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A model is proposed which treats rankings given by a group of judges as 
representing regions in an isotonic space of dimensionality r. Three possible 
criteria for estimating lower bound dimensionality are discussed: mutual 
boundary, cardinality, and the occurrence of transposition groups. Problems 
associated with each criterion are mentioned. 

The task of a psychological scaling technique is to search for some 
form of lawfulness, i.e., redundancy, in experimentally collected data. This 
redundancy, when it  is present, permits a description of the items (also 
perhaps of the subjects) which is simpler than an exhaustive account of 
the response of every subject to every item, and yet  tells the experimenter 
everything he wants to know about his data. If  the scaling technique is the 
Gut tman  scale [5], for example, the experimenter hopes to find that  the score 
of one of his subjects will tell him not simply how many items the subject 
passed but  which items he passed, within some reasonable margin for error. 
Sometimes this scaling process is an end in itself; at  other times the items or 
the people are scaled in order to "calibrate" them for application in some 
other context. In either case, the scaling technique chosen for a particular 
application must be appropriate to the task given the subjects, i.e., whether 
they were asked to agree with the items, pass them, rank them, or compare 
them in pairs, etc. 

This paper is concerned with a scaling technique designed for the analysis 
of ranked preference data. The subject is asked to rank a group of items, 
for example, the names of hobbies. The model states that  each hobby can 
be characterized by its position on each of several underlying at tr ibutes 
(e.g., scientific-artistic, solitary-gregarious, skilled-unskilled, etc.). The  
model states further tha t  every subject can be characterized by his own 
maximum preferences on each of these attributes,  and that  he will rank 
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the hobbies according to their increasing distances from the ideal hobby 
defined by his own maximum preference on each attribute; e.g., the 
scientific, gregarious, skilled subject will probably give model-airplane 
racing a high rank, photography a middling rank, and finger painting a low 
rank. 

The critical problem in constructing such a model is the selection of 
a weighting scheme by  which the subject is hypothetically supposed to 
combine the attributes in judging the distance of a given hobby from his 
own ideal hobby. The scheme proposed here is the simplest available: let 
the attributes be the axes of a multidimensional space, and interpret 
"distance" literally as the distance from the point representing the subject's 
ideal hobby, located by its projection on the axes, to another point represent- 
ing one of the hobbies listed in the questionnaire. 

Before elaborating these points, some questions which this introduction 
is likely to raise will be considered. First, is this model intended for appli- 
cation to the sort of preference data ordinarily analyzed by the method of 
rank-order [7]. No, it is not; there the task is to uncover an underlying order 
of popularity of the stimuli. The analysis presupposes that all subjects agree 
on this order and that all would give it, were it not for random errors. In 
other words, only the stimuli are being sealed, the people are not. The present 
model is usable only where subjects differ fundamentally in their preferences 
for the items, though they all view these items substantively the same within 
some common system of attributes. To choose another illustration, this 
model would be appropriate to the analysis of voters' preferences for political 
candidates if there were reason to suppose that each voter could be character- 
ized by his position on, let us say, the conservatism-liberalism and 
isolationism-internationalism continua, and that he valued the available 
candidates in proportion as they approximated his own position on these 
continua. Within the "stimulus space," the voters might agree perfectly 
as to how the eandiates differ from each other: it is required that the voters 
themselves differ only in their preferences among the candidates. In this 
system, as in Guttman scaling, the subjects as well as the items may be 
scaled. 

Second, is it really necessary that these continua be agreed upon by all 
the subjects, that is, that everyone have the same conception of the liberality 
of Senator Jones or the gregariousness of photography? Yes, fundamentally 
it is, with some qualification since this method is nonmetric. I t  will deal 
throughout only with rankings, and will never attempt to determine numerical 
values for the distances between points; only relative distances in the form 

o f  rank orders will be considered. Within the relative freedom of a nonmetrie 
model there is allowance for some minor differences between subjects about 
the structure of the space. But since the point of the method is to discover 
this common underlying structure on which the model supposes the subject's 
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responses to be based, if the structure is not there it will not be found and 
the method will fail. This is true of every other similar system, from Guttman 
scaling to factor analysis. Of course when one speaks of agreement between 
subjects about the structure of the space one does not mean explicit verbal 
agreement, any more than a subject taking an IQ test would be expected 
to be aware of the factorial compositions of the items. As in factor analysis, 
it is necessary to assume that the factorial composition of an item is the 
same for all subjects. 

