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DERIVATION OF LEARNING PROCESS STATISTICS FOR
A GENERAL MARKOV MODEL*

Haruey A. BeErxBaCHT

UNIVERSITY OF MICHIGAN

_ A Markov learning model may be stated in the form of a transition ma-
trix, starting vector, and response probability vector. Utilizing these and some
general properties of absorbing Markov chains, general expressions are derived
for several statistics of the learning process which ean be applied to any model
of this form. Included are derivations for the mean learning eurve, number of
total errors, trial numbers of the first success and the last error, and the num-
ber of error runs. As an illustration, all derivations are worked out for the
simple two-state one-element model.

Introduction

Situations in which learning can be characterized by an increase in
the probability of success which approaches an asymptote at a probability
of unity have been described by models based on absorbing Markov chains
(1, 2, 3, 4, 5, 8]. Bower [3], presenting the simplest such model (the two-state
one-element model), noted the great mathematical tractability of the system,
and derived expressions for & large number of properties of the learning
process which could be used to test the theory. While these derivations
remain possible in the case of more complicated models [e.g., 1, 2, 8], they
become considerably more unwieldy as the number of states increases.
This is mainly due to the nature of the derivations, which have typieally
been based on difference equations drawn from the axioms of the model.

In this paper, derivations of several learning process statisties will be
presented for a general Markov model, using principally the theory of finite
Markov chains as presented by Kemeny and Snell [6]. The power of Markov
chain mathematics will be seen fo give tractability to even the most
complicated Markov model. In fact, it is possible fo write a general computer
program directly from the equations given here (which are in vector notation)
and use the computer to generate predictions for any particular model and
set of parameter values.

*This work was partially supported by Public Health Service Grant NIH 1 T1 GM
1231-01. -

{Appreciation is expressed to David Birch for his continuing advice and support
during the course of this work, and to Frank Goode for his helpful eriticism of the manu-
script and notation. The author is now at Cornell University.
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In general, a Markov model consists of a transition matrix, starting
state probability vector, and response probability vector. The matrix operates
on the state probability vector to describe the learning effect of a trial,
and the response probabilities on any trial are given by the product of the
response vector and the state probability vector for that trial. Further,
in the type of model to be discussed here, the matrix has at least one absorbing
state, and the probability of success in any absorbing state is 1. The
derivations which follow are applicable to any model that has this form.

Notation

We first introduce the notation which will be used in the derivations.

Transition Matriz

T = transition matrix whose entry ¢;; is the conditional probability that
the process is in state j on trial & 4 1 given that it was in state 7 on
trial k. The states and probabilities must be defined in such a way
that each response probability is either 1 or 0. The matrix is written
in canonical form as follows:

n = number of states in 7.

n, = nuinber of transient states (nonabsorbing states).

number of transient correct states, i.e., transient states in which the

probability of a correct response is 1.

number of error states.

= n, X n, submatrix of T' consisting of transient states only.

= n, X n. submatrix of 7' representing transition probabilities from

the transient correct to the transient correct states.

ce = N, X n, submatrix of T representing transition probabilities from

transient correct to error states.

e = N, X n, submatrix of T representing transition probabilities from
error 10 transient correct states.
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Q.. = n, X n, submatrix of T representing transition probabilities from
error to error states.

R, = n. X n, submatrix of T representing transition probabilities from
transient correct to absorbing states.
R, = n, X n, submatrix of T representing transition probabilities from

error to absorbing states.
N fundamental matrix of T. N = (I — Q)™".
N.,=(I-Q.)"
Nnc = (I - an)—l'

State and Response Vectors

W. = 1 X n vector of probabilities of being in each state on trial k.

W, =1 X n, vector of probabilities of each transient state on trial %.
Wy.. = 1 X n, vector of probabilities of each error state on trial %.

Wy. =1 X n, vector of probabilities of each transient correct state on

i

trial k.
P = n X 1 vector of correct response probabilities.
P* = n X 1 vector of error probabilities.
P% = n, X 1 vector of error probabilities for transient states.
p%t = gth entry of P% , i.e., probability of an error when process is in state ¢.

