highways, and interstate highways.6 Let's refer to these classes of road types as

ci; 0 � i < k ( k is the number of different classes). To create a hierarchy of k levels, we

associate each link in the network with a class ci, 0 � i < k. For example, we create two

link type classes c0 and c1 for a 2-level hierarchy, and classify all local street links with the

class c0 and freeway links with the class c1. This classi®cation for nodes is done using

the following policy: Each node adopts the highest among all classes associated with

its incoming and outgoing links. For example, if a node has two outgoing links that are

associated with classes c0 and c1 and one incoming link associated with class c0, the class

associated with this node is c1.

Based on our previous example of hierarchical travel patterns, a 3-level hierarchical ITS

network can be created by ®rst setting all links and their end nodes to class c0. Next, all

links with maximum speed higher than that of the main roads, together with the two end

nodes of these links, are set to class c1. Lastly, all highway links and their end nodes are set

to class c2.

3.2.2. Creating the hierarchical path view structure. To create a k-level hierarchy, k
classes from c0 to ckÿ1 are created and all links and nodes are assigned to a class. The

construction of the hierarchy on an ITS network corresponds to the induction process

described below.

The Base condition corresponds to creating the ground level (level-0) of the

hierarchical path view model using the ¯at graph G � �N; L;W�:

1. Given the level-0 graph G0 � G � �N; L;W�. For example, ®gure 5(a) is a level-0

graph.

2. Determine the number of regions at level-0, called f0. In ®gure 5(a), f0 � 3.

3. G is fragmented into f0 level-0 regions. In ®gure 5(b), this process creates regional

maps G0
0;G

0
1;G

0
2.

4. Color each regional subgraph of G by running the 2±Color±Paint algorithm.

5. Compute the path views for all regional subgraphs of G by running the TCD

algorithm. In ®gure 5(b), PV G0
0 ;PV G0

1 ;PV G0
2 are created.

The Induction process creates the level-k � 1 map from the level-k map:

1. Create the level-k � 1 map by the following steps:

a The level-k � 1 nodes are the two end nodes i; j of level-k links such that i and j
belong to two different level-k regions, and i and j are associated with classes cx

and cy, respectively, such that cx; cy are higher than ck. Intuitively, we choose, at

level-k, two nodes from different level-k regions that are connected by a high-

speed link. We only select links with class higher than ck to inter-connect level-k

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 135



regions because we assume that high-speed roads are preferred for inter-regional

traveling. Further, the selection of only high-speed inter-connection minimizes the

network size at the next higher level, thereby making path view computation and

path retrieval very ef®cient in HPVM (see Section 5). For example, in ®gure 5,

nodes d and g are the two ends of a class c1 link. Because they belong to different

level-0 regions, they are also level-1 nodes. In contrast, nodes k and n are not the

Figure 5. An example of the hierarchical path view model.

136 HUANG, JING AND RUNDENSTEINER



end nodes of a high-speed (class c1) link, they therefore are not selected to become

higher-level nodes.

b. Any level-k link whose two end nodes, i and j, belong to different level-k regions

such that i and j are also level-k � 1 nodes is a level-k � 1 link. The weight of this

level-k � 1 link is the same as that of the level-k link from i to j. These level-k � 1

links are used to inter-connect level-k regions. For example, in ®gure 5, < d; g > is

a class c1 link that connects nodes from two different level-0 regions, G0
0 and G0

1.

Therefore, it is also a level-1 link.

c. Any pair-wise combination of two nodes, say i and j, in the same level-k region,

which are also identi®ed as level-k � 1 nodes, form a level-k � 1 link. The weight

of this logic link from i to j is the shortest path weight from i to j encoded in the

path view of the level-k region to which i and j belong. These level-k � 1 links

guarantee that within each level-k region, all level-k � 1 nodes are inter-

connected. In ®gure 5, nodes g; i; j; l are level-1 nodes and belong to the same

level-0 region, G0
1. Therefore, pair-wise combinations between any two of these

four nodes form a level-1 link. For example, link < g; k > does not exist in the

level-0 map, but is created in the level-1 map with link weight equal to 13. This is

the shortest path weight from g to k in the path view, PV G0
1 .

2. If k � 1 is the topmost level, the number of fragments at level-k � 1 is 1, otherwise

determine the proper number of regions at level-k � 1, denoted by fk�1. In ®gure 5,

level-1 is the top level.

3. The level-k � 1 graph is fragmented into fk�1 level-k � 1 regions. In ®gure 5, no

more fragmentation is necessary (one fragment).

4. Color each regional subgraph at level-k � 1 by running the 2±Color±Paint algorithm.

5. Compute the path views for all regional subgraphs at level-k � 1 by running TCD. In

®gure 5, this process corresponds to creating the path view, PV G1
0 , for the level-1

map.

6. If k � 1 is the topmost level, the construction of the hierarchical path view is

complete.

3.3. De®nition of the hierarchical path view model

To de®ne the HPVM model in an unambiguous way, we now present formal de®nitions of

our hierarchical model for an ITS graph G � �N; L;W�. We assume that the classi®cation

process (Section 3.2.1) is complete and each node and link is associated with a class

cx; 0 � x < l, with l the maximal level of the hierarchy. Let class�i� be a function that

returns the class associated with i, where i 2 N or i 2 L.

De®nition 4 (Fragmentation): A graph Gx � �Nx; Lx;Wx�; 0 � x < f , is a regional

subgraph of a graph

G � �N; L;W� and f is the number of regions in G, where

Nx � N, and
S fÿ1

x�0 Nx � N, and Nx \ Ny � ;, where 0 � x; y < f and x 6� y, and

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 137



Lx � f< i; j;w > ji; j 2 Nx and < i; j;w >2 Lg, and

Wx is the set of all w in < i; j;w >2 Lx.

De®nition 5 (Hierarchy by induction): An l-level ITS hierarchical graph of

G � �N; L;W� is HGl � fG0;G1; . . . ;Glÿ1g de®ned by the following process:

Base condition:

1. The ground level graph is G0 � G � �N; L;W�
2. Set the f0 value, where f0 is the number of level-0 regions.

3. G0 is fragmented into level-0 regions, G0
x ; 0 � x < f0.

4. For x := 0 to f0 ÿ 1, construct G0c

x :� 2ÿÿColorÿÿPaint�G0
x�.

5. For x := 0 to f0 ÿ 1, compute PVG0
x :� TCD�PVG0

x ;G0c

x �.

