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Within the model of isotonic space, a principle is presented which 
generalizes the unfolding technique to the multidimensional ease. The 
availability of exhaustive configurational solutions given complete data is 
pointed out. Finally three criteria are suggested for the choice of a particular 
solution from among the set of all solutions, which are applicable in the case 
either of complete or incomplete data. 

In an earlier paper [2], the authors discussed the estimation of the 
dimensionality underlying a set of rank orders. The data to which these 
methods are applicable are rank orders of preference given by subjects for 
a set of n objects. The dimensionality ~stimated is that required by the 
stimulus space in which the objects are presumably viewed by the judges. 
Three lower-bound criteria for dimensionality were proposed: mutual bound- 
ary, cardinality, and the existence of permutation groups. The present paper 
continues with the generalization of Coombs' unfolding technique [3] to the 
multidimensional case, which was begun in the first paper, and concerns the 
problem of determining configuration and arriving at a solution when the 
data are "complete," in the sense to be described below. In particular, a 
principle providing the generalization of the unfolding method will be intro- 
duced, and various criteria for determining a set of r rank order axes for the 
description of a configuration of n stimulus points in r dimensions will be 
discussed. I t  will be convenient to acquaint the reader with some terminol- 
ogy before the matter of a solution is taken up. 

Some Terminology 

This discussion will be couched in terms of a simple generalization to 
several dimensions of the model proposed by Coombs [3, 4]. I t  is assumed 
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that subject i views stimulus k as a point X~k in a stimulus space of some 
(timensionality r. Givcn some arbi t rary origin, the components of X~k are 
x ,~ , the projection or loading of stimulus k for individual i on at tr ibute j. 
To simplify matters, it will be assumed tha t  x ,~ is the same for each indi- 
vidual i, so that  the projection of stimulus k on at t r ibute j may be denoted 
simply by xik , a component of X;k .  The stimulus space will be assumed to 
have Euclidean properties as well. Strictly speaking, neither of these as- 
sumptions may be essential, but it has proved very difficult to develop the 
model without some such restrictions. 

Also following Coombs, it is assumed that  each individual i may  be 
associated with an "ideal" stimulus, a real or hypothetical object which the 
individual would most prefer in any given stimulus space. This ideal stimulus 
may also be represented as a vector C~ with components c ,  . Once again the 
simplifying assumption is made that  each individual is associated with one 
and only one such ideal point in the space. 

Now the observational equation linking the judged rank order of pref- 
crcnce to the distances within the stimulus space is given by  

(k .>-- m), ~ "if_, (c ,  - xim)~ > '4.-'z.., (c,i - xi~) ~. 
i=I i=l 

That  is, stimulus k will be preferred to stimulus m by individual i if and 
only if the sum of the squared differences between a stimulus and the ideal 
stimulus over a set of r orthogonal reference axes is greater for stimulus m 
than for stimulus k. The subject prefers tha t  stimulus which is closer to his 
ideal in the stimulus space. 

In short, the stimuli are conceived simply as having some configuration 
in a Euclidean stimulus space of dimensionality r. A particular rank order 
of preference reflects increasing magnitudes of distance from the ideal stimu- 
lus to the respective stimulus points. Obviously, for other  than the one- 
dimensional case, a solution to this problem of describing the stimulus con- 
figuration requires an excursion into the geometry of higher spaces. 
Furthermore,  since the data  with which we start  are nothing more than a 
set of rank orders, a special class of such higher spaces must  be considered; 
these are so-called isotonic spaces, in which every region in the space is 
characterized by a rank order of distances to a fixed set of points. In  other 
words, given the set of stimulus points, each and every point in the space 
must show a rank order of distances to these stimulus points, and the space 
as a whole may be divided into isotonic regions, convex subspaces within 
which each and every point shows the same rank order of distances from 
the stimulus points. The rank order which each point in the region exhibits 
will be called the characteristic order for the region, and any region will be 
referred to by its characteristic order. 

Thc one-dimensional case of an isotonic space is, of course, the under- 
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FIGURE 1 

A Configuration of Four Points in Two Dimensions 

lying model for the unfolding technique of Coombs [3]. The unfolding tech- 

nique is based upon the prineiple that a sequence of (2) + l rankorders 

may be found representing the unique arrangement of the isotonic regions 
in a one-dimensional space; from this sequence of rank orders, the order of 
stimulus points on the attribute may be inferred, as well as a partial order 
of the distances between points. 

There is no such unique sequence in the case of two or more dimensions, 
however, as the number of possible isotonic regions increases very rapidly 
both with the number of stimulus points and the number of dimensions. 
An example of an isotonic space for four points in two dimensions is given 
by Figure 1, and an example for five points also in two dimensions by Figure 2. 

