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Given the preference ordering of each of a number of individuals over
a set of stimuli, 1t is proposed that if the preference orderings are generated
in a Euelidean space of r dimensions which can be recovered by unfolding
the preference orderings, then a factor analysis of the correlations between
individual’s preference orderings will yield a space of r - 1 dimensions with
the original r-space embedded in it, and the additional dimension will be one
of social utility. The proposition is clearly shown to be satisfied by means of
the Monte Carlo technique for both random and lattice stimuli in three
gimensions and for two other examples with random stimuli in one and two

imensions.

The unfolding technique for preferential choice behavior [7, 8] is derived
from a model of the following form. An individual, in making preferential
choices among a set of alternatives, may be represented by a point in an
r-dimensional Euclidean space, E’, and correspondingly, each alternative
may be represented by a point in the same space. The individual prefers
one alternative to another if and only if the point corresponding to the
preferred alternative is nearer to the point corresponding to the individual.
To each point corresponds an r-tuple which is a set of measures on the di-
mensions spanning the space. These dimensions may be interpreted as
psychological variables generating the preferences of the individuals, where
the point corresponding to an individual is an ideal point representing a
hypothetical alternative preferred to all other possible ones. Inconsistency

*The preparation of this paper was supported in part by a grant from the National
Science Foundation and in part by Project MICHIGAN, a project of the University of
Michigan in the field of Combat Surveillance sponsored by the Department of the Army.
The contract (DA-36-039 ac 78801) is administered by the U. S. Army Signal Corps.
The authors are indebted to L. A. Raphael, Caroline K. Tefft, and F. M. Goode for pro-
gramming assistance, and to L. W. Staugas for providing other computer services during
various stages of this study.

219



220 PSYCHOMETRIKA

of preferences, to be distinguished from intransitivity, may be generated by
random variability in the locus of points [10].

According to the model, an individual’s dominant preferences may be
represented by a rank order scale of the alternatives given by the transitive
set of stochastically determined pairwise preferences. Such a scale is called
an I scale and may be regarded as folding the space by picking it up at the
ideal point and collapsing it into a line with the measure of the stimulus
points on this line corresponding to their respective distances from the ideal
point. Distinct ideal points generate distinct I scales in this manner. With
ordinal preference data such I scales have a many-one mapping into equiva-
lence classes corresponding to distinct rank order I scales. The unfolding
technigue is the name given to the method for determining the number of
dimensions and the rank order of the projections on the dimensions, and, in
the case of one dimension, ordered metric information.

The problem of determining the dimensionality of a Euclidean space in
which a set of I scales may be unfolded was solved by Bennett [6] and the
problem of determining the configuration of the points for both stimuli and
individuals (called a Joint space) was solved by Hays [11].

The following problem naturally arises. Suppose one intercorrelated the
individuals’ 7 scales and factor analyzed; what relation would the factorial
solution have to the E” assumed to have generated the preferences?

The Proposition

Consider the simple case of a one-dimensional latent attribute generating
the preferences of individuals over a set of alternatives. The ideal points of
the individuals and the points for the alternatives are all points on a line, a
Joint scale. To avoid sampling fluctuations, assume the stimulus points are
dense and that the two sets of points range over the same segment of the line.

Consider the [ secale of an individual (4) at the extreme left end of the
seale and that of another individual very close to him. Clearly, their preference
orderings will be almost identical and will correlate close to plus one. The
scale for individual 4 will correlate progressively less with I scales of other
individuals as they are farther removed from him on the Joint scale. In fact,
the correlation will be zero between individual 4 and the median individual
in the distribution, and will ultimately be minus one between him and the
individual at the extreme opposite end of the scale. The median individual
will have correlations ranging from close to plus one with those individuals
near him on either side, to zero with the individuals at either end.

Clearly, if each individual is represented by a unit vector from a common
origin and the correlation between individuals by the cosine of the angle
between the corresponding vectors, the configuration corresponding to the
correlation matrix will be a semicircle with the individuals corresponding to
a fan of vectors such that the vector of the median individual projects verti-
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cally upward and orthogonal to the vectors of the two extreme individuals
which form an angle of 180 degrees. The order of the termini of the vectors
on the are would correspond exactly to the order of the corresponding points
on the original line.

If one factor analyzes such a configuration by the method of principal
components, the first dimension would be the original line which generated
the preferential choices; the second dimension would be the vector of the
median individual on the line. On the latter dimension the projections of
individual points are in reverse order with respect to how closely each is to
all the others on the line. In another context, this second dimension is called
a social atility [9]. The higher the projection, the more nearly that point best
represents all the other points in the sense of being nearest to them all.