Induction process (Assuming Gk;Gk
x and Gkc

x and PVGk
x ; 0 � x < fk, have already been

created):

1. The level-k � 1 graph is Gk�1 � �Nk�1;Lk�1;Wk�1�; 0 � k < lÿ 1, where

Nk�1 � fi; jji 2 Nk
p; j 2 Nk

q; 0 � p; q < fk; p 6� q; < i; j;w >2 Lk; class�i� > class�k�;
class�j� > class�k�g, and

Lk�1 � f< i; j;w > ji; j 2 Nk
p; 0 � p < fk; i; j 2 Nk�1;w :� PV

Gk
p

ij g[
f< i; j;w > ji 2 Nk

p; j 2 Nk
q; 0 � p; q < fk; p 6� q; i; j 2 Nk�1; < i; j;w >2 Lkg, and

Wk�1 is the set of all w in < i; j;w >2 Lk�1.

2. If k � 1 � l then fk�1 :� 1, else set the proper fk�1 value (fk�1 is the number of

regions at level-k � 1).

3. Gk�1 is fragmented into fk�1 level-k � 1 regions, Gk�1
x ; 0 � x < fk�1:

4. For x := 0 to fk�1 ÿ 1, Gk�1c

x :� 2ÿÿColorÿÿPaint�Gk�1
x �.

5. For x := 0 to fk�1 ÿ 1, PVGk�1
x :� TCD�PVGk�1

x ;Gk�1c

x �.
6. If k � 1 � l then the construction of HGl is complete.

4. The heuristic hierarchical path search algorithm

The conventional approach of ITS path ®nding is accomplished by the invocation of A* or

hierarchical A* algorithms [23], [25]. The ¯at (no hierarchy) path view approach retrieves

paths by direct lookup of the path view [13]. In contrast to the above two approaches, the

hierarchical path search ®nds a path by navigating the graph hierarchy of the HPVM, and

by composing partial paths encoded in the path views of regional graphs at different levels

into a whole path from origin to destination. We call the HPVM's path search algorithm

the Heuristic Hierarchical Path Search (HHPS) algorithm (see Appendix F).

The HHPS algorithm captures the dynamicity of traf®c in two ways. First, between any

two different levels, the path search dynamically ®nds the best entry point from the low

speed link to the high speed link and the best exit point in reverse. This improves the

accuracy of the selected paths. Next, each expansion of the HHPS algorithm expands a

138 HUANG, JING AND RUNDENSTEINER



regional shortest path by looking up the regional path view. The algorithm does not force

path search to follow certain high-speed links once it enters the higher level of the model.

The actual path that can be retrieved from this system depends on the link traf®c

measurements in the path views that are up-to-date with respect to the last update.

Therefore, the regional paths selected are always optimal until the last update. If there

exists some slow-downs or blockages on high-speed links, HHPS automatically avoids

these obstacles. In terms of ITS route guidance, this means that traf®c can be automatically

rerouted through local streets should there be incidents on the freeways.

The description of the HHPS algorithm and an example of the execution of this

algorithm based on ®gure 5 are given in Appendix F.

5. Experimental Results

5.1. Experiments setup

We experimented with two kinds of maps, synthetic grid maps and real ITS street maps.

Synthetic maps allow us to experiment with different parameters like map size. They are

used because ITS road networks closely resemble a grid pattern, namely low-out-degree,

strongly connection, high locality, etc. For each grid map, we randomly select several

vertical and horizontal edges as high-speed links. We assign random weights to all links,

but add a control to let the high-speed links have higher average travel speed than local

links. Two real street maps, the Troy City with 1590 nodes and the Detroit City of 28,628

node are also used in our studies. For the real maps, we classify the links with a speed limit

less than 25 miles per hour (mph) as class-1 links, over 25 mph as class-2 links, and over

45 mph as class-3 links. This ®ts well with the real-life road type classi®cation as the speed

limits are set to 25 mph for most residential streets, above 25 mph and below 45 mph for

city main roads, and above 45 mph for highways and service roads.

We use matrices and arrays to implement the hierarchical path views. The procedures

that implement all the algorithms are written in C/C++. All experiments are conducted on

a dedicated Sun SPARC-20 workstation with a 128MB main memory.

5.2. Path view creation experiments

To test the performance of path view creation, we conducted two sets of experiments, one

on medium-sized maps and the other on large maps. To test the medium-sized maps, we

create path views using three approaches. They are the Dijkstra algorithm on ¯at graphs,

the TCD algorithm on ¯at graphs, and the TCD algorithm on 2-level hierarchical graphs

that have four regions at the ground level. For each approach, we experimented on a set of

grid graphs, from 100 nodes to 3600 nodes, and the Troy map. The results are depicted in

®gure 6.

Figure 6 shows that, in path view creation, the TCD algorithm is more ef®cient than the

Dijkstra algorithm on ¯at graphs, and, using the TCD algorithm, the 2-level hierarchical

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 139



graphs are more ef®cient than the ¯at graphs. The two approaches using the Dijkstra and

TCD algorithms on ¯at graphs show a sharper upward curve as the number of nodes

increases whereas the one using TCD on the 2-level hierarchical graphs shows a near-

linear increase. This indicates that the hierarchical approach effectively reduces the time

complexity in path view computation. The results for the real map in all approaches mirror

those for the grid maps with a similar number of nodes, strengthening our assumption that

grid maps are a good approximation of real ITS maps.

To test the large maps, we create path views using the TCD algorithm on ¯at graphs, 2-

level hierarchical graphs, and 3-level hierarchical graphs. The hierarchy of the 2-level and

3-level hierarchical graphs is created by fragmenting the graph at the ground level into

subgraphs of about 200 nodes. For the 3-level hierarchical graphs, we also fragment the

graph at level 1 into subgraphs of about 200 nodes. The results are shown in ®gure 7.

We experimented with the ¯at graphs up to 4900 nodes because the main memory

needed to store the path views exceeds the limit of our test machine for maps of greater

sizes, and the time to create the path view already becomes unrealistic (> 400 seconds) for

dynamic route guidance. In contrast, the time needed to create path views on the 2-level

and 3-level hierarchies is much less. Furthermore, creating the path views on the 3-level

hierarchy is signi®cantly more ef®cient than that on the 2-level hierarchy for large maps.

For maps with less than 10,000, there is no need for a 3-level structure. Note that creating

path views for the 3-level Detroit map requires less than 2 minutes, well within the 3

minutes update interval required in order for path views to be considered up-to-date.

Figure 6. CPU time of creating the path view for medium maps.

140 HUANG, JING AND RUNDENSTEINER



5.3. Path view maintenance: Recompute vs. incremental update

We conduct a set of experiments to compare two strategies in maintaining the path

views. Namely, path views can be recomputed by the TCD algorithm periodically, or

incrementally updated by the ICU±Decrease and ICU±Increase algorithms. Our goal is to

®nd out when performing recomputation is advantageous over incremental updates,

and vice versa. We ®rst create a 100-node (10� 10) grid graph that has 360 links. Next, we

randomly select from 1 to 100 links and decrease their link weights to randomly selected

non-negative values. For each set of different numbers of links selected, we run the

incremental update algorithms to update the path view. We conduct the same experiments

again, but this time we increase the weights of the randomly selected links.