The three criteria of dimensionality adverted to above may be illus- 
trated from these examples. Note, for instance, that no more than four 
isotonic regions anywhere mutually bound in either Figures 1 or 2: this 
reflects two dimensions, according to the first criterion. Second, notice 
that only 18 of the 24 possible permutations of four objects occur as charac- 
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FIGURE 2 

Isotonic Regions Generated by Five Points in Two Dimensions 

teristic orders for regions in Figure 1, and that only 44 different orders from 
among the 120 possible permutations of five things occur in Figure 2: this 
illustrates the so-called cardinality criterion. Finally, and most important, 
note that while there are complete sets of 6 permutations in rank order for 
subgroups of three stimuli embedded among the rank orders, there exist 
no such complete sets for subsets of either four or five stimuli: this illustrates 
the groups criterion, which will be of importance in determining configuration 
as well as in estimating dimensionality for such data. 

The isotonic regions are bounded by loci of equidistance from two 
stimuli--these represent regions of equal preference for the two stimuli. 
The loci of equidistance in two-dimensional cases as illustrated are merely 
the perpendicular bisectors of the lines joining pairs of stimulus points. 
These appear in the figures as the lines dividing the space into regions. Such 
loci of equidistance from pairs of stimuli will be referred to as 2-loci, and 
will bc denoted by H(A, B), where A and B refer to a particular pair of 

stinmlus poin{s. For any configuration there will be (2) such 2-loci. I t  is 

essential to remember that in one dimension, a 2-locus will be a point, in 
two dimensions a line, in three dimensions a plane, in four dimensions a. 
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three-space, and so on. In general, in r dimensions, the 2-1ocus H(A,  B) 
will be a hyperplane of dimensionality r - 1. 

Another feature of note in any isotonic space is the fact that  regions 
may be divided into two disjoint classes: open and closed. Closed regions are, 
of course, everywhere bounded by loci of equidistance, while open regions 
are not. The distinguishing feature of rank orders derived from open and 
closed regions is tha t  each and every open region must have a mirror image 
mate, another region which has a characteristic order which is the exact 
reverse of the first rank order; any pair of mirror image rank orders in the 
data leads to the inference of the existence of a pair of open regions. On the 
other hand, no closed region may have such a mirror image mate. In any di- 
mensionality lower than n - 1 for n stimuli, there must exist some closed 
regions in the isotonic space, and hence all n! rank order permutations may 
not occur in the data for less than dimensionality n - 1. This is actually 
the basis for the eardinality criterion of dimensionality. 

I t  will be noted from Figures 1 and 2, that  there are points of inter- 
section of sets of three 2-loci. These intersections are equidistant from sets 
of three stimuli, and as such are appropriately called 3-loci and designated 
H ( A ,  B, C), where (A, B, C) is any set of three stimuli. In  two dimensions 
a 3-locus is a point, in three dimensions a line, in four dimensions a plane, 
and so on. In general, in r dimensions, a 3-locus will be a hyperplane of 
r - 2 dimensions. 

I t  will be convenient to consider loci of even higher order, so that  a 
general notation and dimensional principle will be useful. A g-locus will be 
the space of all points equidistant from a set of g points, H(A,  B, C, • • • , g), 
and will always be a subspace of dimensionality r -k 1 - -  g. Furthermore, 
it will also be useful to remember that  a point which is equidistant from 
some g stimuli in g - 1 dimensions is the center of a hypersphere having the 
stimulus points in question on its surface. Thus, three points requiring two 
dimensions must lie on a circle, four points requiring three dimensions must 
he on a sphere, five points requiring four dimensions must  lie on a four- 
dimensional hypersphere, and so on. Furthermore, the converse is t r ue - -  if 
there exists no hypersphere in g - 1 dimensions such that  a particular set 
of g points may lie on its surface, then the set of points may be embedded 
in a space of g - 2 dimensions or less. As will appear in the discussion to 
follow, this is simply another way of phrasing the groups criterion of [2]. 

One final feature of the higher spaces should also be mentioned here: 
given a subspace T of dimensionality t and a subspace S of dimensionality 
s, t >_ s, such that  S is not  a subspace of T, then the intersection of S and 
T is a subspace of dimensionality s - 1. Thus, the intersection of a plane 
and a line (not entirely in the plane) is a point, the intersection of two non- 
coincident planes is a line, the intersection of a six-space and a three-space 
is a plane, and so on. 
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A General UnIolding Principle 

As mentioned above, the one-dimensional unfolding technique relies 
on the fact that if the rank orders emanate  from a one-dimensional stimu- 
lus space, it is always possible to construct a unique sequence such tha t  
each distinct rank order differs from either neighbor in the sequence by  a 
reversal in order of only one pair of objects. The  end or mirror image rank-  
ings then provide the order of the objects on the at tr ibute.  

Coombs '  procedure could perfectly well be interpreted as finding a 
~quenee  of 2-loci ra ther  than  a sequence of isotonic regions, since the re- 
versal in order of a pair of objects for a pair of regions simply fixes such a 
2-locus point. Considering the unfolding technique in this way suggests the 
principle which allows an extension to the multidimensional case. Since this 
principle is in fact  the general s ta tement  of Coombs '  basic idea, it seems 
important  and nontrivial enough to state and prove. 