Origins in the Un]olding Method 

It  will be evident to the reader acquainted with scaling literature that 
the model proposed above is simply a multidimensional generalization of 
Coombs' method of unfolding [2, 3]. Coombs supposes that both subjects 
and items can be represented by points on a line segment (the single attribute 
under investigation). Each subject ranks all of the items in order of their 
increasing distances from his own position. Since he is concerned only with 
ordering the magnitudes of these distances and does not care about their 
directions, the subject might be said to pick up the continuum at his own 
position as one might pick up a piece of string, letting the ends swing together 
and fuse. The analytic task is the unfolding of these rankings (whence the 
name), in order to recover the original ordering of subjects and items on 
the continuum. The method used to accomplish this task, described in detail 
in the papers cited, requires no definition of "zero," "addition," or the "unit 
interval," and in fact employs no properties of the real line except the ordering 
of its points and the comparability of (some) intervals in magnitude. Internal 
checks provide that even these assumptions shall justify themselves in 
practice; that is, the unfolding method is a scaling criterion as well as a 
scaling method, and any given set of rankings may or may not unfold. 

I t  is apparent that the only change introduced by the present authors 
is the replacement of Coombs' line segment by a space of dimension r, which 
may equal one and may be greater than one. The following section will 
explain a number of ways of determining r from the data. I t  will be assumed 
that distances in this r-dimensional space can be compared in magnitude, 
so that it is meaningful to say "it is farther from A to B than from C to D," 
where A, B, C, and D are points in the space. 

Some Definitions 

Let the following definitions refer to the familiar Euclidean space, 
although (as the reader will see) all the Euclidean properties will not be 
needed. 

The set C of subjects ct , --- , c~ , . . .  , c~ and the set Q of items or 
objects q~, .. • ,  q~, .. • , q~ are regarded as sets of points in a space of dimen- 
sion r. When a system of reference axes is inserted in the space, each subject 
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or object point can be characterized by an ordered r-tuple of real numbers, 
e.g., ql = (q~i , q2i , "'" , q,,~), which are its projections on the axes. The 
task of each subject is to rank the whole set of objects according to their 
increasing distances from his own position. 

Consider what position in space a subject's ideal must occupy in order 
to present a particular ranking of the objects. I t  is clear that relative to any 
two objects, A and B, a subject may make one of three reports: A is pre- 
ferred to B, symbolized A. >- B (which means that A is closer to the subject 
than is B); the converse, B ->- A; and third, that he is undecided between 
them, symbolized A = B, which means that the subject's ideal is equidistant 
from A and B. In one-space (that is, an infinite straight line), there is only 
one point exactly equidistant from two distinct points, which is called their 
midpoint. All the points on the line to one side of that midpoint will be 
closer to one of the objects, and all on the opposite side will be closer to the 
other object. Only a subject with an ideal lying exactly on the midpoint 
would report A = B, that is, indecision between the two. (See Figure 1.) In the 
unidimensional case explored by Coombs, the whole one-space is segmented 
by these midpoints into regions, within each of which every subject will 
report the same ranking of the objects, although within any one region 
different subjects' ideals may lie at different absolute distances from the 
objects. 

MIDPOINT AB 

- - 0  . . . .  

mREGtON tN WHICH A>B, , -~REGION IN WHICH B > A ~  

FmURE I 
Midpoints and Regions Generated by Two Stimulus Points 

In two-space (a plane), the locus of equidistance from two objects will 
be a line, the perpendicular bisector of the line segment connecting those 
objects. All subjects with ideals in the plane on one side of this line, the side 
containing the object A, will report A • >- B; all those on the opposite side 
will report B ->- A; only those exactly on the line will report A ~- B. In 
general the locus of equidistance from any two distinct objects will be a surface 
of dimension one less than the dimension of the total space in which the 
objects occur, i.e., a hyperplane. Hence the locus of equidistance from two 
distinct objects A and B is the boundary hyperplane H ( A ,  B).  Since it will 
also be convenient to speak of loci of equidistance from sets of more than two 
objects, this notation will be generalized: H ( A ,  B, . . .  , N)  will symbolize 
the locus of equidistance from a set of n objects (A, B, C, • • • , N) in r dimen- 
sions, which will be a subspace (hyperplane) of some dimensionality less than r. 

Between three objects (A, B, C) in two-space not all on the same line, 
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F m u ~  2 
Boundary Hyperpla~es Generated by Three Points in Two Dimensions 

there will be three such boundary hyperplanes, H(A, B), H(A, C), H(B, C), 
which will meet in a point equidistant from all three objects, H(A, B, C) 
(see Figure 2). In the same fashion, any four non-coplanar objects in three- 
space (A, B, C, D) determine a point equidistant from all of them, H(A, B, 
C, D) through which all six of their boundary hyperplanes of the form H(A, B) 
must pass. In a space of r dimensions, there will always be one and only one  
point equidistant from r + 1 objects which are scattered--that is, which 
do not all lie on a subspace of the r-space. 