The horizontal line in ®gure 8 depicts the cost of recomputing the path view using the

TCD algorithm. The other two curves in ®gure 8 show that at about 70 links whose weights

have decreased, or about 50 links whose weights have increased, the incremental update

time is similar to the recomputation time. This means that, for link weight decrease, it is

better to run the incremental update than recomputation if the number of links whose

weights have decreased is fewer than 70. For increase, it is about 50. The results also show

that the ICU±Decrease algorithm consistently outperforms the ICU±Increase algorithm.

This can be attributed to the fact that the MIN function (line 5 and line 12 of ®gure 18),

which requires O�d� time where d is the maximum in-degree, is needed in the ICU±

Increase algorithm but not in the ICU±Decrease algorithm. Although this set of

Figure 7. CPU time of creating the path view for large maps.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 141



experiments is conducted on a 100-node grid graph, the methodology can be applied to

other ITS maps to derive a guideline in selecting the appropriate algorithm for path view

maintenance.

5.4. Memory requirement

In this set of experiments, we compare the space requirement to store the path views for

three different approaches. They are the ¯at graphs, 2-level hierarchical and 3-level

hierarchical graphs. Figure 9 shows that the path views with hierarchy need much less

memory storage than those with no hierarchy. The 3-level hierarchy only exhibits small

improvement in space ef®ciency over the 2-level hierarchy because the dominant factor in

storage is the space needed to store the level-1 path structures. In this set of experiments,

we create the same number of subgraphs at the ground level for both 2-level and 3-level

hierarchical approaches. Therefore, the difference in path view storage is that the 3-level

hierarchy further fragments its level-1 graph whereas the 2-level approach does not.

5.5. Fragmentation for path view creation

5.5.1. Fragmentation for 2-level Hierarchical Path Views. In this set of experiments,

Figure 8. Path view maintenance: Recompute vs. incremental update.

142 HUANG, JING AND RUNDENSTEINER



we measure the impact of the number of subgraphs on the overall performance of HPVM.

We ®rst create various 2-level hierarchies for a 10,000-node grid graph, varying the

number of subgraphs at level-1 and then running the TCD algorithm to create the path

views. The results in ®gure 10 show that there is a lowest point such that to increase or

decrease the number of subgraphs monotonically increases the computation time of the

2-level hierarchical graphs. This is because linearly increasing the number of subgraphs

proportionally decreases the number of nodes in each region. The time complexity of

computing each path view however is above linear. As a result, the CPU time in computing

the level-0 path views decreases as the number of regions increases. However, increasing

the number of subgraphs also increases the number of nodes at the next higher level (level

1 in this case), thereby increases the time needed to compute the level-1 path view.

For example, in the most extreme case, if a map of n nodes is fragmented into n
subgraphs, each with one node, the total encoding time for all path views at level-0

decreases to O�n�, namely O�1� for each graph. However, since the level-1 graphs now

have possibly n nodes, the time to encode the level-1 structure needs O�n2log�n��, the

same time complexity required to compute the path view without hierarchy. The results in

®gure 10 con®rm such a U curve behavior with the lowest point being at 100 subgraphs for

a 10000-node grid graph. The memory requirements (®gure 11) also correspond to a U

curve with the lowest point being at about 100 subgraphs.

If the number of subgraphs is large, causing each subgraph to consist of only a small

number of nodes, the possibility of some of the subgraphs being disconnected from other

Figure 9. Memory requirement: Flat vs 2-level vs. 3-level.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 143



subgraphs is high. For this reason, we did not study graphs with more than 220 fragments

in these experiments. To set up an actual ITS road guidance system, we suggest that tools

can be built to evaluate the options of fragmentation in validating or invalidating a selected

fragmentation scheme. We do not discuss the validation process in this paper, and

recognize that, based on its unique road type classi®cation, one-way streets, and inter-

connectivity, each different street map may have a different limit for the maximum

number of valid subgraphs.

5.5.2. Fragmentation for 3-level Hierarchical Path Views. The fragmentation for the

3-level hierarchy is created by maintaining subgraphs of about equal size across all levels.

We experimented on the real map of Detroit City with ®ve fragmentation schemes with

different numbers of subgraphs, namely 57, 95, 72, 143, 286. The numbers correspond to

creating subgraphs of 500, 400, 300, 200, and 100 nodes respectively. The result in CPU

time for computing the path views (®gure 12) shows that the more subgraphs, the more

ef®cient the computation is. However, theoretically, the computation time will pick up if

the number of subgraphs is very large as in the case of the 2-level hierarchy described

previously. The extreme case argument would still apply. Besides, there is a limit of the

maximum number of valid subgraphs (or minimum size of each subgraph) in order for

subgraphs to remain inter-connected. With the map data we experimented with, we noticed

that irregular disconnectivity begins to emerge when the region size falls below 100 nodes.

The results in ®gure 13 show a similar curve for memory requirement.

Figure 10. 2-level path structures computation cost by number of subgraphs.

144 HUANG, JING AND RUNDENSTEINER



5.6. Path search time

We run experiments to compare path search ef®ciency between different approaches,

namely, the ¯at graphs, the 2-level hierarchy, the 3-level hierarchy, the A� approach, and

the hierarchical A� approach. The path search time under our 2-level and 3-level

hierarchies is the CPU time of running the HHPS algorithm. For A� and hierarchical A�,
the path search time is the CPU time of running the A� and hierarchical A� algorithms [23],

[25], respectively. We choose a popular estimation function based on the Euclidean

distance between two nodes times the minimum link weight per distance unit for the

HHPS, A�, and hierarchical A� algorithms: estimate �
����������������������������������������������
�x1 ÿ x2�2 � �y1 ÿ y2�2

q
* minimum link

weight per distance unit. This estimate will always underestimate the actual cost required

to travel between any two points and thus represents an appropriate estimate function for

ITS applications.

In the hierarchical A� approach, each node in the graph has a ®xed entry/exit node

connecting to the high-speed links based on the shortest geographic distance [25]. Once

the search reaches the entry node of the source node, it stays on the high-speed links until

the exit node for the destination is reached. From the exit node, the search goes down to the

local links until the destination is reached.

We randomly selected 1000 paths and conducted path search for all approaches.

Because the next-turn information is most crucial in centralized ITS path ®nding, our path

search for all implementations returns the shortest path weight between the source and

Figure 11. 2-level path structures storage cost by number of subgraphs.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 145



destination. The next-turn information can be trivially incorporated into all approaches in

constant time. and the computation for the next-turn information is the same as the

computation of the shortest path weight.

