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An interesting problem in linear programming is the group assembly
problem which is mathematically equivalent to the general transportation
problem of economics. Computer programs designed for the determination
of exact and approximate optimal group assemblies have been available for
some time. This paper presents formulas for the mean and squared standard
deviation of the distribution of all possible group assembly sums. Compu-
tational techniques are presented and the results are related to those of the
analysis of variance of a k-factor problem with « levels of each factor.

Suppose that a group, or team, or crew, consists of & men each of whom
is trained for only one of the k different positions of the group. Suppose
further that there are n men available for each of the k positions. Then one
set of men {4, , 4y, -++,%;, +++, @}, where 1 < ¢; < n, constitutes one of
the groups under consideration and there are m groups. In the personnel
classification problem [5] for instance, where a modified interpretation identi-
fies the n men (4,) with the n jobs (z,), the number of assignments of men to
jobs is n’.

The score which a group makes in attaining its objective is a group
seore, g;,...;, - 1t must be measured in units which indicate the effectiveness
of the group such as points, percentage of targets hit, ete. The ideal group
score may be a high one, as in bowling, or a low one, as in golf. In the follow-
ing development we assume that the group score is known. It is sometimes
difficult to satisfy this assumption by empirical determination of the group
score exactly (i) because of the sampling error of such results and (i) be-
cause of the practical impossibility of determining the group score for all
the n* possible groups with n and/or k large. In such cases approximate, or
plausible, or calculated, or hypothetical group scores must be provided be-
fore the solution can be made. This aspect of the problem is much less serious
in an economie version of the problem, the general transportation problem
{4], where the fransportation costs from origins to destinations through
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intermediate points are presumably known or can be approximated. The
results of this paper are applicable to the interpreted variations of the general
problem.

A group assembly is a collection of groups such that each of the avail-
able nk men is assigned to one and only one group. Combinatorial argument
shows that there are (n!)*' group assemblies since, for each 7, , the k — 1
sets of 7, , --- , 7, may be assigned in ! different ways.

In studying the measure of effectiveness of the assembly, we assume
additivity and define the group assembly sum to be the sum of the group
scores for the n groups in the assembly. Thus the group assembly sum is
given by

(1) T = Sg;,;'n.,"...(i N
where S indicates the summation for the n terms.
The Mean, T

Since there are (n!)*™! assemblies, the total number of group scores in
> T is n(n))*™*. Now from symmetry,

Z e Z Tigsoeiy = g*...*
LEY th
must factor this result. Since g,..., is the sum of the n* group scores,

oY QL TS

Then the mean of the distribution of all possible assembly sums is

— 1 1
2 T =_(‘7;!')7;.—1 T = ET Guvorge *
The Value of T°

In deriving the value of the standard deviation of T, we first obtain
the second moment, T°. Now T2 for a given assembly, consists of

(3) 7,2 = Sg?‘...u + S GiyosvizGryeveny »

$ivhi

The first term on the right consists of the sum of the squares of the n terms
of (1) while the second term on the right consists of the n(n — 1) paired
products of the n terms of (1). Then the value of 3 r S¢g?,...,, is

nnl) -
R S R Lol e

and the value of 27 S:..cisfeerns 18

_]._(n n — 1)1& s fyrrrigfhyecche : E, T I R T
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Then dividing by (n!)*™* we get
— 1 ) 1
4) T = I ; gi,...“ -+ W ‘z_‘zi ireorirQhorehe »
The next step is the evaluation of the last term of (4) in terms of sums of
squares. We use the symbolism of restriction equations in order to accom-
plish this.
Application of Restriction Equations
We note that

;fifh = Z ;fefh - ;fifh
can be written symbolically as the restriction equation
@C=Zh)=0—C=h),

where 0 indicates that there is no restriction on the values of 7 and A and
where (¢ = h) indicates that the restriction is only that ¢ must equal h. More
generally for f;,:.fa.n. and i .0 5000, Tespectively we have