PRINCIPLE. Given some fixed line L, and three points A, B, and C 
in general position in an isotonic space of dimensionality r, the line L inter- 
sects the 2-loci H(A,  B), H(B,  C), and H(A,  C) in tha t  order (or the reverse) 
if and only if the perpendicular projections of the three points upon L are 
in the order C A B  or the reverse. 

PI~OOF. The necessary condition will be proved first. If  the line L co- 
incides with the first of a set of r orthogonal reference axes (X~,  X2 ,  . • • , X , ) ,  
such tha t  the origin lies at  the intersection of L and H(A,  B), then every 
point k on L is characterized by an r-tuple (x~k , 0, 0, • • • , 0). Let the inter- 
section of L and H(A,  B) be (x~ , 0, . . .  , 0), with x3~ = 0, tha t  of L and 
H(B,  C) be (x~2,0, - . .  , 0), and L and H(A,  C) be (x~3 , 0, . . .  , 0). Finally 
let the point A be cllaracterized by  (X~a , x2a " ' "  , Xra), and similarly for 
B and C. Now the 2-locus H(A,  B) is defined by  

(1 )  ( x ,  - x , A )  2 + - - .  + (x~ - x . ~ )  ~ = ( x ,  - x , ~ )  ~ + - . -  + (x~ - x ~ )  2, 

where (x, , x2 , . - -  , x,) is any  point lying in the 2-locus. Similar definitions 
may  be made for the other two 2-loci as well. Solving (1) for xH and put t ing  
(x, , x2 , . "  , x~) = (Xll , 0, 0, " ' "  , 0) gives 

(2) 2 2 " "  X,a = Xln + " "  + X,n • 

The  value of x~2 is given by  

( 3 )  x , ~  = 2 ( x ~ ,  - z , ~ )  

and the value of x~a by  

X~A 2 2 
. . . .  X r A  - -  X T C  

(4) x, ,  = _ _  -'2"(x,a -- x , ~  

Because the intersections of the 2-loci with L are in the order H(A,  B),  
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H(B, C), H(A, C) or the reverse, the absolute difference between x,, and 
x12 must be less than that  between xj~ and x13 , or d~,~ > d~, , where 

2 2 2 2 
X T C  " " X ~ A  (5)  d~,~ = ( x L  + • + 

4(x ,A - x , c )  ~ 
2 2 2 2 

X r c )  X;n - -  X i c  (6)  d~2 = (x'~B + "'" + 
4 ( x ~  - x , c )  --~- 

However, subtracting x~c --[- X~c 4" ".. 4" x2,c from each side of (2) and 
squaring shows that  the numerators of (5) and (6) must be equal. Hence it 
follows that  since d~3 exceeds d~._, , the denominator of (6) must exceed the 
denominator of (5), so that  

( x , .  - x,~.) "~ > (x,A - x , c )  ~, 

the perpendicular projections of A and C upon L must be nearer than t h o ~  
of B and C. An identical argument using x13 = 0 shows that  the distance 
between A and B projections must also be less than that  between projec- 
tions of B and C. Since distance is invariant under translation or rotation of 
axes, the necessary condition is proved. The sufficient condition is proved 
simply by reversing the steps of the necessary condition argument. 

The unfolding technique for one dimension is actually a special case 
of this more general principle for finding projections upon lines by construct- 
ing sequences of regions (or dually, 2-loci). In isotonic space of any 

dimensionality, the existence of (2) 4" 1 regions which fit the unfolding 

qualifications is sufficient for the inference of the order of projections which 
the points have relative to some line. As an illustration of this principle, 
consider the following sequence of seven regions drawn from the example 
of Figure 1: DACB, DCAB, CDAB, CDBA, CBDA, CBAD, BCAD. In this 
sequence, H(C, D) lies between DCAB and CDAB, H(A, C) falls between 
DACB and DCAB, and H(A, D) lies between CBDA and CBAD; the order 
of these three 2-loci is thus H(A, C) H(C, D) H(A, D) (or the reverse), so 
that  on a line extending through these seven regions, the order of projec- 
tions of the three stimulus points A, C, and D must be CAD (or the reverse). 
Likewise, the order of A, B, and C as projected upon such a line would be 
ACB or the reverse, since the order of their 2-loci is H(A, C) H(A, B) H(B, C). 
An inspection of the 2-loci for all such triples of stimuli establishes that  the 
order of projections on such a line would be DACB or the reverse (obviously, 
since there is no fixed origin in the isotonic space, the orders of projections 
on any line may be read in either direction). Any line capable of being located 