The results in ®gure 14 show that the HHPS path search is most ef®cient (close to 0 time

in ®gure 14) for the ¯at graphs because path ®nding can be accomplished by looking up the

precomputed path views. The storage requirement of ¯at encoded graphs prevents us from

experimenting with maps with more than 5000 nodes. The 2-level hierarchy is only

slightly better than the 3-level hierarchy, and both are signi®cantly faster than the two A�

approaches. HPVM is faster than the traditional A� approach in path ®nding because path

search is no longer based on the traversal of individual links, rather, it follows the encoded

regional shortest paths stored in the path views. Therefore, HPVM is a compromise

between achieving ef®cient path search and the deployment of resources (both time and

space) to maintain the path views.

5.7. Effectiveness of path search in HPVM

Figure 12. 3-level path structures computation cost by number of subgraphs.

Table 1. Comparison of average path weight ratios.

Optimal 2-level HPVM 3-level HPVM

1.00 1.0051 1.0396

146 HUANG, JING AND RUNDENSTEINER



To verify the effectiveness of paths retrieved in HPVM, we compare the average path

weights of all paths retrieved in the experiments described in Section 5.6 with the average

optimal (minimal) path weights of the same paths. Table 1 shows the path effectiveness of

our HPVM using the ratios of average weight of the paths retrieved using a 2-level and 3-

level HPVMs (the number of ®rst-level regions for the 3-level HPVM is set to 100) against

the optimal average weight of the same paths. The results show that paths retrieved by

HPVM are (on average) more costly than the optimal shortest paths only by roughly �%

for a 2-level, and 4% for a 3-level hierarchy. Both increases are practically very small,

demonstrating that HPVM gains signi®cantly in reducing the path search time (®gure 14)

with only negligible loss of path effectiveness.

6. Related research

Transitive closure algorithms presented recently [1], [2], [4], [7], [16], [17], [18] focused

on general path problems in disk-based systems. The performance results in [1], [18] in

computing the shortest path transitive closure are unsatisfactory for cyclic graphs such as

ITS maps because the cycles in the graphs increase the number of node expansions

dramatically.

Yang et al, [25] describe an ITS path ®nding system that is based on a hierarchical A�

algorithm. Their system assumes ®xed entry and exit between local streets and freeways.

Consequently, it lacks ¯exibility in dynamic selection of connecting points between links

Figure 13. 3-level path structures storage cost by number of subgraphs.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 147



of different levels in the hierarchy, such as provided by HPVM. Furthermore, their system

elevates only the selected freeway links to the higher level of the hierarchy. This means

that once a vehicle enters the freeways, it remains on the freeways until the ®xed exit point

associated with the destination is reached. Such a system does not consider rerouting the

vehicle through local streets if a local path becomes better due to traf®c problems on

freeways. HPVM accomplishes such a rerouting because the links on the higher levels are

the regional shortest paths stored in the path views. These materialized regional shortest

paths are continuously updated when path views are maintained frequently. If freeway

blockages exist, the most recent update of the path views will re¯ect the situation by

encoding regional shortest paths that do not pass through the blockage areas. Whether the

regional shortest paths are on freeways or local streets depends on their latest traf®c

conditions.

Several recent efforts have focused on using hierarchical structures for query

optimization. Distributed and parallel transitive closure computation is proposed in [9],

[10] that divide a relation into fragments. To answer a path query, their systems ®rst select

the relevant fragments, and then perform path computation over the selected fragments.

Such approaches prefer the underlying graph of the target relation to be acyclic. Therefore,

their systems may not be suitable for ITS graphs which are typically strongly connected.

Houstma [12] continues upon his previous work [9], [10] with the introduction of the

notion of a hierarchical fragment (i.e., the super-graph). Unfortunately, the formation of

Figure 14. Path retrieval time.

148 HUANG, JING AND RUNDENSTEINER



the hierarchical fragment is very sensitive to the update of the underlying base relation,

and therefore is recommended for stable graphs. Consequently, such a system may not be

appropriated for the path ®nding problem in ITS networks where link weights are

changing continuously.

In studying the graph fragmentation, we also experimented with alternative clustering

and partitioning algorithms [11], [21]. The optimal data clustering and decomposition

algorithm [21], owing to its exponential computational cost, proved to be too inef®cient.

The sub-optimal heuristic algorithm [11], [21] we tested is also unacceptable because

it generates excessive border links. The center-based partition algorithm [11] does

accomplish the fragmentation adequately for our purpose as shown in our previous work

[14]. However, it raises the problem of proper selection of center nodes, which is not

intuitive for large ITS networks. For example, in the 3-level hierarchy experiments we

present in Section 5.2, the ground level of the Detroit map is divided into more than 140

regions. Applying the center-based partition algorithm, we need to ®rst manually select

more than 140 center points, and then to ensure the selection creates proper fragmentation.

Such a task could be very laborious. The fragmentation algorithm presented in this

paper (Section 3.1) requires no such laborious process, therefore is more suited for large

ITS networks.

In [13], we studied path encoding for ITS applications in the context of ¯at graphs, and

studied the effectiveness of various link clustering strategies for path search in GIS maps

[15]. In another related research [19], we also used a fragmentation method to create

hierarchical graphs, and to precompute a path view for each subgraph. The hierarchical

graph model itself, however, is very different. First, it does not rely on type classi®cation

of the links for hierarchical graph decomposition. Second, it pushes up to the next higher

level all border nodesÐeven if they are not classi®ed to belong to the next higher class.

This increases the number of nodes at the higher levels. Consequently, view maintenance

is not as ef®cient as HPVM presented in this paper. Because it does not rely on the road

type classi®cation, this alternate model is guaranteed to ®nd optimal paths [19]. It thus can

be a potential solution to general database recursive query problems in which the road type

classi®cation is not applicable.

7. Conclusion and future research

In this paper, we present a hierarchical path view model (HPVM) as a solution to the

centralized ITS route guidance. The creation of the hierarchy in HPVM is based on the

classi®cation of the road types, and the fragmentation of the network into smaller regions.

After the hierarchy is created, the all-pair shortest paths ( path views) are precomputed for

each region at all levels. The road type classi®cation provides an effective heuristic in that

high-speed roads are preferred for inter-regional traf®c. The fragmentation decreases the

size of each path view, therefore reduces the path view maintenance ( precomputation and

incremental update) costs in terms of computation time and storage space.

This paper presents the complete HPVM system that includes a graph fragmentation

algorithm, a path view computation algorithm (TCD), two path view incremental update

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 149



algorithms (ICU±Decrease and ICU±Increase), and a heuristic hierarchical path search

algorithm (HHPS). The graph fragmentation algorithm divides an ITS network into

smaller regions based on node sorting. The TCD algorithm improves the Dijkstra

algorithm in path view computation for ITS networks by incorporating a two color graph-

painting technique. The two path view incremental update algorithms can update the path

views more ef®ciently if the traf®c changes only affect a small number of links in the

network. The HHPS algorithm performs path search more ef®ciently than the A� and

hierarchical A� algorithms.