If we consider the case of a two-dimensional latent attribute space gene-
rating the preferential choices, we now have two superimposed bivariate dis-
tributions—one for individuals and one for stimuli. If one considers the
correlation of the I scale of an individual on the rim of this space with other
individuals, it seems reasonable that the correlations will progressively
decrease through zero to minus one as one approaches an individual across
the space from him, and that the median individual on the plane will correlate
non-negatively with everyone. The configuration generated by the set of unit
vectors is now a hemisphere in three dimensions, with the median individual
represented by a unit vector perpendicular to the plane in which the vectors
of all individuals on the rim of the plane lie. If such were the case, a factor
analysis would yield three dimensions, with the third prineipal component
again corresponding to a social utility and the first two dimensions representing
the original space which generated the preferential choices.

While not as intuitively obvious, we may generalize this proposition to
a space of r dimensions in which we would expect the configuration corre-
sponding to the correlation matrix to be a semihypersphere in r + 1 di-
mensions; the (» 4 1)th principal component would be 2 social utility and
the first » dimensions would correspond to the original space.

This proposition was first conjectured by the first author but later more
fully studied by the second using the Monte Carlo technique. Any attempt
to realize the idealized version of the proposition would necessarily lead to
some distortion, the matching of the two being sensitive to the density of
stimulus points and the joint distribution of stimulus and individual points
and to the measure used for the correlation between two individuals’ [ scales.
In practice only a finite number of stimulus points can be used so the working
definition of a genotypic space is the chosen finite set of stimulus points.
The theorem which is conjectured is this: given m arbitrary points in E7,
then they lie in an r-subspace of E” if and only if with probability 1, the
rank of the product moment correlation matrix approaches r + 1 as the
number of stimulus points approaches infinity.
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Imbedding of Genotypic Space into Factor Space

In order to test the plausibility of the proposition discussed above under
rather general and varying conditions, several problems were constructed
and explored, of which two related ones in three dimensions play the major
role. These will be presented first.

Three sets of 15 random numbers are taken fo represent the coordinates
of 15 individuals in E? and another three sets of 30 random numbers, those
of 30 stimuli in the same space (Tables 1 and 2). (All numbers [14] were

TABLE 1

-
Coordinates of Individual Points in E

8 b <
0L -0.47883 ~0.12812 0.30109
02 -0.20438 ~0.50550 0.26483
03 -0,k9558 0.23608 -0.18766
ok 0.41039 -0.42816 -0.29035
05 ~0.45173 0.54625 041746
06 0.08085 0.29372 ~0.04339
o7 -0.,26920 -0.34540 0,07160
] 0.27289 0.32257 -0.36360
09 0.05593 -0,13210 -0.33086
10 0.15816 0.00408 ~0.34882
i1 0.40540 ~0,27578 ~0,23506
12 -0.46175 «0,39914 0.01397
13 0.25472 0.54289 «0.32123
1k 0.30705 «0.05145 0.48096
15 0.4161% 0,22003 0.49106

first taken to be seven-place decimal fractions and computations carried out
in this manner, but rounded to five places after the completion of the study.)
Since all numbers were decimal fractions, the Joint space for both individuals
and stimuli is, by definition, a cube in E°® with length of its sides equal to 2
and center at the origin, called the basic cube. A third set of points is taken
to represent a second set of stimulus points, these being the 64 lattice points
of a “grid” contained in the basic cube. On each dimension the points take
on one of the four values —.6, —.2, +.2, +.6, yielding 4° = 64 points. For
simplicity, we shall distinguish the two sets of stimulus points by calling
them random stimuli and lattice stimuli, respectively. The motivation for taking
the latter is twofold: (i) to see if an inerease in the number of stimuli used
would yield a better fit to the idealized situation, and (ii) to test if the model
were feasible with quite arbitrary selection of stimulus points, random as
well as nonrandom.