] \  

ill the space must pass through such a sequence o f ( n )  -{-1 regions, and 

any complete unfolding sequence of ( 2 ) +  t regions oecurriug in the s p a e e ~ J  

must represent at least one possible line in the space. 
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An important feature of Coombs' unidimensionaI unfolding solution is 
the recovery of metric relations among the stimulus points, yielding an 
ordered metric scale of the stimuli. This metric information is inferred from 
the sequcnce of 2-loci just as is the simple order of the stimuli themselves. 
Unfortunately, it can be shown that the ability to obtain metric information 
in this way is restricted to the unidimensional case. While the theorem 
• lbove is a complete generalization of the method for obtaining the order 
(or the order of projections) of the stimulus points, in other than the one- 
dimensional case, Coombs' method for inferring metric information does 
not work for the projections of the ,points upon axes in the space. An im- 
portant corollary follows directly from the principle just given. 

In any isotonic space of n stimuli in r dimensions, two 
regions may have characteristic orders which are mirror im- 
ages if and only if there exists the possibility of a line in the 
space such that the order of projections of the stimuli on the 
line is the same as the characteristic order of either of the 
regions (or the reverse, of course). 

An Exhaustive Solution ]or Complete Data 

The practical implication of this corollary principle is that any pair 
of mirror images existing in the data afford a potential solution, in that 
there must exist the possibility of an axis showing such an order of projec- 
tions. Even more important is the fact that any potential solution must 
be represented by such a mirror image pair of regions in the data, when the 
data are complete. In this light, the question of a solution for complete 
data becomes rather trival. First, in the present context, let complete data 
be understood to mean sets of rank orders such that each and every isotonic 
region in the stimulus space has its characteristic order represented at least 
once in the data. Thus when complete data are at hand, all possible eonfigu- 
rational solutions may be recovered from the data simply by finding mirror 
image pairs of rankings. Each mirror image pair located is one potential 
axis for describing the configuration; for this reason the solution from com- 
plete data may be called exhaustive. 

In the simple example of Figure 1, the mirror image pairs of regions 
are DACB-BCAD, DABC-CBAD, ADBC-CBDA, ABDC-CDBA, ABCD- 
DCBA, BACD-DCAB. Thus there are six possible simple orders which 
may represent axes or solutions to the configuration: DACB, DABC, ADBC, 
ABDC, ABCD, and BACD (or their reverses). These constitute the ex- 
haustive solution for this configuration. 

The number of such potential axes varies, of course, both with the 
number of stimuli and the dimensionality. Actually, it is possible to calculate 
the maximum number of distinct such axes (i.e., distinct mirror image pairs 
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of regions). These maximum numbers have already been tabled in another 
context [1] in the form of the maximum number of open isotonic regions 
which may exist for given numbers of stimuli and dimensionalities; in order 
to convert this table into maximum number of rank order axes, one simply 
divides the entries by 2. Thus, for example, there are 36 different rank orders 
of projections possible for 5 stimuli in three dimensions, 105 different possi- 
ble rank order axes for 15 stimuli in two dimensions, and just over a billion 
possible rank orders of projections for 30 stimuli in five dimensions! Ob- 
viously, such exhaustive solutions leave something to be desired in the way 
of parsimony of description. Moreover, seldom would we be interested in 
all solutions anyway, even if there were fairly restricted numbers of such 
possibilities. 

Under the influence of factor-analysis methods, we have grown ac- 
customed to the description of configurations of points requiring r dimensions 
in terms of a set of axes numbering fewer than r. While the usual factor 
analysis deals only with common factors, no such restriction exists within 
this model. The dimensionality estimated for an isotonic space includes 
both common and specific factors and, in principle, it should be possible 
to analyze the data for all r dimensions. Still another difference exists be- 
tween metric and nonmetric approaches to this problem: metric methods 
such as factor analysis provide dimensions from which one may reproduce 
the original data, while, at  this writing, there seems to be no prospect that  
one might reproduce an original set of rank orders in terms of some r rank 
order dimensions. In a sense there is more information in the data than in 
the rank order dimensions obtained. Failing any criterion for the repro- 
ducibility of the data  in nonmetric terms, the only recourse seems to be to 
choose some solution from among the set of all solutions according to eriteria 
of a best fit to the data. In order to do this, one must settle upon some cri- 
teria of goodness for choosing among all possible solutions. 

The remainder of this paper will be devoted to a description of three 
features of the isotonic space which may serve as criteria in the choice of a 
rank order solution from all possible such solutions. These criteria are appli- 
cable not only in the theoretical case of complete data  but  also in the case of 
incomplete data as well, and thus they will be described in detail herc. 