Because the ef®ciency of our path view maintenance algorithms, the path views in

HPVM can be frequently updated to capture the dynamicity of road traf®c conditions.

With frequently updated path views, the HPVM accomplishes ITS dynamic route guidance

by providing the following two features: 1) The entry (exit) point from the lower (higher)

level to the higher (lower) level is determined dynamically based on the path views, and 2)

the actual routing within each region is determined dynamically based on the path views.

We have conducted experiments that show the computational performance of our

proposed algorithms and model. The experimental results show that HPVM requires much

less path view maintenance costs in terms of both computation time and storage space.

Furthermore, path ®nding in HPVM is more ef®cient than the A� and the hierarchical A�

algorithms. In conclusion, HPVM can better satisfy the requirements for centralized ITS

dynamic route guidance than the alternatives.

Our future work includes applying HPVM to a disk environment and integrating other

types of ITS query (e.g., spatial path query) processing with path ®nding computations.

Acknowledgments

This work was supported in part by the University of Michigan ITS Centre of Excellence

grant (DTFH61-93-X-0017-Sub) sponsored by the U.S. Department of Transportation and

by the Michigan Department of Transportation. Ning Jing, on leave from the Changsha

Institute of Technology, is currently visiting the University of Michigan and likes to thank

the State Education Commission of P.R. China.

Appendix A. The 2ColorPaint algorithm

The loop in line 1 of the 2ColorPaint algorithm (®gure 15) guarantees that all nodes will be

painted. An unpainted node j is initialized to be GREEN in line 7. If any of j's children is a

GREEN node (lines 8 and 9), node j is changed from GREEN to RED (lines 10 and 11). If

no child of j's is a GREEN node (line 12), then all of j's children are painted RED (lines 13

and 14). This guarantees the property that all children of a GREEN node are RED nodes,

as speci®ed in De®nition. After j is painted, the 2ColorPaint algorithm traverses the

network by expanding j's parent nodes (lines 15±17).

150 HUANG, JING AND RUNDENSTEINER



The algorithm in ®gure 15 is analogous to a greedy expansion because it always paints

an unpainted node GREEN ®rst, and then changes the color to RED only if it determines

this node has at least one GREEN child already. Based on different starting points of

expansion, the ®nal paint of a node may be either color. But this is not a problem because

we like to have as many nodes painted GREEN as possible and which node is painted with

which color is of no concern. Based on our experience, the numbers of GREEN nodes

generated by the algorithm when different starting points are chosen differ insigni®cantly.

Furthermore, 2-color painting is a one-time process which has a low time complexity of

O�n� d� where n is the number of nodes and d is the out-degree that is a small constant.

For further optimization, one could run the algorithm with every possible starting point in

order to ®nd the starting point that yields the best result (maximum number of GREEN

nodes). Such an interactive process has a complexity of O�n2� (the constant d is

negligible), which is a very acceptable static cost.

The correctness of the algorithm lies in that if an unpainted node is painted GREEN, all

its directly connected children nodes are painted RED. Since a node is painted GREEN

only when it is unpainted and RED nodes will not be repainted, this process guarantees

that the result of the 2ColorPaint algorithm does not violate the de®nition of Gc. Figure 2

shows a painted graph generated by the 2ColorPaint algorithm.

ALGORITHM 2ColorPaint�G :� �N; L;W��
DATA STRUCTURES: queue Q :� 0=, set GREEN :� RED :� 0=;

01 8 fi 2 Nji =2 GREEN; i =2 REDg do

02 insert i into Q;

03 while jQj40 do

04 remove j from Q;

05 mark j;
06 if j =2 GREEN ^ j =2 RED then

07 GREEN :� GREEN [ fjg;
08 8 fk 2 Nj5j; k;w4 2 Lg do

09 if k 2 GREEN then

10 GREEN :� GREEN ÿ fjg;
11 RED :� RED [ fjg;
Ð ® od

12 if j 2 GREEN then

13 8fk 2 Nj5j; k;w4 2 Lg do

14 RED :� RED [ fkg;
Ð od ® ®

15 8fi 2 Nj5i; j;w04 2 Lg do

16 if i unmarked and i not in Q then

17 insert i into Q;

Ð ® od od od

18 return Gc :� �N; L;W;GREEN;RED�;
Figure 15. The 2ColorPaint algorithm.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 151



Appendix B. The TCD algorithm

The TCD algorithm is illustrated in ®gure 16. The AGG (aggregation) and CON

(concatenation) in line 11 are path operators in the path algebra developed by [5], and

re®ned by [22], [1], and [18]. For shortest path transitive closure computation, AGG is the

minimum function and CON is the add function. For each GREEN node i, the TCD

algorithm adds the weight of link < i; k > the single-source transitive closure of node k
(CON). Then we choose, for each destination, the smallest among all children (AGG) as

the shortest path weight. The result is a new single-source path view for the GREEN node.

The correctness of the algorithm is based on the fact that all children of a GREEN node are

RED nodes, whose single-source transitive closures are already computed. For example, in

®gure 2, the shortest path from node a to f is represented in the path view as PVG
af �. The

function CON�LWfc;PVG
af � adds the weight of the shortest path from a to f with the

link weight from f to c in resulting a path of cost 9. The function AGG�PVG
ac;

CON�LWfc;PVG
af �� updates the shortest path weight from a to c computed so far (PVG

ac)

with the result of the CON operation if the latter yields a shorter path. In ®gure 2, the

PVG
ac � 4 which is smaller, therefore the result of CON�LWfc;PVG

af � is ignored.