Random Variables

response random variable, which takes on the value 0 if a correct
response is made on trial & and the value 1 if an error is made on trial k.
total number of errors before absorption.

number of times process is in state 7 before absorption.

number of errors before first correct response.

trial number of first correct response.

trial number of last error.

= random variable which takes on the value 1 if a correct response is
made on trial & — 1 and an error on trial &, and the value 0 otherwise.
= number of error runs before absorption.

Other Notation

Y =1 X n, vector entries E(Y,), expected number of times the process
is in state 7 before absorption.

= n, X 1 vector whose 7th entry is the probability that there will be

no errors subsequent to a response in transient correct state 7.

= column vector with all entries 1, which serves to sum the entries of

any vector which multiplies it.

matrix with each entry 1 or 0, constructed so as to leave only the

entries for the error states in a vector which multiplies it.

= matrix which leaves only the entries for transient correct states in
a vector which multiplies it.
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Derivations

Learning Curve

In a Markov model, the {ransition matrix relates the state probabilities
on successive trials by the formula

Wk+1 == WkT.
By substitution, we obtain
(1) Wk = WlTk‘_l ]

where W, is the starting vector which is given by the model. The probabilities
of a correct response is simply

@ Pr (4, = 0) = W,P.

Number of Total Errors

Since an error is made if and only if the process is in an error state,
the number of total errors is the same as the total number of times that the
process is in an error state before absorption. Thus, summing over the set
of error states, we have

X=27,.

Taking the expectation, we get

EX) = 2 B(Y),
which may be written in vector notation as
3) E(X) = YE, .

As shown by Kemeny and Snell ([6], p. 46), the entry n,; of the funda-
mental matrix N gives the mean number of times that an item starting in
state 7 is in state j before absorption. Thus, we may write

Y == WllgN N
and substituting into (3),
@ EX) = W, NE, .

Trial Number of the First Success

To determine the mean number of errors before the first correct response,
we make all correct states of T absorbing, so that the process will be absorbed
as soon as a correct response occurs. There will be no contribution to this
mean when the process starts in a correct state, and the mean time before
absorption starting in an error state can be computed directly from Q,, .
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Since the mean time before absorption is the sum of the mean times in
each transient state, we have
E@) = W, .N..C.

The mean trial number of the first success is simply
) EF) =1+ w, N.C.
Trial Number of the Last Error

In order for the last error to occur on trial k, it is necessary that the
process be in an error state on trial k, and then either move to a transient
correct state on trial £ 4+ 1 and be followed by no subsequent errors or
move to an absorbing state on trial k + 1. Thus, we have

(6) Pr(L=1Fk =W,Q.B+ W,.RC.

To find B, we make all the error states of T absorbing, so that the <th
entry of B will be the probability that an item starting in state ¢ will be
absorbed in a correct state (one of the absorbing states of the original matrix)
rather than in an error state. The matrix can be rearranged to the canonical
form

I 0
RC E QGG . QEC

Again using a result by Kemeny and Snell ([6], p. 52), bave
@ B = N,R.C,
and substituting into (6)
(8) Pr (L = k) = W’c.chchcRcC + Wk,eRsC-
The expected trial of the last error is given by
© EIL) = 2 [k Pr(L = k)

k=1

= (Z ka,e)QechcRcC + (Z kW};,.)R,C.
k=1 k=1

The sum is taken as follows. Note that the cell entries of the powered
gubmatrix Q* are identical to the corresponding entries of the powered
complete matrix T* 'This is a result of the property of absorbing Markov
chains that it is not possible to return to the set of transient states once
an absorbing state is reached. Since there is no absorbing error state, W, ,,
may be written in terms of the submatrix @ as

Wk.c = Wl.tQkulEc )
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and by substitution,

kW, = Wl,,<}: kQ’““)E, .
k=1 k=3

But, since the powers of @ tend to 0([6], p. 44), we can write

DR = - Q7P =N,
k=1

and

(10) > kW..,= W, NE, .
k=l

The final expression for the mean trial number of the last error is
(11) E(L) = Wl»thEcheNccRcC + le tNZEeReC-

Mean Number of Error Runs

An error run starts whenever there is an error following a success, or
an error on the first trial. Therefore, a statistic which counts success-error
sequences will serve to count error runs. The probability that such a sequence
starts on trial £ is given by
12) Pr(S, = 1) = {WIP*, if k=1,

W..Q.C, n=k—1, if k>1.