The Idea ol a Central Intersection 

One requirement for a solution might be that  each successive axis pass 
through the center or greatest concentration of points in the configuration. 
Tha t  is, the first axis should describe the length of the configuration through 
its greatest concentration; the second axis should describe the length of the 
configuration of projections of points on a space of one less dimension, and 
so on. Thus, axes may be sought which are roughly analogous to principal 
axes in the usual factor-analysis model. 
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In order to find such a solution within the isotonic space, the idea of a 
least intersection of a configuration may be introduced. In any r-dimensional 
space, the locus of equidistance from any r "4- 1 points in general position 
is a point. This point is the center of a hypersphere of dimensionality r. 
Thus, the locus of equidistance from three points in two dimensions is the 
center of a circle (2-sphere); thc locus of equidistance from four points in 
three dimensions is the center of a sphere (3-sphere); the locus of equidistance 
from five points in four dimensions is the center of a hypersphere of four 
dimensions (4-sphere), and so on. 

Any hypcrsphere of whatever dimensionality must  bear one of three 
possible relationships to any point in the space: the point in question must 
either be interior to the hypersphere (fall within its surface), exterior to the 
hypersphere (fall beyond the space enclosed by its surface), or conjoint with 
the hypersphcre (fall upon its surface, and thus be at  a distance from its 
center equal to that  of any other point on the surface). Furthermore, if a 
stimulus point X is exterior to an r-sphere, then the order of distances which 
is characteristic of its center must show the point X more distant from the 
(:enter than any point on the surface. On the other hand, if the point X is 
intcrior to the r-sphere, then the order associated with the center must show 
X less distant from the center than any point on the surface. Finally, if the 
point X is conjoint with the hypersphere, the order associated with the 
(.enter must show the X equally distant with any point on the surface. 

Obviously, among n stimulus points in general position in r dimensions, 

any given stimulus point must be conjoint with (n - 1) distinct r-spheres, 
\ r / 

since there will exist a center of an r-sphere for each set of r + 1 points. 

Also, any pail" of points must be conjoint with r-spheres. 

The various r-spheres defined by the points in the space will differ in 
the extent to which they include the entire configuration within or on their 
surfa('e. Some r-spheres will have none of the remaining e - r - 1 points 
interior to its surface. At least one r-sphere will have all of the points either 
within or on its surface. Such an r-sphere containing all points either within 
or on its surface will be called an enveloping sphere. Given two or more en- 
veloping spheres, the subspace formed by  the intersection of the spaces 
they bound will contain the configuration; this subspace will be called the 
ccntral iMcrsection of the spheres. In Figure 3, for example, the circle defined 
by the points A, C, and E is an enveloping sphere, since all five points are 
either on or within its surface, and the same is true of the circle defined by 
A, B, and E. The central intersection of these two circles, as shown by the 
shaded area, ('ontains the configuration. 

In parti(.ular, if there exist r distinct enveloping r-spheres each gener- 
ated 1)y the same two points X and Y and some set of r - 1 other points, 
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FIGURE 3 

Circles Generated by Five Points in Two Dimensions Showing the Least Intersection 
for the Configuration 

then the central intersection of all of the spheres will be called a 

least intersection. The major axis of this least intersection subspaee will be 
the line joining X and Y, and the minor axes of the subspace must lie in 
the hyperplane of equidistance H(X, Y) defined by these two points. In 
Figure 3, the shaded area bounded by the two circles formed by A, B, and 
E and by A, C, and E is a least intersection, and the major axis of this area 
is the line AE with a minor axis defined by their perpendicular bisector. 

However, since one is dealing strictly with an isotonic space, in which 
the only information available is in the form of rank orders for regions, the 
problem remains of finding that  pair of points defining the axis of a least 
intersection. This may be done as follows. The center of an r-sphere is, of 
course, an (r -4- 1)-locus, the point of equidistance from some set of r A- 1 
points. The (r -4- 1)-locus point does not fall into any isotonic region having 
a simple characteristic order of distance; rather, such an (r -4- 1)-locus must 
fall on the boundary separating a number of such regions, and consequently 
haw~ a partial ordering of distances, since it is by definition equally distant 
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from at leasl r + 1 points. For example, in the configuration of five points 
in two dimensions, the 3-locus H(A, B, C) for the three points A, B, and C 
is Ihe point of intersection of the three 2-loci H(A, B), H(A, C), and 
II(B, ('), thus falling on the boundary lines among six regions. Both D and 
E are exterior to the circle, so that the order of distances from the center 
of the circle to the five points is the partial order (ABC)DE. (Single paren- 
theses enclosing a set of points in a partial order will always denote equality 
among the points in the set., while double parentheses will denote the set 
of all permutations in order of the enclosed set: thus (ABC)DE is read as 
A, B, C equally in the first place followed by D and E, while ((ABC))DE 
would read as any of the set of six orders consisting of some permutation of 
A, B, and C followed by D and then E.) Note also that the six regions im- 
mediately surrounding the center of this circle are all alike in order, except 
that each shows a different one of the six permutations ((ABC))DE, the 
positions of D and E remaining fixed. Such a set of permuting regions would 
also be used in the groups criterion for dimensionality mentioned earlier. 
The general principle which such sets of regions exhibit is: if there exist a 
set of (r + 1)! regions showing exactly the same characteristic orders except 
for a permutation of some set of r -4- 1 stimulus points, then there exists an 
r-sphere to which those r + 1 stimuli are conjoint. The partial order of 
distances characteristic of the center of the r-sphere is the same as that of 
any of the set of permuting regions, except that all of the set of conjoint 
stimuli are equally distant from the center point, thus giving it a partial 
order of distances. In other words, the groups of permutations occurring in 
the data tell not only about the dimensionMity, they also tell of the existence 
of r-spheres in the space. Figures 2 and 3 again provide an illustration. Each 
one of the ten circles is accompanied by a set of six permuting regions, and 
each set. of permuting regions surrounds the center of a circle. No set of 4! 
permuting regions may be found, however, since 2 is the dimensionality. 