(@ % h)(@: # he) = 0 = [(h = hy) + (2 = k)] + (01 = b)) (& = ha),
(@ 7 h)(@e # Ro)(s 7 hs) = 0 — [0 = b)) + (G2 = ho) + (& = ho)]
+ [ = k)G, = ho) + (G = hi)(is = h)
T (6 = h)(ls = ho)] — (1 = h)(@> = ha)(&s = ha),

where (¢, = h,){¢: = h;) means the double restriction (Z, = h,) and (¢, = hs).
These can be written more symbolically using product [ (; = &;), and
product type T, [[” (¢; = h;) which sums all products having r factors.
Then the restriction equations appear as

I G = h) = 0 = TG, = b + 11 G; = b,
LGy h) = 0 = TG = ) + T T1 Gi = h) — TLGr = A2,

and in general
k

I Gi = h) =0 = T,6; = b))

+ 2 T T1 G = b + (=1* I1 Gy = o)

T=2

®)

Application of restriction equations to the summation part of the last
term of (4) gives

(6) E Jivia@nn, = gi* - Z g?;* - E giiz + Z g?n" ’

ii#hg 1,99
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(7) '; gi;i,z’;gh,h,h, = gi** - Z g?;** - Z giig* - Z gi*;,
+ Z gn!z* + Z gn*u + E g*uu - Z g?n':ia s

ti1.ig i1.43 13,13 1,902,173

and in general

(8) -‘;i GouorrisGraeeome = gi* - TV Z gf,***

kw1
+ Z (—1)'T, 2 Ghreirggs + (=D 20 gha

The Value of o2

Defining o2 = 7% — (T)? we obtain from (2), (4), (6), (7), (8) for k =
2,3,4,5 k

2 1 2 1 1
9@ or= 1 E Giiia "‘“‘—_—) [Z Qn* + 2 g*u I+ = n’n — 1) g** '

n nin

2 n - 2 - 1 _ 2
or = n(,n _ 1) Z gunu 2(,” . 1)2 [ Tu Z gh**

(10)
+ Ty X Ghon] + e 5 G
a o7 = %%‘3 2 Fhininia 3(n1—- I [=T, 2 Grsns
F Ty 2 Ghinne = Ty 20 gLl + % A
12 o7 = i ?EZ : nt 2 Z gimimn _4(;'1:’1)"4 [—Tugn****

+ T Z gixiz*** - T Z ga'u',l'g** + TII Z g?:i;i,ic*]
_(2n — 1)(n —2n+2) ,

n (n 1) Trssxs
and in general
» (=14 (=1 2 1
Or—= o T D fheeir T T
(13) nin— 1) nin— 1)
k-1 , nk—l n 1 E~1
.[; (—l) T,, Z g?,.-.{,***] + 2Ic 2(%( 1)!:}—1 gi...*
The formula for & = 2 (personnel assignment problem) was given

essentially by Votaw and Dailey [6] in a report prepared for the Air Force in
1952. The more general formulas appeared in a report by the author [3]
prepared for the Air TForce in 1956.



PAUL 8. DWYER 401

Direct Caleulation of oy

The formulas are suitable for direct calculation. It is necessary to calcu-
late the quantities g.,....,4us - Then the squares can be calculated and ac-
cumulated. This process is identical with the preliminary calculations for a
nonreplicated factorial analysis of variance with k factors and n levels for
each factor. Machine programs may be used in obtaining the values of
G, eeionqq OF they may be obtained quite easily with desk calculator if n and
k are not too large.

Calculation Using Deviates

The formulas are simplified with the use of a preliminary transforma-
tion to deviates. This transformation is very feasible with automatic caleu-
lation and might be considered by users of desk calculators in situations,
such as this, where the main effects may be ignored. The technique is first
applied to the &k = 2 case. We define
iy = Gii — Fivg = Jgta + Gox = Givia ™ (gn*/n) - (g*i,/n) + (g**/nz)

and note that ¢7 is not changed by replacing g.,:, by d;,., since each as-
sembly sum is decreased by the constant

E gi;* + Z 57,“', - ng** .
Furthermore we note that

Z di,i, =0 = Z dm’, = Z Z dm',
since

Z dixia = Qpia (g**/n) = Gxia + (g**/n)

Then (9) becomes the simple

(14)

}_j d.. .