CLYDE H. COOMBS AND RICHARD C. KAO 223

TABLE 2

Coordinates of Random Stimulus Points in ]El3

a b c
oL 0.03991 -0.40188 0.28193
02 -0.38555 -0.3kk1k 0.32886
03 0.17545 0.10461 0.39510
ok -0.32643 ~0.52861 0.27699
05 -0.2h122 ~0.30231 -0.1027k
06 0.30532 0.2170k -0.35075
07 -0,03788 0.42402 0.56623
08 0.48228 ~0.07405 -0.36409
09 -0.32960 0,53845 0.57620
10 -0.19322 ~0.57260 0.07399
11 -0,11220 -0.L7ThY -0.1445k
12 0.31751 -0.48893 0.07481
13 -0,30934 0.16993 0.,27499
14 0,22888 0.33049 ~0,35902
15 -0.41849 -0.08337 ~0.46850
16 -0.46352 0.36898 0.14013
17 ~0.11087 -0.48297 0.56303
18 »0,52701 -0.19019 0,39904
19 0.57275 0.32486 0.4513%
20 -0.20857 0.01889 0.37239
21 0.15633 0.07629 -0.18637
22 -0.38688 0.43625 -0.05327
23 0.25163 -0.11692 0.43253
24 0.36815 0.25624 -0.53342
25 -0,04515 0.06345 -0.1357h
26 0.14387 ~0.00003 -0.29593
271 0.5131 0.55306 -0.44989
28 0.05466 0.18711 0.52162
29  -0.39528 -0.15120 0.04737
30 -0.07586 -0.04235 0.148%%

The Euclidean distances of each individual from all the stimuli (random
or lattice) are computed and these measures provide an I scale for the indi-
vidual, which is a ratio scale rather than an ordinal scale. The product
moment correlations are then computed between each pair of individuals’ 1
scales yielding two correlation matrices, one for the random stimuli M, ,
(Table 3) and one for the lattice stimuli M, (Table 4). These correlation
matrices, with unity in the diagonal are then factored by the method of
principal components. Two different subroutines (IBM 704 and RAND
JOHNNIAC) were used independently to duplicate all computations. The
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numbers from these two sources agree to seven decimal places except for

signs, i.e., a characteristic vector from one subroutine may be the reflection

of another from the other subroutine.

The characteristic values, A; , for the two correlation matrices are given

in Table 5. It can be seen that a sharp drop in the magnitude of the character-
istic value occurs after the fourth one. We take, therefore, the first four

columns of the factor matrices (Tables 6 and 7) as factor loadings or co-
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ordinates of the 15 individuals in four dimensions. The statistical theory for
testing the number of significantly positive characteristic roots of a sample

correlation matrix has yet to be worked out (cf. [1], p. 330). Our investigation

lends some convincing evidence that such a theory can be developed [cf. 1,

2,3,4,5 12).

Two crucial questions arise. First, how are the original coordinates of
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TABLE 6

Principal Components Factor Loadings for Random Stimuli

[¢)3 02 03 Ok

6.39715 54.01020 2.35246 1.99655
oL 0.85262 0.27021  -0,22809 0.33375
02 0.69980 0.62881 0.17248 0.26119
03 0.08652 0.25101  -0.92805 0.20117
oh -0.57057 0.70975 0.38252 0.06207
o5 0.47920 -0.48059  -0.56888 0.39698
05 -0.68648 -0,08115  -0.41818 0.54391
07 0.55962 0,78716  ~0.04066 0.2191%
08 -0.96190 0.00826  ~0.20677 0.03215
] -0.63852 G.73508  -0.16018 ©.13697
10 -0.85590 046673 -0.15915 0.12525
11 -0.68323 0,60280 0.34346 0.12922
12 0.59545 0.7616L  »0.16450 0.11234
13 -0.92659 -0,28631  -0.18912 0.26799
1Y 0.25163 ~0.14168 0.57725 0.74380
15 -0.10812 -0,56050 0,39376 076243

TABLE 7

Principal Components Factor Loadings for Lattice Stimuli

oL 02 03 ok

5.21363 3.94788 3.44330 2.hghk8
o1 072719 0.46805 «~0.45787 0.15273
02 0.53410 0.78105  -0.0100L 0.29306
03 0.10687 0.26099  ~0.7657T ~0.5k484
ok -0.59226 © .60106 0.48881 0.15722
05 0,37333 -0.17152  -0.87300 0.12318
06 -0.58528 0.09576  ~0.77h12 ©.1980%
o7 0.41858 0.89902  -0.09576 ©.00533
08 -0.92210 0,02215 ~0.35550 -0.0766T
09 -0.61730 0.73370  ~0,02764 ~0.25316
10 -0.8350k 0.50160  ~0.12971 -0.16607
11 ~0.69580 0.55692 0.36150 0.23753
12 0.51236 0.81177  =0.10147 -0.22775
13 -0.81839 -0.1886% -0.51428 -0.05858
i 0.00093 0.18049  ~0.10485 ©.97188

15 -0.18760 ~0,12857  -0.27787 0.92650
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the individual points in three dimensions related to their factor loadings in
four dimensions? Second, what is the significance of the “extra” dimension
obtained?