l:urthermore, these sets of permuting regions also give information 
about the positions of all of the points relative to each of the circles. I t  has 
already been mentioned that the set of r + 1 stimuli which permute among 
the (r + 1) ! rank orders are those which are on the r-sphere. If any stimulus 
falls in order below the permuting stimuli for the region orders, then that 
stimulus is necessarily exterior to the r-sphere. On the other hand, if any 
stimulus point precedes the stimuli which permute in order, then that stimu- 
lus point is interior to the circle. For instance, the regions CBADE, CBDAE, 
CDBAE, CDABE, CADBE, CABDE, which are members of the set 
C((ABD))E, differ only by a permutation of A, B, and D; thus they must 
surround the center of a circle in the example, with A, B, and D on the 
perimeter. Since among these regions C always precedes A, B, and D, the 
circle must have C as an interior point. However, E always follows the three 
permuting stimuli in all of the regions of the set of six, so that one must 
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conclude that the circle will have E exterior to it. This may be seen from 
Figures 2 and 3. 

Since the positions of the points relative to the r-spheres may be read 
from the orders characterizing such permutation groups in the data, a way 
emerges for fixing the least intersection for a configuration of points. Recall 
that the least intersection is the subspace formed by the intersection of r 
distinct r-spheres such that each point is either conjoint with or interior 
to each r sphere. Then a least intersection may be determined by first finding 
all those permuting sets of (r + 1)! orders which show the property that all 
stimulus points are either in the permuting set or precede the permuting 
set in order. That pair of stimulus points common to the permuting set for r 
such groups of stimuli is the major axis of the least intersection. In the 
example, these r-spheres are represented by the sets of six regions falling 
into the partial order CD((ABE)) and the set of six regions falling into 
the partial order BD((ACE)). The points common to the permuting set 
for both groups are A and E; consequently A and E describe the long axis 
of the least intersection for this configuration. 

Moreover, the two points which define the major axis of the least inter- 
section of the space have a property which permits them to be identified 
simply, without the necessity of inspecting all of the sets of (r + 1) ! permu- 
tation groups of regions. The circumstance that these two points are conjoint 
with the r-spheres forming the least intersection makes it true that among 
the closed regions of the space (i.e., those having no mirror image), this 
particular pair of points will appear in the last two places in order for the 
largest number of regions. On the other hand, the desired pair will appear 
in neither the first two places nor the last two places in any open region. 
Thus, the endpoints of the major axis of the least intersection may be found 
very easily for complete data by merely counting the number of times pairs 
of stimulus points appear in the last places for closed regions, minus the 
number of times the pair appear in an extreme position (at either end of the 
order) for open regions. 

For example, in Table 1 based on Figure 2, it can be seen that the pair 
A and E occurs in last place in nine of the closed regions, and in an extreme 
position in none of the open regions. Thus, the major axis of the least inter- 
section must terminate in A and E. 

To recapitulate, one criterion which is proposed for choosing among 
rank order solutions is that the axes chosen reflect the tendency of the points 
to cluster along the long axis of the least intersection, so that the axes chosen 
may reflect the general shape of the configuration in so far as possible. This 
will be taken as the first requirement for a choice from among all of the 
available solutions for complete data. 

Albeit the axis of the least intersection will be determinate for most 
configurations, it is possible to construct configurations in which there will 
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TABLE 1 
)pen and Closed Regions for the Five-Point E×ample 

Open ]legions Closed ]legions 

ABCI)E EI)CBA BDACE BCADE 
ACI31)E EDBCA BCDAE BDCAE 
BACI)E EDCAB BDCEA BDEAC 
BA I)CE EC DAB Bl)ECA BDAEC 
BAI)EC CEDAB BEDCA CBDAE 
BAEI)C CI)EAB 1)CBAE DCABE 
BEA I )C C DAEB CDEBA CDBEA 
BEI)A(~' CADEB I)CBEA 1)BCAE 
EBI)AC CADBE DBCEA I)BECA 
EI)BAC CABI)E DEBCA DECBA 

DCEBA EBDCA 
ECDBA CEDBA 

be fewer than r distinct r-spheres, each of which will have the proper ty  of 
including all of the points within or on its surface. In  this situation, there 
will be ambiguity as to which of the pairs of points best characterize the 
major  axis of the configuration. For example, in the configuration of Figure 
'2, if one ignores stimulus A, and concentrates on B, C, D, and E only as four 
points in two dimensions, he can see tha t  the circle generated by B, C, and 
E fits the qualification for one enveloping circle, but  tha t  there is no circle 
among the remaining three described by  B, C, and D; B, E, and D; and C, 
E, "rod D which fits this qualification. For  this configuration, then, there is 
no special choice among the pairs BC, BE, and CE as determining the end 
points of a first axis. There will always, however, exist at  least one envelop- 
ing r-sphere in any configuration in any dimensionality r. 