These observations imply a general conclusion: in a space of r dimensions, 
if a locus of equidistance exists for some set of n points in general position 
(i.e., well scattered throughout the space), the locus will be a subspace of 
dimensionality r -- n + 1. While this is actually a rather trivial result, it 
may be informative to sketch out a proof. I t  will be necessary to draw on 
a well-known feature of the geometry of higher spaces. The intersection of 
two r-dimensional subspaces S and T, neither of which is a subspace of the 
other, is a subspace of both S and T having r -- 1 dimensions. The general 
outline for a proof using a form of induction argument on n, the number of 
points, would go as follows. 
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For a set of two points, A and B, embedded in r dimensions, consider 
a line L joining A and B. Now let there be some set of r orthogonal reference 
axes (XI ,  X2,  • • • , X~) such tha t  X1 is collinear with L. Let  the origin be at  
the midpoint between A and B on L. The subspaee everywhere orthogonal 
to X1 must  be a hyperplane of dimensionality r - 1. Now consider any  
point  p which lies in this r - 1 hyperplane, such tha t  p projects onto the 
origin on X1 . I t  follows tha t  the squared distance from p to A equals tha t  
from p to B as projected on X1.  Furthermore,  A and B each project onto the 
origin on the r - I hyperplane, so tha t  the squared distances between p and A 
and p and B are equal as projected on the hyperplane. Thus, any point p in 
the hyperplane lies, by definition, in the locus of equidistance H(A, B). 
Furthermore,  only points in the hyperplane of r - 1 dimensions fit the 
definition of H(A, B); otherwise the point p could not  project equally distant 
from A and B on axis X~ . Since the origin and particular set of reference 
axes utilized are completely irrelevant for distance among points in a 
Euclidean space, the locus H(A, B) is a hyperplane of dimensionality r - 1; 
tha t  is, r -- n + 1 dimensions, n = 2. 

Now assume the proposition true for n - 1 stimulus points in general 
position in r dimensions. A set of n stimulus points (A, B, . . .  , Q, R) in 
general position in r dimensions may  be divided into two overlapping sets 
of n - 1 stimulus points, (A, B, . . .  , Q) and (B, C, . - -  , Q, R). By assump- 
tion, the locus H(A, B, . . .  , Q) must  be a space of dimensionality 
r - (n - 1) + 1, or r - n + 2, and H(B, C, . . -  , R) a space of the same 
dimensionality. Suppose that  H(A, B, . . .  , Q) and H(B, C, . . .  , R) inter- 
sect. Since each of these loci is a subspace of dimensionality r - n + 2, the i r  
intersection must  be a subspace of r -- n + 1 dimensions. By  the tran-  
sitivity of the relation of equality, this subspace must  also be the inter- 
section of all the remaining loci of equidistance of n : 1 points drawn from 
the original set of n points, so tha t  the r - n + 1 space is by definition the 
locus H(A, B, . . .  , Q, R). If the loci H(A, B, . . .  , Q) and H(B, C, . . .  , R) 
do not  intersect, then by  the same transitive property of equality, the locus 
of equidistance from the set of r points may  not exist. This proves the propo- 
sition. 

Regions 

Any one boundary hyperplane H(A, B) divides the whole space into 
two half-spaces, within each of which all points satisfy the same distance 
relation relative to the two objects A and B generating the hyperplane. 
Call one of these zones, tha t  including the object A, the isotonic (same- 
ordered) region AB, (meaning A • >- B) and the other, the isotonic region 
BA. If  the boundary H(B, C) passes through the region AB, every point 
within the region AB which is also on the B side of the hyperplane H(B, C) 
will lie in the order A • ~- B • >- C from the three objects, so that  this isotonic 
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region may be designated ABC. Indeed, any isotonic region is the set of all 
points on the indicated side of each of several boundary hyperplanes, or 
(equivalently) the intersection of a particular set of larger isotonic regions, 
or (equivalently) the set of all points satisfying a given set of distance re- 
lations relative to the objects. For this last purpose, a convenient notation 
is that of partially ordered sets or posets, in which the relation A • >- B is 
indicated by writing AB. The division of a two-space by three objects is 
illustrated in Figure 3. I t  is evident that every isotonic region, being bounded 
by hyperplanes, is everywhere convex, that is, any two points within the 
region can be connected by a straight line which does not pass outside the 
region. 