Appendix C. Proof of Theorem 1

Let d be the maximum out-degree of the nodes in N. O�e� log�n�� is the time complexity

for the function Dijkstra Single Source Algorithm. The time complexity for processing the

RED nodes thus is O�r � e� log�n��. To compute the path views for all GREEN nodes

(lines 8±11 in ®gure 16) requires a total time complexity of O�g� d � n�. The total time

complexity is: O�r � e� log�n�� � O�g� d � n�. The out-degree d in ITS graphs

is a small constant, thus O�d� � O�1�, O�e� � O�d � n� � O�n�. As a result, the

time complexity becomes: O�d� � �O�r � n� log�n�� �O�g� n�� � O�r � n� log�n��
�O�g� n�. Therefore the time complexity for the TCD algorithm is:

max�O�r � n� log�n��;O�g� n��

Appendix D. The incremental update algorithm for link weight decreases}

The IUA±Decrease algorithm (®gure 17) differs from the TCD algorithm in that, for each

RED node, the TCD algorithm runs the single-source Dijkstra algorithm for RED nodes,

whereas the IUA±Decrease algorithm processes a Dijkstra-style search in reverse to

compute the shortest paths from all nodes in the network to this RED node (lines 1±12 in

®gure 17). Initially, those links whose weights have decreased are stored in the set S. Then,

for each RED node k, the shortest paths from all other nodes to this RED are computed by

the following process. First, for each link < i; j;w > in S, a new path from i to k is

computed based on the decreased LWij (line 4). If the new path is better than the old path

from i to k, i is inserted into the heap H for further expansion. Lines 2±6 correspond to

initializing the heap, whereas lines 7±12 correspond to the incremental reverse traversal

152 HUANG, JING AND RUNDENSTEINER



starting from the nodes in the heap. During each expansion in reverse traversal, we only

continue the expanding thread if a better path is found (lines 10±11), otherwise the thread

is terminated. After the shortest paths from all nodes reaching the RED nodes are

computed, we compute the shortest paths from all nodes reaching the GREEN nodes. The

process for GREEN nodes in the IUA±Decrease algorithm (lines 13±16) is similar to that

in the TCD algorithm, but in reverse direction.

The worst-case time complexity for the IUA±Decrease algorithm is the same as that of

the TCD algorithm. But, the IUA±Decrease algorithm propagates search only to affected

nodes (lines 5, 11 in ®gure 17) where the TCD propagates expansion through all nodes. If

the number of affected links is small (i.e., jSj is small), the actual process time for the IUA±

Decrease algorithm can be shorter than for the TCD algorithm.

Appendix E. The incremental update algorithm for link weight increases

The IUA±Increase algorithm (®gure 18) is designed to update the path view for an ITS

network for the link weight increase situation (see ®gure 18) It is slightly different from the

IUA±Decrease algorithm in that an additional MIN function in the inner loop (lines 5 and

12) is used to determine the new best paths. Only if the new path weight has increased

(lines 6, 13 of ®gure 18), does the expansion thread continue. The time complexity of the

IUA±Increase algorithm is the same as that of the IUA±Decrease algorithm because the

MIN function only linearly increases the time complexity for ITS networks where the out-

degree is a small constant.

ALGORITHM TCD �PVG; Gc�
/ / PVG is the shortest path adjacency matrix for G.

/ / Gc � �N; L;W;GREEN;RED�.
01 8fi; j 2 Ng do

02 if i � j then

03 PVG
ij :� 0;

04 else

05 PVG
ij :� 1;

Ð ® od

06 8fi 2 REDg do

07 DijkstraSingleSourceAlgorithm�i�;
Ð od

08 8fiji 2 GREENg do

09 8fkj5i; k;w4 2 Lg do

10 8fjj j 2 Ng do

11 PVG
ij :� AGG�PVG

ij ;CON�LWik;PVG
kj��;

Ð od od od

12 return PVG;

Figure 16. The TCD algorithm.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 153



Appendix F. The heuristic hierarchical path search algorithm

The Heuristic Hierarchical Path Search (HHPS) algorithm in ®gure 19 calls the following

functions:

* MarkNode�ni;G
l
p� marks node ni of region Gl

p in the hierarchical graph.
* Border�Gl

p� denotes the nodes in Gl
p which also appear in regions at a higher level.

* GetEstimate�ni; dest� returns the estimated shortest path weight between ni and dest.
We use the Euclidean distance times the minimum weight per distance unit to estimate

the shortest path weight. The estimate function always underestimates the actual

shortest path weight, therefore it guarantees the correctness of the algorithm.

Starting from the destination node dest, the HHPS algorithm marks nodes upward in the

hierarchy recursively if the nodes can lead to the designated destination (lines 1±7). The

PROCEDURE IUA2Decrease �S; PVG; Gc�
/ / S is a set of links whose link weights have decreased.

/ / PVG is the path view matrix of G; G � �N; L;W�.
/ / Gc � �N; L;W;GREEN;RED�.
DATA STRUCTURES: heap H :� 0=;

/ / the heap H is an array of tuples 5n; v4 where the tuple with the

/ / smallest v being at the top of the heap

01 8fk 2 REDg do

02 8f5i; j;w4 2 Sg do

03 if i 6� j then

04 PVG
ik :� AGG�PVG

ik ;CON�LWij;PVG
jk��;

05 if PVG
ik changed then

06 insert 5i;PVG
ik4 into H; / / replace if 5i;ÿ4 already in H

Ð ® ® od

07 while jHj40 do

08 remove 5j; v4 from top of H;

09 8fi 2 Nj5i; j;w4 2 Lg do

10 PVG
ik :� AGG�PVG

ik ;CON�LWij;PVG
jk��;

11 if PVG
ik changed then

12 insert 5i;PVG
ik4 into H; / / replace if 5i;ÿ4 already in H

Ð ® od od od

13 8fkjk 2 GREENg do

14 8fjj5K; j;w04 2 Lg do

15 8fiji 2 Ng do

16 PVG
ij :� AGG�PVG

ij ;CON�LWkj;PVG
ik��;

17 return PVG;

Figure 17. The IUA_Decrease algorithm.

154 HUANG, JING AND RUNDENSTEINER



HHPS algorithm traverses the hierarchy beginning from source src (line 8) until it reaches

the destination dest (lines 11 and 12). The upward expansions at level-l traverse all the

regions which contain the current expansion node ni (lines 13 and 14), and for each region,

traverse from the current expansion node ni to all the border nodes of that region (lines 15

and 16). The downward expansions (lines 17±19) expand all the marked nodes, and

terminate when the expanded node is the destination (line 11).

To prune the expansion tree, the HHPS algorithm uses a prediction that estimates

PROCEDURE IUA2INCREASE �S; PVG; Gc

/ / S is a set of links whose link weights have increased.

/ / PVG is the path view matrix of G; G � �N; L;W�.
/ / Gc � �N; L;W;GREEN;RED�.
/ / MIN is the minimum function.