A Quasi-Simple Structure Criterion 

I t  does not seem quite enough, however, to insist tha t  the rank order 
axes chosen should refle('t the length, breadth,  and height of the configuration. 
I t  seems desirable to seek solutions which have a certain degree of inherent 
parsimony of description. In  other words, another  aspect to a good solution 
should be its simplicity in some sense. This is true especially since there 
seems to be no good analogy to rotation within the isotonic model. 

The search for such solutions in factor  analysis is indissolubly linked 
with the name of Thurstone and the concept of simple structure [51. While 
the rules for achieving simple structure seem to be very much bound up 
with the mechanics of factor analysis, and especially of rotation, there does 
seem to be one aspect which m a y  have a rough analogy in the isotonic model. 
In (h,scribing the characteristics of simple structure, Thurstone ([5], p. 335) 
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emphasized the desirability of maximizing the number of zero loadings 
which any given factor should show, while, at the same time, minimizing 
the number of factors on which a test should show high loadings. In the 
isotonic model, there is, of course, no unique origin in the space, and since 
the possible solutions are only ordinal in character, the concept of zero 
loading has no special meaning for this model. However, it does seem that 
a pertinent part of this requirement for simple structure is not that the 
loadings for a number of tests are zero per se, but rather that the differences 
among a maximal number of points are zero when projected upon an axis. 
In other words, since reference axes are ways of describing the differences 
which exist among points anyway, maximum clarity is achieved when the 
various axes describe different sorts of differences among the points of the 
,configuration, so that differences which project large upon one axis shall 
not project large upon others. This is emphatically not the only interpreta- 
tion of the concept of simple structure by any means; it is, however, an 
aspect for which there is at least a distant analogy within the confines of an 
isotonic space. Thus, a quasi-simple Structure requirement may also be im- 
posed in the choice of a solution: each axis should be chosen in such a way 
that the number of zero distances among projections on each of the axes is 
maximal. 

(r) For n points in r dimensions, there are, in a sense, ready-made axes 

consisting of all of the r-loci in the space. Recall that the locus of equidis- 
tanee from r points in r dimensions is a line, and "this line must have pro- 
jeetions of all of the points upon it. Hence, each of the r-loci is a potential 
axis. ~Furthermore, these r-loci do have one valuable property in the light 
of the quasi-simple structure notion just introduced. This is that the r points 
defining the locus must project onto exactly the same point upon it; that is, 
since they are all equally distant from any point on the r-locus, their pro- 
jections onto the locus must coincide. For example, note in the five-point 
example that on the line H(A, B) for instance, how the projections of A 
and of B must coincide, and so on for each pair of points defining a 2-locus 
line. Consequently, this quasi-simple structure criterion may be approached 
by taking the r-loci themselves as the axes. This reduces the choice of the 

r axes to some extent, but there are still (n) such loci from which to 
* * %  

set o f  

choose. 
How may one determine the order of projections upon an r-locus from 

.complete data? The answer is, by finding permutation groups in sets of r! 

.open regions. According to the corollary of the theorem, open regions must 
,describe possible orders of proiections, and permuting sets of r! open regions 
must thus describe the order of projections upon the line described by an 
.r-locus. In the example, the line H(A, B) has an order of projections 
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(A B)CDE, which is reflected by the set of open regions ABCDE and BACDE, 
a permuting set ((AB))CDE in A and B, and by their mirror image males 
EDCBA and EDCAB which also constitute a permuting set EDC((AB)) 
in A and B. Ilence the order of projections on the 2-locus H(A, B)is 
(AB)CDE. Similar inspections of open regions permuting in A and E show 
B(AE)DC fin' H(A, E), BA(CD)E for H(C, D), and so on. 

Each of the r-loci axes will then have the property of zero distance 
among projections for at least r stimuli. The  choice among these axes can 
be made by finding that  axis which tends to parallel the major axis of the 
least, intersection. 

Orthogonality o] Axes 

A third desideratum in choosing a solution from among the exhaustive 
possibilities is that  the axes chosen be more or less orthogonal to each other. 
Obviously, the r-loci will not in general be orthogonal, so that  in a choice 
among these for the set of axes, only approximate orthogonality can eventu-  
ate at  best. However, there is an advantage in choosing those r-loci which 
will have even this approximate degree of orthogonality, in tha t  we may a t  
least be sure that  our description of the space is as nonredundant  as possible. 