Similar treatment when &k = 3 with
d‘li:ia = Gisigis gix** - g*iz* - g**i: + 25***
leads to

P n - 2
or = Z dtnaza
(15) n(’n — 1)°

+ n ( Z dH rak + Z d“*’s _}_ Z d*tsza
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In the general case with
di‘x"'fh = gt'l“‘i'k — Tyg"‘*-..* + (k — 1)5*...*
we have

: _ (n =D+ (=D 2
gr = TG oy L Zdumu

(16)

k-1

+'T“T““"""/?‘TZ( =0T, 2ot -

[ r=2

Calculation Using Large Variances

Applying the concept of the large variance ({1}, p. 302) to the d’s and
noting that the number of d., , d,,, , di.,, , -+ is n, the number of d..,, ,

divivg » Qirirgy » *+* 18 0%, the number of di i,y , - is 7, etc. and that
di gy = 0, we define

L'(1% -+ %) = aT, > d2,..., 0,
an L(11% « - %) = n*T, Zd,,.,*

L/Q1L* oo %) = 0°T, 2 di vy ) ete.
Then for k = 2 and k¥ = 3 we have

» 1 ,
(18) 0 = o LAY,

(19) 0'7? = =3 !

= 1) [(n — 2)L/(111) + L’/(11%)],

and for general k

2 _ 1 n — D A (=D,
or = n2(k—1)(n—_ 1)k—l [ r——— L (1)

(20)
+ (_ l)k—rnr-—lL,(lk—r*r)] .
Thus for k = 4 and &k = 5 we have respectively
1

21 or = m [® = 3n + 3)L/(1111) + nL/(11%%) — L’(111%)].
2 1 3 2 ’ 2T7(1 1 %%
(22) or = m (n® — 4n® + 6n — 3)L/(11111) + "L/ (11x+x)

— nL(111%%) + L/(1111%)].

The values of L’ are easily calculated from the sums of the squares of the
d’s as is illustrated below for the case with ¥ = 3and n = 3.

Calculation Using I Terms
The values of the L’ are the values of the nondeviate L with
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L

Since the conventional relation of the sum of squares expressed in terms of
L’s is

Li;u Lu* + L*z. + leu ’
L,',;,.‘, = ."** + L*i,* + L**i. + I:‘,i,* + In*{. + I*i.i. + Is‘u’u‘u ]

where the value of I is n* times the corresponding conventional sum of
squares, we have

= L.. —

iikee gk kiag o

L'(11) = I,,:, = I(11),
L'(A1%) = Li;,, + Ligi, + L
= Loy + Lisgis + Lyioin = I(119%),
L'(111) = Li,;,., = I(11%) + I(111).
Then the formulas for ¥ = 2 and k¥ = 3 become respectively
1

(23)

(29) o7 = m[(ll},

(25) cr = - (n 0 5 [(n — 2I(111) + (n — 1I(11%)].
In particular when n = 3, (25) becomes

26) ol = 3%1 (I(111) + 2I(11%)].

When k = 4 we find that
L’(1111) = I(1111) + I(111%) 4+ I(11%%)

L'(111%) = I(111%) + 2I(11*%)
L'(11%%) = I(11%%)
so that
2 1

@) op = 2o —1° [(n* — 3n + 3)I(1111)

+ (n — 2)(n — DIAL1*) + (n — 1)*T(11*%)].
For k = 5 we find
L'(11111) = I(11111) 4 I(1111%) + I(111%%) 4+ I(11%%%)
L'(1111%) = I(1111%) 4 2I(111*%) 4 3I(11%+%)
L'(111%%) = T(111%%) - 3I(11%*%)
L/(11%%%) = T(11%%%)
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so that

o5 7o n—(n—l_—l—)g [(0° — 4n® + 6n — HII11LL) + 0 — 3n 4 3)(n — 1)
TS + (0 — D — DAL + (0 — 1P T(11%%5)].