O 
S 

FIGURE 3 
Regions Generated by  Three Points in Two Dimensions 

The minimum ceils of the space, the regions out of which all other 
regions are constructed, will be those specified by a complete or simple 
ordering of all the objects, of the sort that the subjects in the space will 
make. Call these elemental regions. Thus region A (BC) in Figure 3 is made 
up of the union of two elemental regions, ABC and ACB. The notation 
A(BC) will be adopted here to symbolize the union of the elemental regions 
ABC and ACB--similarly the notation A(BC)D will mean the union of the 
regions ABCD and ACBD, (ABC)D will indicate the union of the regions 
ABCD, BACD, BCAD, CBAD, CABD, ACBD, and so on. 

Any region will wholly contain any other region whose defining poser 
wholly satisfies the poser of the first, with the addition of some further re- 
finement; thus the region AB must contain the region A(BC) if the latter 
exists. On the other hand, two regions cannot intersect, that is, have some 
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subregion in common, if their posets contain both a relation and its comple- 
ment. Thus the region A(BC) cannot intersect the region BA because no 
point in the space could obey simultaneously the contradictory orders of 
distance AB and BA, that is, lie simultaneously on both sides of the hyper- 
plane AB. 

When k + 2 objects (or more) occur in a k-space, then certain of the 
(k + 2)! possible elemental regions wiIl disappear. For example, in Figure 4, 
representing three objects in one-space, there is no region ACB and no CAB, 
i.e., the region (A C)B present in Figure 3 has disappeared. I t  is not an accident 
that those two particular elemental regions are missing. Their absence was 
dictated by the dimension of the space and the configuration of the objects 
in a way which the following sections will define. This dependence will become 
the analytic tool of the method, making it possible to reconstruct dimension 
and configuration from experimentally obtained rankings. 

Determining Dimension 

The first problem to be considered is that of finding r, the dimension of 
the space, given the rankings produced by the subjects. It  is not claimed 
that the three methods suggested here exhaust all the possibilities of di- 
mensional analysis, or even that they are best; they simply recount as much 
as the authors know about the problem at the time of writing. 

MIDPOINT 

MIDPOINT AB / - -MIDPOINT BC 

(0__ (c) --R B R A R C R B - -  
C A A 

FmURE 4 
Rank Orders Associated with Regions Generated by Three Stimulus Points in One Dimension 

Dimension by Mutual Boundary 

In the light of the definition of an isotonic region as the set of all points 
satisfying a given set of distance-relations relative to the objects, the origin 
of the term boundary hyperplane is clear. Every isotonic region is bounded 
by segments of boundary hyperplanes, that is, by (r - 1)-dimensional cells. 
In Figure 4, for example, the region BAC is bounded by the hyperplanes 
H(A, B) and H(A, C). In Figure 3, region A(BC) is bounded by segments of 
the hyperplanes H(A, B) and H(A, C). Note that it is not bounded by the 
hyperplane H(B, C). This is because the poset defining the region A(BC) 
specifies no distance-relation between B and C, so that a moving point 
inside A(BC) might reverse its distance-relations with B and C--that  is, 
it might pass through the boundary hyperplane H(B, C)--without leaving 
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the region A(BC). Of necessity, every hyperplane bounding a given region 
is represented by a pair of objects which are adjacent in the defining poser 
of that region. (Two elements of a poset will be said to be adjacent if one 
precedes the other in rank and if there is no other element in the poser 
immediately succeeding the first and preceding the second.) However, the 
converse that every hyperplane defined by a pair of objects adjacent in 
the poser actually bounds the region is not always true. For example, in 
Figure 4, region ABC is bounded only by the hyperplane H(A, B). In all 
such cases, any remaining hyperplane defined by an adjacent pair, such 
as BC in Figure 4, constitutes the boundary of a larger region containing 
that region. 

Two isotonic regions bound if they do not intersect, that is, there is no 
point common to both of them, and the same r - 1 cell is part of the set of 
r - 1 cells bounding each. Thus in Figure 4 region ABC bounds the three 
regions BAC, B(AC), and BA. Since all isotonic regions are everywhere 
convex, two isotonic regions can bound only on a single hyperplane or on 
entirely coincident hyperplanes. Hence two isotonic regions must bound, 
granted they both exist, if the defining poset of one can be transformed into 
the poser of the other by the reversal of a single adjacent pair of objects; 
this adjacent pair represents the hyperplane which separates them. The 
possibility of coincident hyperplanes does not permit concluding that isotonic 
regions bound only if such a single-pair transposition of their defining posers 
is possible. If hyperplane coincidence were to occur, passing from one region 
into the other would mean simultaneous passage through two (or several) 
hyperplanes, and consequently the simultaneous reversal of one (or several) 
adjacent pairs. However, the existence of coincident hyperplanes could be 

x\ 0 t / ~  

-;,,o 

FIGURE 5 
Regions Generated by a Configuration of Four Points in Two Dimensions 
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readily detected in the total set of rank orders returned by all the judges 
by a complete mutual implication of the defining posers of their isotonic 
regions. 