DATA STRUCTURES: heap H :� 0=;

/ / a heap is an array of tuples 5n; v4 where the tuple with the

/ / smallest v at the top of the heap

01 8fk 2 REDg do

02 8f5i; j;w4 2 Sg do

03 if i 6� j then

04 if PVG
ik � PVG

ij � PVG
jk then

05 PVG
ik :� MINfLWix � PVG

xkj�5i; x;w04 2 Lg;
06 if PVG

ik changed then

07 insert 5i;PVG
ik4 into H; / / replace if 5i;ÿ4 already in H

Ð ® ® od

08 while jHj40 do

09 remove 5j; v4 from top of H;

10 8fi 2 Nj5i; j;w4 2 Lg do

11 if PVG
ik � PVG

ij � PVG
jk then

12 PVG
ik :� minfLWix � PVG

xkj�5i; x;w04 2 Lg;
13 if PVG

ik changed then

14 insert 5i;PVG
ik4 into H; / / replace if 5i;ÿ4 already in H

Ð ® od od od

15 8fi; kji 2 N; k 2 REDg do

16 PVG
ik :� 1;

Ð od

17 8fkjk 2 GREENg do

18 8fjj5k; j;w004 2 Lg do

19 8fiji 2 Ng do

20 PVG
ik :� AGG�PVG

ik ;CON�LWkj;PVG
ik��;

Ð od od od

21 return PVG;

Figure 18. The IUA_Increase algorithm.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 155



the weight of the untraversed portion of the path from the current expanded node to the

destination. Like the A� algorithm, the HHPS algorithm is priority-based. The priority of

the next expansion node ni is given to the active expansion thread that has the smallest

w� e value. Unlike the A� algorithm which traverses only one link at a time, the HHPS

algorithm traverses a complete path segment encoded in the path view. The number of

expansions needed for the HHPS is therefore smaller than that for the A�. As a result, path

retrieval of HHPS is expected to be more ef®cient than that of A�Ðas our experiments

con®rm (see Section 5).

For example, if we use the HHPS algorithm to ®nd the path from node b to node q in

ALGORITHM H H P S�HG; src; dest�
/ / HG is the hierarchical path view of G
/ / src is the source node; dest is the destination node of the search

DATA STRUCTURES: heap H :� 0=, is an array of tuples 5n;w; e; l; d4 where

/ / the tuple with the smallest w� e being at the top of the heap, and n is

/ / the current expansion node, and w is the actual accrued weight from src to n,

/ / and e is the estimated weight from n to dest, and l is the current level of

/ / hierarchy, and d is the next expansion direction �UP=DOWN� from n.

/ / S :� 0=, is a queue of tuples 5n;Gl
p4, where n 2 Gl

p.

01 insert 5dest;G0
p4 into S; / / dest 2 G0

p

02 while jSj40 do

03 remove 5ni;G
l
p4 from S;

04 MarkNode�ni;G
l
p�;

05 8 nj 2 Border�Gl
p� do

06 8 q 2 fq0j nj 2 Gl�1
q0 g do

07 insert 5nj;G
l�1
q 4 into S;

Ð od od od

08 insert 5src; 0;GetEstimate�src; dest�; 0;U;P4 into H;

09 while jH j40 do

10 remove 5ni;w; e; l; d4 from H;

11 if ni � dest then

12 return w;

Ð ®

13 if d � UP then

14 8 p 2 fp0j ni 2 Gl
p0 g do

15 8 nj 2 Border�Gl
p� do

16 insert 5nj;w� PV
Gl

p
ninj
;GetEstimate�nj; dest�; l� 1;UP4 into H;

Ð od od ®

17 8 p 2 fu0j ni 2 Gl
p0 g do

18 8 marked nj 2 Gl
p do

19 insert 5nj;w� PV
Gl

p
ninj
;GetEstimate�nj; dest�; lÿ 1;DOWN4 into H;

Ð od od od

Figure 19. The heuristic hierarchical path search algorithm HHPS.

156 HUANG, JING AND RUNDENSTEINER



®gure 5, lines 1±7 of ®gure 19 mark nodes o and m in G0
2. Line 8 puts < b; 0; 0; 0;UP >

into the heap H, assuming the GetEstimate�n; dest� function always returns 0Ðworst-

case prediction. Within the while loop (line 9), the algorithm executes statements in lines

13 to 16 after < b; 0; 0; 0;UP > is removed from H in line 10. In ®gure 5(b),

Border�G0
0� � fd; fg. At this point, two tuples, < d; 10; 0; 1;UP > and

< f ; 13; 0; 1;UP > are inserted into H. Since there is no marked nodes in G0
0, the

statements in lines 18 and 19 are skipped.

In the next iteration of the while loop (line 9), the tuple < d; 10; 0; 1;UP > is removed

from H (line 10). Because G2
0 has no border nodes, the statements in lines 15 and 16 are

skipped. Because nodes m and o in G1
0 are marked, the statements in lines 17±19 insert

tuples < m; 20; 0; 0;DOWN > and < o; 31; 0; 0;DOWN > into H. In the next itera-

tion of the while loop in line 9, the tuple < f ; 13; 0; 1;UP > is removed from H
and tuples < m; 31; 0; 0;DOWN > and < o; 28; 0; 0;DOWN > are put into H. After

< m; 20; 0; 0;DOWN > is removed from H, tuple < q; 26; 0; 0;DOWN > is inserted into

H. Finally, the tuple < q; 26; 0; 0;DOWN > is removed from H, q is the designated

destination and 26 is returned by the HHPS algorithm. The weight of the path retrieved by

the HHPS algorithm from node b to node q is 26.

Although the HHPS algorithm presented in this paper returns only the path weight, the

actual path, bÿ aÿ d ÿ gÿ jÿ mÿ nÿ q in our example, can be retrieved by a modi®ed

HHPS algorithm which stores the interim paths, and by a modi®ed path view structure that

also encodes the next-hop node for each shortest path weight [13]. In this paper, without

loss of generality, we only present the simpli®ed model to explain the basic ideaÐwhile

our implemented system incorporates the actual retrieval of the next hop itself.

Notes

1. Dynamic route guidance here means guided vehicles travel paths selected based on the most up-to-date traf®c

conditions.

2. We assume a path view is up-to-date if it is updated at an interval of < 3 minutes. Such a requirement is safe

because preliminary testing in the Loral system showed that the communication delay is between 6 to 8

minutes.

3. In fact, the complexity is O�e� n� log�n��, where e is the number of links and n is the number of nodes in

the network. But the outdegree in ITS road networks is usually a small constant c, i.e. e � c� n, therefore the

complexity becomes O�n2log�n��.
4. We processed this coloring technique on the 1590-node real map of the Troy city, and derived 632 GREEN

nodes and 958 RED nodes.

5. This is desirable because the time required to compute the path views of all regions that divide the network is

minimal if the regions are of the same size.

6. A difference between these road types is typically the average travel speed. Because no road classi®cation is

available in our experimental maps, we base the classi®cation on the maximum speed limit.

References

1. R. Agrawal, S. Dar and H.V. Jagadish. Direct Transitive ``Closure Algorithms: Design and Performance

Evaluation,'' ACM Transactions on Database Systems, Vol. 15, No. 3, pp. 427±458, 1990.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 157



2. R. Agrawal and H.V. Jagadish, 1990, ``Hybrid Transitive Closure Algorithms,'' Proc. of the 16th VLDB,

pp. 326±334.

3. A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer Algorithms, Addison-

Wesley, pp. 207±209, 1974.