We note that for k = 2, 3, 4, 5 at least, the coefficient of (1°""*") in the bracket
is (n — 1)” times the coefficients of I(1*"") in the bracket. We prove that
this is true in general and that the coefficient in the bracket of

[y = [(n - D7+ <-1>'°"](n — .

n

The coefficient of I(1*~""~*+""**) in the expansion of L'(1*""'*"") is
G- (h) =08
v’ 8 "N 4s) N s 0

When 7’ = 0, this coefficient is (i) = 1. Then for a fixed r = ' + s the
coefficient of 7(1*~"*") in the bracket, using (20) with r replaced by r' =r—s, is

(n — l)k_l + (_1>k = vty r—g=1f T
- n + ,};—(:, (=D n (s)
(n = D7+ (=D (=D ) -
= + 2 (=1 Jn
29) n n pyerd (s)
_ =D (=D (=D e
= - + o e = DT+ (=17
_ (’R - l)k«f-—l + (_.l)k-‘r [n _ 1]”.
n

We can then write, & > 2,

(30 or = nz(sz—n(?ll _ I)k 5: [@ — D7+ (=D) —il(n — 1)’2’(1""*’}_

re n

The value

(n - ])k-—r-l + (‘__—1>Ic—r
n

is simply a polynomial of degree ¥ — r — 2 with binomial coefficients of
degree k — r — 1 and alternating sign.

Calculation Using Sums of Squares
Now

I = pPS(1F 7,
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where S(1*77#") is the sum of the conventional sum of squares which con-
tribute to the interaction term of order r. Thus

S(A1**) = 8@ , %) + 8, %) + 8C , 24) + 8@, 2) + SG , 1) + 8@ , 1)

features the second-order sums of squares appearing in a conventional fac-
torial analysis with n = & = 4 and no replication. The general formula
then is

Bl  of= > [(" ) L(_l)k_'](n 1SN,

e 2( l)k i oot n

Special cases for k = 2, 3, 4 are
32 o7 = 81/ — 1),
(33) o7 = [(n — 2)8(111) + (n — 1SAIM]/nn — 1)%,

o7 = [(0® — 3n + 3)SAI1L) + (n — 2)(n — 1)S(111%)

(34) + (n — 1)°8(11%%)]/n*(n — 1)°, ete.

This formula is suitable for the application of the results of a comput-
ing program for analysis of variance of an unreplicated factorial experiment.
It is only necessary to obtain the sum of squares for the various sources by
machine and apply the multipliers indicated in (31).

The formula (31) has more than computational importance since it
shows which interaction terms are responsible for the magnitude of ¢2 . It
is worthy of note that, in every case, the coefficient of S(1*~™*") in the bracket
is of order n*~*, Hence, unless n is small, the weighting of every individual
sum of squares, no matter what the order, is approximately the same. This
makes possible the direct comparison of the different sums of squares so
that one can see which sources are responsible for the size of ¢} .

It is also worthy of note that ¢; = 0 if and only if all sums of squares
for interaction terms are zero. This situation is satisfied when the group
seore is a linear function of the scores of the individuals composing the group
and is not a function of interaction of individuals. Then all group assembly
sums are the same and the groups can be assembled on any convenient basis
without reference to the group score. The group assembly problem is de-
signed to handle situations in which there are interactions in the group.
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Illustration withk = 3andn = 3

Computation with the various formulas is illustrated in Table 1 and
Table 2. Table 1 treats original g¢,,;,;, and illustrates the formulas using
> g% I(), and S( ). Table 2 treats d;,;,;, and illustrates the formulas for
& L( ), I( ), and S( ).