The mean number of error runs is given by

3) B®) = 3 Pr(S. = 1)

kel

W.P* + 27 We..Q..C.

k=1

I

The summation is taken by the same procedure used to derive (10). Note that
ch,c = Wl,le_lEc .
The sum can be written
Z ch,c = Wl.t kZ Qk—lEc ’
-1

= Wl,lNEc H
and by substitution,
(14 E(R) = W,P* + W, .NE.Q..C.
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Application to the One-Element Model

As an illustration of the use of the expressions developed above, the
derivations will be applied to the one-element model, and algebraic expressions
will be developed which compare with those derived by Bower [3].

This model can be written as

1 0 0
=9/~ 1—-091-1/m]
dA-¢g/n Q-0 —1M)
W, =10 1/n 1 — 1/n],

~
i
a

[+

[

[ S w—y

=

Learning Curve
The powers of the matrix T are given by
1 0 0
TF=11—-(1-¢" A—-0/2n Q-0 —1/n,
1—10 -9 0 —-0%n (1 -0 —1/m)
so we have
(15) We=[11-(01-9"" 0-90""/n (1-9"QA-1/m)],
Pr(4,=0)=1—-Q0Q - ""+0 —-0""/n
=1-(1- 1m0 — ",
Number of Total Errors

The fundamental matrix is given by
(16) N=I-@"
_ 1= =9/ —(1 - — 1/m) |
[ ~U =/ 1—(1~90 - l/nj ’
_1 -0 -9 -1m (0-o0~—1/m
C[ A -/ 1—(1~d/n }
Substituting into (4), we obtain

a7) B = L=,
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Trial Number of First Success

The submatrix @,, contains the single entry (1 — ¢)(1 — 1/n). Thus,
we have

1
Nee= 1= (1 -0 —1/m)"
and, from {5),
N 1— 1/ .
(18) B =1+ 1—q 90 < im

Trial Number of Last Error
We first find B, as follows:

1

I—:YTTW' R, =c, C =1.

Ncc=

Now, from (7),

C
(19) B=1—GZom

Further,
We.={0-=0""0 ~ 1/n), Q..= U —o/n, R, =c.

Substituting into (6),
1 —1/m1 — 9*"
1—-0—-ao/m
To find the mean trial number of the last error, we first find the sum
> kW, .. from (10):

We.=[/n 1—1/ml, E = [ﬂ;

20) PrL =t =%

and using N from (16),
@1) > k., = LA

From (9) it follows that the mean trial of the last error is

1—1/n i
¢l — (@1 —¢o/n]

(22) E(L) =

Mean Number of Error Runs
The sum »_ W, . is found in the same manner as (21), except that we use

- (2]
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We have

1
Z ch.c = c/n'
Now, since

Qca = (1 - C)(]. - 1/"’)1
it follows from (13) that

23) AR = %ﬁ 1= (1 = — 1/)].

Discussion

While it is a simple matter in the case of the one-element model to
develop algebraic expressions from the vector equations derived in this
paper, this becomes far more difficult when the matrix 7 contains more
than two states. The derivations are not intended, however, to provide
an alternate route to the same expressions that might be derived from
difference equations. Instead, it is expected that the vector equations will
be used in their present form, i.e., first numerical values will be substituted
for the entries of the probability vectors and matrix which define the model,
and then the statistics of the learning process will be calculated from these.
As mentioned previously, it is possible to write a compufer program directly
from the vector equations to perform these operations.

The major advantage of this approach is that it makes mathematically
tractable even the most complicated Markov model, so long as it can be
written in the form of a transition matrix and pair of probability vectors.
This is useful in the case of a model which permits considerable movement
between fransient states prior to absorption, such as [2]. More important,
however, this approach makes it possible to develop systems with many
states, such as might be suggested by multiprocess learning theories {e.g., 7],
without losing the necessary ability to derive testable consequences of the
theory.
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