The value of the concept of boundary lies in its potential application 
as an initial dimensional criterion to indicate whether the space may be 
of dimension one, two, or higher. In a space of dimension one, it is not possible 
for more than two regions to bound one another, and no more than four 
isotonic regions may all bound one another in two-space. (Of course this 
famous "four-color" conjecture has not actually been proved [4], but it may 
probably be used without any great anxiety of its imminent disproof.) The 
two-space limit is illustrated in Figure 5, where four regions all bound one 
another along cells of hyperplanes. The reader may convince himself that 
it is impossible to add a fifth region which will bound all of the existing four. 

A hypothetical example may help to clarify the criterion of mutual 
boundary. Imagine that a group of judges, in evaluating four objects, return 
the following rank orders. 

ABCD ACBD ADBC BCAD CDAB 
ABDC ACDB ADCB CBAD CDBA 
BACD CABD DABC CBDA DCAB 

CADB DACB DCBA 

The presence of ABCD and BACD in these data is evidence, for example, 
that A (BCD) bounds B(ACD). Note that in four cases, sets of three regions 
all mutually bound. These are C(DA)B, D(CA)B, A(DC)B; C(AB)D, 
C(AD)B, C(BD)A ; A (CD)B, A (BD)C, A (BC)D; A (BC)D, B(A C)D, C(AB)D. 
This excludes at once the possibility that the solution is unidimensional. 
On the other hand, a two-dimensional solution is not excluded, since there 
is no instance where five or more regions mutually bound. In several instances 
sets of four regions do mutually bound--for example, (AB)(CD), (CB)(AD), 
DB, and (CA)BD all bound one another. 

I t  has not so far proved possible to extend the mutual boundary approach 
into spaces of dimension higher than two. Fortunately the existence of more 
powerful methods renders this unnecessary. The method may continue to 
serve as a quick check of the possibility of a solution in one or two dimensions, 
and as a first outline of the configuration of objects in the space. 

Dimension by Cardinality 

The boundary method just outlined operates by the determination of 
a lower bound to the dimensionality of the space; that is, by concluding that 
a given set of rankings must have been given by judges in a space of dimension 
"at  least k, and perhaps higher, but not less than k." In the same fashion, 
the following method will serve to impose a lower bound on the possible 
dimension of the space by a comparison of the total number of different 
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rankings returned by the judges, with C(n, It), the maximum possible number 
of elemental isotonic regions that  can be generated by n objects in k dimen- 
sions. Thus Coombs has shown that  four objects can generate no more than 
seven rank orders in one-space; if eight or more distinct rankings were ex- 
perimentally obtained, they could not all be accommodated in a uni- 
dimensional solution. 

In one-space, there will be one more elemental region than boundary 

hyperplanes (i.e., midpoints). Since there will be (2) boundary hyperplanes 

for n objects, the maximum cardinality for n objects in one-space is 

(1) C(n, X) = ( 2 ) +  1. 

Special circumstances, such as the coincidence of boundary hyperplanes, 
can serve only to lower the number of regions in the space. Consequently, in 
determining C(n, k), assume as before that  the objects are scattered so that  
no such special configuration can occur. 

In determining C(n, k) for spaces of dimension k - 1, Professor K. E. 
Leisenring of the University of Michigan (personal communication) has 
pointed out that  when the objects are scattered, every boundary hyperplane 
will be subdivided into isotonic regions by boundary hyperplanes in the 
same fashion as a complete space of one fewer dimension and containing 
one fewer object. Leisenring's observation may be employed to determine 
C(n, k) by considering tha t  the addition of a new object will add as many  
new boundary hyperplanes as there were objects already in the spacc one 
between each of the previous objects and the new member. Each of these 
new hyperplanes will, in turn, be responsible for creating as many new regions 
as it intersects, since each of the intersected regions will be cut into two. 
But  these regions may be readily counted by the number of (k - 1) cells in 
each new hyperplane, which, by Leisenring's observation, will be equal 
to C(n -- 1, k - 1). Consequently, 

(2) C(n, k) = C(n - 1, k) + (n - 1)C(n - 1, k - l). 