TABLE 1
Value of g, . . with Sums and Analysis
1,1_1
123
i
i 2 ! 2 3 o
s iy ¥ g
i 2 4 6 12
1 2 6 4 8 18
3 5 7 2 14
. 5
g*lzi 13 1 16 44 £,
1 3 7 2 12
2 2 4 7 5 16
3 2 2 4 8
—
g*i22 9 16 11 36 g, .5
i 7 i1 7 25
3 2 2 5 € 13
3 3 1 4 8
B, 3 12 17 17 46 €un
12 22 15 49
* {;i - 12 16 19 47
t'z 10 10 10 30
g**z‘* 34 48 44 126 g,
H
Source{ n Sum 3¢ )2 Mult, L 1 () Mult.,) S S() Mult.
*okK 1 126 15876 5 v
ii** 3 126 5510 -9 654
*12* 3 126 5396 -8 312
**iS 3 126 5348 -9 168
i112* 9 126 1914 9 1350 384 i4.22

i i 9 126 1986 9 1998 1176 1674 2 43.56 62,00 2

*12i3 9 126 1830 9 594 114 4.22

iiizi3 27 126 736 27 3996 1188 1188 1 44,00 44,00 i
Num, 4536 4536 188.60

Den. 324 324 12

14 14 14,00
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Examination of the I (or 8) column in Table 1 and Table 2 shows that
the larger contribution to ¢; comes from the 7,*¢;, and %,4,9; interaction
terms. Actually in this case withn — 1 = 2and n — 2 = 1, the ¢,*¢; term,
weighted twice, makes the largest contribution. If this term were zero (the
other terms remaining the same) we would have ¢? = 6.74 units® which is
less than 50 per cent of the original o2 . This illustrates the use of the re-
sults of a conventional analysis of variance in determining the major con-
tribution to the value of ¢7 .

TABLE 2
Value of d, . . with Sums and Analysis
1,11
123
. i
1y N 1 2 3 d ..
1 i3
i ~2,7178 -2.3333 0.1141 ~5,0000
1 2 1.4444 -2.1111 2.3333 1,6666
3 2.3333 2.7718 -1.7778 3.3333
q . 0.9999 -1.6668 0.6666 ~0.0001 d
*121 #x1
1 ~0.8889 1.5556 -3.0000 -2,3333
2 2 0.3333 1.7778 0.2222 2.3333
3 0.2222 -1.3333 11114 0.0000
mm—
d . -0.3334 2.0001 -1.8667 0.0000 d
*122 *%2
1 2.0000 4.4444 0.8888 7.3332
3 2 ~2.7778 -1.3333 0.1411 -4.0000
3 0.1111 -3.4444 0.0000 -3,3333
d*i23 -0.6667 -~0.3333 0.9999 ~0.0001 dys
~1.6667 3.6667 -2.0001 -0.0001
4 4., ~1.0001 -1,6666 -2.6666 -0,0001
12 2.6666 -1.9999 -0.6667 0,0000
~0.0002 0.0002 -0.0002 ~0.0002 d,.
Source| m |Sum] z()2 | Mwit. ]| L] L) TMut] T 110 T8 §() T FlL
okok 1 14 O (4] 0
i o#x 3 ] 0 0 0
1
*oe 1310 o 0 0
M, 1310 0 ¢ 0
iix[9o] 0 42.6663 1 384 384 14,22
ii*i:i 9] 0 ]130.6637 1 1176 | 1674 1 1176 ] 1674 2 43.56 | 62.00] 2
*uis | 9t 0 12.6665 1 114 114 4.22
11,0127 | 0 1105.9989 | 3 2862 | 2862 i 1188 | 1188 | 1 44,00 [ 44,00 1
Num. 503.99 4536 1536 165700
Den. 36 324 324 12
14.00 i4 14 14.00
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In Table 1 the multipliers of the D, g° obtained from (10) are the numer-
ators of the fractions having n*(n — 1)* as the denominator with n = 3.
Decimal equivalents of the coefficients in (10) could be used if preferred.
In Table 2 the computed values of I’ are rounded to the nearest integer
since it is known that each L’ is an integer. In most cases the methods lead
to the exact answer, 14 units®, though in some cases a decimal approxima-
tion results.

The various formulas are provided so that the worker may select the
one which seems most suitable when considering other desired treatment
of the data, the values of k and =, and available resources such as computa-
tional equipment and assistants.
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