According to the proposition, the configuration corresponding to the
correlation matrix is a set of unit vectors in £* whose projections in a sub-
space E° orthogonal to the median individual will faithfully reproduce the
configuration of the individual points in the original genotypic space. Hence,
the first question can be settled if we show that Table 1 can be “imbedded”
into Table 6 and into Table 7.

To this end, Tucker’s method of congruence is used [15]. His coefficient
of congruence, @, , is similar to a product moment correlation between the
loadings on factor r in the factor space and those in the original space.The
values of @, for each of the three original dimensions as recovered by the two
factor analyses are given in Table 8. The congruence appears reasonably

TABLE 8

Congruence of Original Dimensions with Factor Space

1'1 l'2 r3

Q, Random Stimuli 99492 97699 »98790
Qp, Lattice Stimuli 99154 .9825% 99687

high and a good fit of the original configuration of individual points into a
three-dimensional subspace of the factor space is possible.

The Extra Dimension in the Factor Space

Aceording to the proposition, the genotypic space can be imbedded in
the factor space; the factor space will have an additional dimension and the
projection of a point on this extra dimension will be related to how close
each point was to all the other points in the genotypic space. The first two
parts of the proposition have been sustained by the results reported above
and it remains now to test the last part.

The projection of each vector on the extra dimension of the factor space
is readily given knowing the length of the vector in the factor space of four
dimensions and its reduced length in the three-dimensional subspace that
corresponds to the original genotypic space.

The average distance of any point from all the others in the original
genotypic space is readily obtained from Table 1. The smaller the average
distance of a point from all the others the nearer the point lies to the median
of the population and hence the higher its projection on the extra dimension
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of the factor space. The Spearman rank order correlations between average
distances in genotypic space (ordered from smallest to largest) with pro-
jections on the extra dimension (ordered from largest to smallest) is .723
and .896 for random and lattice stimuli respectively, significant at the .005
level. It follows, therefore, that there is reasonable evidence for answering
in the affirmative both questions which led us to include a second set of
stimulus points in the three-dimensional problem.

Two more problems were run to test the proposition when the genotypie
space is of dimension 1 or 2. For this purpose, only one set of stimulus points
was retained by pairing off the first column in Table 1 against that in Table 2,
or the first two columns in Table 1 against those in Table 2. Euclidean dis-
tances between individuals and random stimuli in 1 and 2 dimensions were
first computed and then the correlation matrices of individuals over stimuli,
which were factored by the method of principal components. Only a sum-
mary of the results are presented here. The first five (and largest) characteris-
tic values for the one-dimensional case and the two-dimensional case are
presented in Table 9.

TABLE 9

Characteristic Values for the One- and Two-Dimensional Genotypic Space

1 2 3 n 5
One-Dimensional 12.02233 2,70781 0.13125 0,10578 0.01797
Two-Dimensional 7.38998 %.81759 2,36532 0.24135 0.07356

A sharp drop in the magnitude of the characteristic value occurs.after
the second for the one-dimensional case and after the third for the two-
dimensional case, indicating that the factor space for preferences had one
additional dimension beyond the genotypic space which generated the
preferences. Again Tucker’s method is used for maximal congruence and the
Q, for the one-dimensional case is 0.976 and for the two-dimensional case are
0.989 and 0.986 for the first and second dimensions respectively. Spearman
rank order correlations between average distance of an individual's point
from all the others in the genotypic space and the projection of the individual
on the extra dimension were 0.761 and 0.669, significant at the 0.005 level,
for the one- and two-dimensional cases respectively.

Discussion

We recapitulate briefly the main results of the preceding two sections.
A Joint space is taken with both individuals and stimuli as points in it. An
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I scale of preferences over the stimuli is constructed for each individual
by taking the Euclidean distances of these stimuli from the individual’s
ideal point. Correlating individuals’ I scales gives rise to a matrix of corre-
lations which are factored by the method of principal components. In each
problem, the dimension of the factor space is noticeably one higher than the
original genotypic space. But, the configuration of the individual points in
the original genotypic space can be faithfully reproduced in a hyperplane of
the factor space. The rank orders of the projections of the individual vectors
on the extra dimension correlate highly in reverse order with those of their
genotypie space. These results are obtained when the Joint space is of different
dimensions and the stimulus points are quite arbitrarily chosen.