No satisfactory nonrecursive expression for (2) has been found. How- 
ever, Dr. R. M. Thrall in a personal communication has pointed out the 
identi ty of the values obtained from it with sums of absolute values of 
Stirling numbers of the first kind [6], for which also no general expression 
exists. The relation may be written 

(3) C(n,k) = ~ I s : l ,  
m = n - - k  

where S :  is a Stirling number. Some values of C(n, k) are given in Table 1. 
The reader will note that  when k = n - 1, C(n, k) = n!. That  is, a space of 
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dimension n - 1 can always account for all possible orderings of n objects, 
just as in components analysis a factor space of n dimensions can always 
account for all the variance in n tests. Of course such a solution is trivial; 
a solution is not counted successful unless it accomplishes some economy of 

,i .................... 

n 

TABLE i 

Maximum Number C(n,d) of Rank-Orders 
Generated by n Objects in d Dimensions 

.............. d 
1 2 3 4 5 

i 1 i 1 1 I 

2 2 2 2 2 2 

3 4 6 6 6 6 

4 7 18 24 24 24 

5 II 46 96 120 120 

6 16 I01 326 600 720 

7 22 197 932 2.556 x 103 4.320 x 103 

8 29 351 2.311 x 103 9.080 x 103 2.221 x 104 

9 37 583 5.119 x 103 2.757 x 104 9.485 x 104 

I0 46 916 1.037 x 104 7.364 x 104 3.430 x 105 

II 56 1.376 x 103 1,953 x 104 1.773 x 105 1.079 x 106 

12 67 1.992 x 103 3.466 x 104` 3.921 x 105 3.030 x 106 

13 79 2.796 x 103 5.857 x 104 8.080 x 105 7.735 x 106 

14 92 3.823 x 103 9.491 x 104 1.569 x 106 1.824 x 107 

15 106 5.111 x 103 1.484 x 105 2.898 x 106 4.021 x 107 

16 121 6.701 x 103 2.251 x 105 5.125 x 106 8.368 x 107 

17 137 8,637 x 103 3.323 x 105 8.726 x 106 1.657 x 108 

18 154 1.097 x 104 4.791 x 105 1.438 x 107 3.140 x 108 

19 172 1.374 x 104 6.765 x 105 2.300 x 107 5.728 x 108 

20 191 1.701 x 104 9.376 X 105 3.585 x 107 1.010 x 109 

description by accommodating all or nearly all the data in comparatively 
few dimensions. 

There is an obvious similarity between the cardinality criterion just 
discussed and the dimensionality criterion proposed by Bennett [1] for the 
problem of analyzing rank-orders of subjects given by tests, within the general 
model of factor analysis. Bennett's model is restricted exclusively to the 
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case in which the rank orders given by tests are monotone, as seems proper 
in the factor analysis context. This restricts the possible isotonic regions 
strictly to open regions, by the condition that for two subjects A and B 
(not stimulus objects as here) H(A, B) shall pass through the origin of the 
space. 

On the other hand, there is no such monotonicity assumption made in 
the model of preferential choice used here, as, unlike test performance, 
individual preference may reasonably be thought of as non-monotone. 
Thus, the possibility of both open and closed regions is allowed. In conse- 
quence, other things being equal, the maximum cardinality numbers given 
in Table 1 are always greater than or equal to those given in Bennett ([1], 
p. 388). However, Table 1 from [1] could be used if there were some way of 
knowing from the data that only open regions were represented, as his table 
does give the maximum number of such open regions which may occur in 
this model. Since each mirror-image region in a space must have a mirror 
image, another region which has the exact reverse of its rank order, and 
since only open regions show such mirror images, one might supplement the 
cardinality criterion in the following way. Count the number of mirror- 
image pairs of rankings existing in the data, and compare them with one- 
half the number of regions listed in Bennett's table for the appropriate n 
and a given r. If this number is exceeded, then the dimensionality is greater 
than r. 

In the hypothetical example given previously, eighteen rankings were 
returned by the subjects. Reference to Table I shows this to be just the 
maximum allowable number for four objects in two dimensions; hence there 
is no reason as yet to believe that the dimension of the space is higher than 
two. 