Just  as there is a feature of the space which allows one to approach the 
quasi-simple-structure criterion easily, so are there guides to orthogonality 
as well. If any set of r points in general position defines an r-locus line, the 
subspace of r - 1 dimensions in which the r points are embedded is every- 
where orthogonal to the line of the r-locus. Also, if two points define a line 
ill the space, then the 2-locus defines a hyperplane of r - 1 dimensions such 
tha t  any line in the hyperplane is orthogonal to the line between the two 
points. For example, in Figures 1 and 2, note how each 2-locus H is a perpen- 
dicular bisector of, and hence orthogonal to, a line. 

Now suppose that  the first axis is chosen to be that  r-locus which is 
approximately parallel to the major axis of the least intersection. The re- 
maining 7" - 1 axes should be approximately parallel to the minor axes of the 
least intersection if they are to be orthogonal to the first; in other words, 
the remaining axes should be guided by the 2-locus which is orthogonal to 
the axis of the least intersection. In the example, A and E were, of course, 
found to define the major axis; thus, the 2-locus H(A, E) is orthogonal to 
this line. By taking the second axis paralM to this 2-locus, one insures 
tha t  it will be approximately orthogonal to the first axis: in this instance, 
the second axis must show A and E projecting on the same point. Actually, 
in the example, the only possible 2-locus which would then qualify as an 
axis would be H(A, E) with order of proiections B(AE)DC. With di- 
mensionality higher than two, however, there would be a choice among a 
number of r-loci showing A and E adjacent in order, where A and E are 
the endpoints of the major axis. 
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The procedure for locating axes beyond the first follows the same general 
plan. Only r-loci showing the endpoints of the first axis adjacent are con- 
sidered. Then, always omitting one of the stimulus points which served as 
endpoints for the first axis, that pair of stimulus points is found which serve 
as axis points for a least intersection enclosing the largest number of points 
which do not fall between the points in question on the first axis. For instance, 
in the example, if the four points A, B, C, D are considered, then A and D 
form the maior axis for those four points. However, A and D are not taken 
as endpoints for the second dimension, since both B and C fall between A 
and D on the first axis. On the other hand, if B, C, D;E  are examined, it 
is found that only the circle generated by B, C, and E has all four stimuli 
either conjoint or interior to the circle. In such a case, any of the pairs BC, 
BE, or CE could serve as the major axis for this subset of points. However, 
D falls both between B and E and C and E on the first axis, so that only 
B and C apparently qualify as endpoints on the second axis. This is a trivial 
finding for a two-dimensional example, of course, since there is only one 
rank order which qualifies in the first place. Nevertheless, the procedure 
would be the same for higher dimensionalities, always locating higher axes 
in terms of central intersections for reduced numbers of points such that 
there is minimal duplication of previous axes' rank orders. 

The end results of an analysis based on these criteria would be a set 
of rank orders, representing projections upon axes which parallel major 
axes of least intersections, which show the property of quasi-simple structure, 
and which are approximately orthogonal to each other. Obviously it is not 
possible to plot such axes and perform any sort of rotational operations upon 
such a solution. All possible solutions are immediately at hand in such data, 
and if the solution obtained is unsatisfactory for some reason, there are 
certainly others which may be chosen by abandoning one or all of these 
criteria. However, the criteria proposed here do seem to have some recom- 
mendation on common-sense grounds as well as by analogy to current prac- 
tice in factor analysis. On the other hand, only properties of the isotonic 
space itself are relied on in these criteria for selecting among the possible 
solutions, and these criteria are presented here as isotonic principles sui 
generis, and not as approximations to results which might be found by metric 
methods. The analogies drawn to principal axes and simple structure are 
meant only to be expository and suggestive rather than exact. 

The Problem o] Incomplete Data 

Any method for multidimensional unfolding has very limited practical 
utility as long as it is limited to the case of complete data. The number of 
isotonic regions which may exist even for a small number of stimuli in small 
dimensionality grows truly astronomical very quickly with increase in either. 
As was pointed out in [2], complete data cannot possibly be obtained except 
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in the most trivial eases. Our purpose in limiting this discussion to the ease 
of complete data was, however, simply to make an exceedingly complicated 
topic a jot more comprehensible. In applications to real data  some com- 
plexities do arise, mainly due to the fact that  one does not necessarily have 
the exhaustive solution already implicit in the data in the incomplete ease, 
and thus other steps must  be introduced to supply the information given 
in the complete ease by the mirror image pairs. However,  the general ideas 
both for dimensionality and for a eonfigurational solution may  be applied to 
the ease of either complete or very incomplete data,  so tha t  the principles 
enunciated here will be the basis for future discussion of the incomplete 
data  situation. 
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