There are several aspects which need to be discussed because of their
relevance to the practical application of the propositions tested here. In any
practical application there would be two sources of error or distortion, one
of which is present in this study. The first is that the basic data would normally
consist of rank order preference scales rather than the actual distances to
stimulus points. This means that the produet moment correlation can only
be approximated. The second is that the distribution of stimulus points
relative to that for the individuals ean distort the factor space. This is most
obviously evident in the one-dimensional case in which the stimuli that lie
between two individuals tend to produce negative correlation between their
preference orderings and the stimuli that lie outside of them tend to produce
positive correlation. Clearly if the density of the stimulus points between two
individuals is unusually high or low, the correlation between their preferences
will be biased toward negative or positive correlation, and they will appear
in the factor space as farther apart or nearer together than in the genotypic
space.

A further aspect relevant to practical application is that in the real case
one arrives first at the factor space and seeks the genotypic space. This
requires determining the extra dimension in the factor space, with no prior
knowledge of the genotypic space, and then rotating it out in order to work
with just the genotypic space that remains. The following argument suggests
how this may be done.

Our model states that all individual vectors in the genotypic space are
“blown up”’ into unit vectors whose termini lie on a semihypersphere
bounded by a hyperplane containing the genotypic space. In this process,
the distance in the genotypic space of an individual from the median individual
is changed by a monotone transformation into the distance on the semi-
hypersphere between the termini of the unit vectors representing these
individuals in the factor space. Therefore, the rank orders of the distances
of all individuals from the median individual will not be affected. If arotation
about the origin is made of all individual vectors in the factor space, these
rank orders still remain invariant. This means that we may determine the
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social utility dimension in the factor space in exactly the same manner as we
do in the genotypic space. That is, we use the coordinates of individuals in
the factor space and find the median individual accordingly. The social utility
dimension is then passed through this individual and the projections of
other individuals on this dimension can be computed. By our observation
above, the rank orders of all individuals from this median individual should
correlate highly with those in the original genotypic space.

Summary and Conclusions

A model called the unfolding technique for analyzing preferential choice
data assumes that individuals and stimuli may be represented by points in a
Euclidean space of r dimensions and that an individual’s preference ordering
of the stimuli reflects the order of their increasing distance from his position
in the space. Such a preference ordering is called an I scale. Given the 7
scales of a number of individuals, methods are available for determining
the dimensionality of the space and the configuration of points in the space.

On the other hand, correlations between the preference orderings of
individuals could be computed and the resulting correlation matrix factor
analyzed. Naturally arising then is the question of what the relation would
be between the genotypic space which gives rise to the preference orderings,
and is recovered by the unfolding technique, and the space obtained by
multidimensional factor analysis.

A heuristic argument was presented for the following propositions:

(i) if the genotypie space is Euclidean with r dimensions, the factor space
will have r 4+ 1 dimensions;

(it) the genotypic space can be imbedded in the factor space;

(iii) the additional dimension in the factor space will be a social utility
dimension in the sense that the nearer a point is to all the other points
in the genotypic space the higher its projection is on this extra
dimension in the factor space.

The problem was studied by the Monte Carlo technique. Three sets of
15 random numbers were taken as the coordinates of 15 individuals in E®
and three sets of 30 random numbers, those of 30 stimuli in the same space.
A second set of stimuli points was taken as the 64 lattice points of a cube
2 units on a side with center at the origin. Given this genotypic space, prefer-
ence scales of individuals were computed for the random and for the lattice
stimuli, correlation matrices between individual’s preferences were obtained
and factored by the method of principal components. This procedure was
carried out for both sets of stimuli with r = 3 and with only the random
stimuli with r = land r = 2.

Tucker’s method was used to test for congruence of the genotypic and
factorial spaces. All three propositions were confirmed for both random and
lattice stimuli with some slight superiority in favor of the lattice stimuli.
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This could be due to the larger number of lattice stimuli or the regularity of
their distribution or both.

The social utility dimension in the factor space was discussed including
a possible method for isolating it.

The most general practical consequence of this development is that the
methods of multiple factor analysis are revealed to be suitable for the dis-
covery of the latent attribute variables underlying preferences after the
social utility dimension has been removed, with the qualification that there
will be some sensitivity to the density and the distribution of stimulus points
in the space. A recent study by MacRae [13] is a case in point and the theory
and technique developed here would have been useful in that study.
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