The method of eardinality has the peculiar feature that it does not 
eonsider what rankings were returned. This gives it a great advantage in 
simplicity and ease of application, but of course it also makes it a very 
insensitive test, likely to give an optimistically low estimate of dimension 
when applied to a chaotic set of rankings. Furthermore, Table 1 indicates 
that in successively higher dimensions the number of different possible 
rankings goes up very rapidly with the number of items, and in most practical 
instances is likely to exceed the whole size of a sample of judges which an 
experimenter might use. This means that the method of cardinality can be 
applied directly (in the form of a direct comparison of the number of distinct 
rankings obtained with the entries in Table 1) only to data (such as repeated 
psyehotogical judgments) in which the number of experimentally independent 
rankings is large, preferably much exceeding the factorial of the number of 
objects ranked. In most other circumstances, one cannot expect to have 
enough experimentally independent rankings to exhaust all the permissible 
rankings tabulated in the appropriate cell in Table 1. 
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Dimensions by Groups 

A space of r dimensions contains every possible ranking of any  r -~ 1 
objects, or expressed another  way, contains the  complete transposit ion 
group of s imply ordered sets of those objects, provided only tha t  the objects 
are scattered. This observation is independent of the presence in the space 
of objects other than  the r ~ 1; t ha t  is, the regions in question m a y  be either 
elemental regions, or the (r ~ 1)! larger regions determined by  the  simple 
orderings of the r ~ 1 obieets. On the other hand,  a space of dimension r 
cannot contain the complete transposit ion (permutat ion)  group over r + 2 
objects or more. 

These ideas m a y  be summarized in the following proposition. A set of 
r stimulus points (A, B, . . .  , Q, R) m a y  be embedded in a space of no fewer 
than  r - 1 dimensions if and only if a set of r! regions exists characterized 
by  all r! permuta t ions  in order of the stimulus set. A proof of the necessary 
condition might  be carried out by  induction on r, the number  of stimuli and 
r - l, the number  of dimensions. This is trivial for r - 1 = 1, since two points 
m a y  Mways be put  onto a line with center halfway between them, generating 
two regions showing the two permutations.  

Now assume the proposition to be true for any  r --  1 stimuli in r --  2 
dimensions. Consider the set of r stimuli (A, B, . . .  , Q, R), for which, by  
hypothesis all r! permutat ions  in order exist as regions. I f  this is true, then 
all (r - 1)! permutat ions  in order of the set of r --  1 points (A, B, - - -  , Q) 
mus t  also exist as regions, and this set of r - 1 points is embedded in no less 
than  r - 2 dimensions. Now suppose that  stimulus point R is also embedded 
in the same subspace of r -- 2 dimensions so tha t  all r!  permutat ions  corre~ 
spond to regions in r - 2 space. This  would contradict  the cardinali ty rule 
given above, which shows tha t  the maximum number  of regions for r stimuli 
in r - 2 dimensions is always less than  r !. Hence, the dimensionality would be 
greater  than  r - 2, and the set of r points m a y  all be embedded in a space 
of no fewer than  r -- 1 dimensions. 

For  the sufficient condition, a proof m a y  once again be outlined using 
an induction argument  on r and r - 1. The case of r = 2 is trivial. Now 
assume the sufficient condition true for r - 1 points in r - 2 dimensions. 
By  hypothesis, the set of r points (A, B, - . . ,  Q, R) requires r - 1 dimensions. 
Thus, some subset of r - 1 points from this set, say (A, B, . . .  , Q), requires 
r - 2 dimensions, so tha t  by  assumption all permutat ions  in order for this 
set mus t  exist as regions in the r --  2 space. The  locus H(A, B, . . .  , Q) will 
exist as a point in the r - 2 space, by  the rule of r - n ~ 1 for the dimension- 
al i ty of a locus of n points. By  the same rule, when the set of r -- 1 points 
is embedded in an r - 1 space, the locus of equidistance would be a line L 
bounding all (r - 1)! regions showing the permutat ions  in order for the  set. 

Since the addition of stimulus point R to the space requires, b y  hypo-  
thesis, dimensionality r - 1, so tha t  R m a y  not  be embedded in the r - 2 
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space, the intersection of H ( A ,  R ) ,  for example, and H ( A ,  B,  . . .  , Q) must 
exist--otherwise the required dimensionality would be r - 2. Furthermore,  
by the transit ivity of the equality relation, this point of intersection must  
also be the point of intersection of H ( A ,  B ,  . . .  , Q) with all of the remaining 
loci H ( B ,  R) ,  H(C,  R ) ,  . . .  , H(Q,  R) ,  so that  by definition the intersection 
is the locus H ( A ,  B,  . . .  , Q, R) .  Now any region showing a permutation of 
(A, B, . . .  , Q) such as A B C  . . .  Q must be bounded by the line L. The 
intersection of L with H ( A ,  R)  creates two new regions such as R A B C  . . .  Q 
and A R B C  . .  • Q, the intersection of H ( B R )  with L another two new regions 
such as A R B C  . . .  Q, A B R C  . . .  Q, and so on. Since the intersections of a 
basic region showing a particular permutation of A through Q with the r - 1 
hyperplanes of the form H ( A ,  R)  must generate r distinct new regions, each 
showing the same permutation of A through Q but  a different position of R, 
and since there were originally n - 1 basic regions showing permutations 
of the set of r - 1 stimulus points, exactly r(r - 1)! or r! regions must be 
generated showing all permutations in order of (A, B, - . .  , Q, R). 