4. F. Bancilhon. ``Naive Evaluation of Recursively De®ned Relations,'' in On Knowledge Base Management
SystemsÐIntegrating Database and AI systems, Springer-Verlag: New York, 1985.

5. B. Carr. Graphs and Networks, Clarendon Press, Oxford, England, 1979.

6. E.W. Dijkstra. ``A Note on Two Problems in Connection with Graphs,'' Numerische Mathematik, pp. 269±

271, 1959.

7. J. Ebert. ``A Sensitive Transitive Closure Algorithm,'' Information Processing Letters, 12., pp. 255±258,

1959.

8. M.J. Egenhofer. ``What's Special about Spatial?'' Database Requirements for Vehicle Navigation in

Geographic Space, Proc. of the 1993 ACM SIGMOD Int'l Conf. on Management of Data, pp. 398±402,

1993.

9. M.A.W. Houstma, P.M.G. Apers and S. Ceri. ``Complex Transitive Closure Queries on a Fragmented

Graph,'' Proc. of the 3rd Int'l Conf. on Data Theory, Lecture Notes in Computer Science, Springer-Verlag,

pp. 470±484, 1990.

10. M.A.W. Houstma, P.M.G. Apers, and S. Ceri. ``Distributed Transitive Closure Computations: The

Disconnection Set Approach,'' Proc. of the 16th VLDB., pp. 335±346, 1990.

11. M.A.W. Houstma, P.M.G. Apers, and G.L.V. Schipper. Data Fragmentation for Parallel Transitive Closure

Strategies, Proc. of the 9th Int'l Conf. on Data Engineering, pp. 447±456, 1993.

12. M.A.W. Houstma, F. Cacace, and S. Ceri. ``Parallel Hierarchical Evaluation of Transitive Closure Queries,''

1st Int'l Conf. on Parallel and Distributed Inf. Sys., pp. 130±137, 1990.

13. Yun-Wu Huang, Ning Jing, and A. Elke Rundensteiner. ``A Semi-Materialized View Approach for Route

Maintenance in IVHS,'' Proc. of the 2nd ACM Workshop on Geographic Information Systems, pp. 144±151,

1994.

14. Yun-Wu Huang, Ning Jing, and A. Elke Rundensteiner. ``Hierarchical Path Views: A Model Based on

Fragmentation and Transportation Road Types,'' Proc. of the 3nd ACM Workshop on Geographic
Information Systems, 1995.

15. Yun-Wu Huang, Ning Jing, and A. Elke Rundensteiner. ``Effective Graph Clustering for Path Queries in

Digital Map Databases,'' Proc. of 5th Int'l Conf. on Information and Knowledge Management, pp. 215±222,

1996

16. Y.E. Ioannidis. ``On the Computation of the Transitive Closure of Relational Operators,'' Proc. 12th Int'l
Conf. on VLDB, pp. 403±411, 1986.

17. Y.E. Ioannidis and R. Ramakrishnan. ``An Ef®cient Transitive Closure Algorithm,'' Proc. 14th Int'l Conf.
on VLDB, pp. 382±394, 1988.

18. Y. Ioannidis, R. Ramakrishnan, and L. Winger. ``Transitive Closure Algorithms Based on Graph Traversal,''

ACM Trans. on Database Systems, Vol. 18, No. 3, pp. 512±576.

19. Ning Jing, Yun-Wu Huang, and A. Elke Rundensteiner. ``Hierarchical Optimization of Optimal Path

Finding for Transportation Applications,'' Proc. of 5th Int'l Conf. on Information and Knowledge
Management, pp. 261±268, 1996.

20. Laurel. IVHS architecture requirement document, 1994.

21. W.T.Jr. McCormick, P.J. Schweitzer, and T.W. White. ``Problem Decomposition and Data Reorganization by

a Clustering Technique,'' Operations Research, Vol. 20, No. 5, pp. 993±1009, 1972.

22. A. Rosenthal, S. Heiler, U. Dayal, and F. Manola. ``Traversal Recursion: A Practical Approach to

Supporting Recursive Applications,'' Proc. ACM-SIGMOD, pp. 166±176, 1986.

23. S. Shekhar, A. Kohli, and M. Coyle. ``Path Computation Algorithms for Advanced Traveller Information

Systems,'' IEEE 9th Int'l Conf. on Data Engineering, pp. 31±39, 1993.

24. S. Warshall. ``A Theorem on Boolean Matrices,'' JACM, 9, 1, pp. 11±12, 1962.

25. T.A. Yang, S. Shekhar, B. Hamidzadeh, and P.A. Hancock. ``Path Planning and Evaluation in IVHS

Databases,'' VNIS, pp. 283±290, 1991.

158 HUANG, JING AND RUNDENSTEINER



Yun-Wu Huang received the B.S. degree in Management Science from National Chiao-Tung University in

1982, and the M.S. degree in Computer Science from Indiana University in 1989. He had worked as a computer

professional in the areas of database and computer network between 1989 and 1995. Currently, he is a Ph.D.

candidate in the Department of Electrical Engineering and Computer Science at the University of Michigan. His

current research interests include spatial databases, multi-media databases, and geographic information systems.

Ning Jing received the B.S. and M.S. degrees in Electrical Engineering, and the Ph.D. degree in Computer

Science from the Changsha Institute of Technology, Changsha, China. Dr. Jing has received a High Education

Award from the State Department in 1992 and an Outstanding Visiting Scholar Grant from the State Education

Commission in 1994.

He is currently a faculty member of the Department of Electrical Engineering at the Changsha Institute of

technology. From 1994 to 1996, he had been a visiting scholar in the Department of Electrical Engineering and

Computer Science at the University of Michigan. His current research interests include object-relational

databases, multi-media databases, Databases for internet information services, and geographic information

systems.

Elke Angelika Rundensteiner received a BS degree (Vordiplom) from the Johann Wolfgang Goethe

University, Frankfurt, West Germany, and a Ph.D. degree from the University of California, Irvine. Dr.

Rundensteiner has received numerous honors and awards, including a Fulbright Scholarship, an NSF Young

Investigator Award in databases in 1994, and an Intel Young Investigator Engineering Award, and an IBM

Partnership Award. Dr. Rundensteiner is a member of IEEE and ACM.

She is currently a faculty member of the Department of Computer Science at the Worcester Polytechnic

Institute, after having been an Assistant Professor in the Department of Electrical Engineering and Computer

Science at the University of Michigan. Dr. Rundensteiner's goal is to develop database technology to address

modeling and querying requirements of advanced applications. Her current research efforts include object-

oriented databases, view techniques for data warehousing and database evolution, multi-media databases, and

geographic information systems.

A HIERARCHICAL PATH VIEW MODEL FOR PATH FINDING IN ITS 159