This fact can be made the final (and perhaps the most useful) criterion 
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Regions Generated by a Second Configuration of Four Points 
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of dimension. One may be certain that the minimum dimension of the space 
in which a complete solution may be realized must be one less than the 
number of elements in the largest transposition group present in the ex- 
perimental data. 

Returning again to the hypothetical example, the complete group over 
all four objects is not present, since such a group would have 24 elements 
and only 18 are present. Searching for groups over subsets of three objects, 
one finds, for example, every permutation of A, B, and C: 

region ABC, represented by DABC, ADBC, ABDC, and ABCD; 
region BAC, represented by BACD alone; 
region BCA, represented by BCAD alone; 
region CBA, represented by DCBA, CDBA, CBDA, and CBAD; 
region CAB, represented by DCAB, CDAB, CADE, and CABD; 
region ACB, represented by DACB, ADCB, ACDB, and ACBD. 

The same is true of each of the other subsets of three objects, as the 
reader will discover on examination. Since there is considerable evidence 
that the solution is two-dimensional, it is possible to attempt a geometric 
realization of the space. Such a construction is given in Figure 6. Using 
this construction one may reexamine the previous examples and relate them 
to the properties of the figure. 

Of these three criteria for dimensionality, the groups criterion just 
discussed is the most practical and, to large extent, the most sensitive for 
use with preference data. Obviously, with a large number of stimulus items, 
say 10, it is seldom possible to accumulate enough data to establish the 
lower limit of the dimensionality at nine since this would require some 10! 
distinct rankings. 

However, it is possible to make a good lower bound estimate from more 
limited data using a modification of this criterion. Given n objects (A, B, 
• .. , Q, R), the required dimensionality is n - 1 if there exist two complete 
sets of (n - 1)! permutations in order for some subset of n - 1 objects, 
say (A, B, --. , Q), such that the remaining object R precedes all of the 
remaining objects in each permutation in the first set, and ]ollows all of the 
remaining Objects in each permutation of the second set. This is seen to be 
true if it is recalled that the locus of equidistance from r - 1 points in r - 2 
dimensions is a point, so that there may be only one set of "permuting" 
regions bounding such a point. If there are two distinct sets of this kind, 
then the locus in question must be at least a line, and the dimensionality 
must be at least r - 1. This modification requires only 2(r - 1) ! rank orders 
to establish a lower bound dimensionality of r - 1, rather than the complete 
r]. 

Finally, a very stringent criterion is obtained by a combination of the 
principles utilized in the cardinality and the groups criteria. I t  will be recalled 
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tha t  the locus of equidistance between two points in r dimensions is a space 
of dimensionality r - 1. Each and every pair of regions with rank orders 
differing only by a reversal in order of one pair of objects must  be separated 
only by the locus. Furthermore,  for n points in r dimensions, the number of 
such pairs differing only by a reversal in the same object pair (the same 
hyperplane bounds each pair) must  be the cardinality of n - 1 points in 
r - 1 dimensions. Thus, if a set of such pairs is found, and the number of 
such pairs exceeds the maximum cardinality of n - 1 points in r - 1 dimen- 
sions, then the dimensionality must be at  least r -t- 1. 

For  instance, in Figure 6, there are exactly four pairs of regions differing 
only in the order of A and B: A B C D - B A C D ,  C B A D - C A B D ,  C D A B - C D B A ,  
and D C B A - D C A B .  Thus the cardinality of these pairs of regions agrees 
exactly with the cardinality for three objects in one dimension--there is 
no evidence from these orders that  the dimensionality exceeds two. I tow- 
ever, had a fifth pair such as D B A C - D A B C  existed, then the dimensionality 
required would be three. 

This last criterion is, of course, the most sensitive of those discussed 
here, particularly with small numbers of stimulus objects. Actually, it  may  
be too sensitive for use with fallible data such as would reasonably be obtained, 
since the estimated dimensionality depends somewhat more upon single 
occurrences among the rank orders than one would expect with the groups 
criterion alone. Thus, in practice, the application of the groups criterion is 
perhaps the method of choice for a "manageably low" dimensionality estimate. 

Incidentally, the method for describing configuration for such data is 
also based principally on the incidence of such permutat ion groups among 
the rank orders, so that  once a preliminary estimate has been made for the 
required dimensionality, there are continual checks upon the estimate in 
the  remainder of the procedure. 
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