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D E R I V A T I O N  OF L E A R N I N G  PROCESS S T A T I S T I C S  F O R  
A G E N E R A L  M A R K O V  M O D E L *  
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A Markov learning model may be stated in the form of a transition m~- 
trix, starting vector, and response probability vector. Utilizing these and some 
general properties of absorbing Markov chains, general expressions are derived 
for several statistics of the learning process which cart be applied to any model 
of this form. Included are derivations for the mean learning curve, number of 
total errors, trial numbers of the first success and the last error, and the num- 
ber of error runs. As an illustration, all derivations are worked out for the 
simple two-state one-element model. 

Introduction 

Situations in which learning can be characterized by  an increase in 
the  probabil i ty  of success which approaches an asympto te  at  a probabil i ty  
of uni ty  have been described by  models based on absorbing Markov  chains 
[1, 2, 3, 4, 5, 8]. Bower [3], presenting the simplest such model (the two-state  
one-element model), noted the great mathemat ica l  t ractabi l i ty  of the system, 
and derived expressions for a large number  of properties of the learning 
process which could be used to test  the theory. While these derivations 
remain possible in the case of more complicated models [e.g., 1, 2, 8], they 
become considerably more unwieldy as the number  of states increases. 
This  is mainly  due to the nature  of the derivations, which have typically 
been based on difference equations dra~-a f rom the axioms of the model. 

I n  this paper, derivations of several learning process statistics will be 
presented for a general Markov  model, using principally the  theory of finite 
M a r k o v  chains as presented by  K e m e n y  and Snell [6]. The  power of M a r k o v  
chain mathemat ics  will be seen to give t ractabi l i ty  to even the most  
complicated Ma rkov  model. I n  fact, i t  is possible to write a general computer  
p rogram directly f rom the equations given here (which are in vector  notation) 
and use the computer  to generate predictions for any  part icular  model and 
set of parameter  values. 

*This work was partially supported by Public Health Service Grant NIH 1 T1 GM 
1231-01. 
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during the course of this work, and to Frank Goode for his helpful criticism of the manu- 
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In general, a Markov model consists of a transition matrix, starting 
state  probability vector, and response probability vector. The matrix operates 
on the state probability vector to describe the learning effect of a trial, 
and the response probabilities on any trial are given by the product  of the 
response vector and the state probability vector for tha t  trial. Further,  
in the type of model to be discussed here, the matrix has at least one absorbing 
state, and the probabili ty of success in any absorbing state  is 1. The  
derivations which follow are applicable to any model tha t  has this form. 

Notation 

We first introduce the notat ion which will be used in the derivations. 

Transition Matrix 

T = transition matrix whose entry ti; is the conditional probabili ty tha t  
the process is in state j on trial k -~ 1 given tha t  it  was in s tate  i on 
trial k. The  states and probabilities must be defined in such a way 
tha t  each response probability is either 1 or 0. The matrix is writ ten 
in canonical form as follows: 
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number of states in T. 
number of transient states (nonabsorbing states). 
number  of transient correct states, i.e., transient states in which the 
probabili ty of a correct response is 1. 
number  of error states. 
n, X n, submatrix of T consisting of transient states only. 
no X n~ submatrix of T representing transition probabilities from 
the transient  correct to the transient correct states. 
nc X n, submatrix of T representing transition probabilities from 
transient correct to error states. 
n, X nc submatrix of T representing transition probabilities from 
error to transient correct states. 
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Q ,  = n ,  X n,  s u b m a t r i x  of T represen t ing  t r ans i t i on  p robab i l i t i e s  f rom 
er ror  to error  s ta tes .  

Re = no X n ,  s u b m a t r i x  of  T represen t ing  t r a n s i t i on  p robab i l i t i e s  f rom 
t r a n s i e n t  cor rec t  to  abso rb ing  s ta tes .  

R ,  --- n ,  X n ,  s u b m a t r i x  of  T rep resen t ing  t r a n s i t i o n  p robab i l i t i e s  f rom 
er ror  to abso rb ing  s ta tes .  

N = f u n d a m e n t a l  m a t r i x  of T. N = ( I  - -  Q)- I .  
N . .  = ( I  -- Q . ) - I .  

No, = (I  -- Qo~)-~. 

State and Response Vectors 

Wk ----- 1 X n v e c t o r  of p robab i l i t i e s  of  be ing  in each  s t a t e  on  t r ia l  k. 
W ~ ,  = 1 X n~ v e c t o r  of p robab i l i t i e s  of  each  t r a n s i e n t  s t a t e  on  t r i a l  k. 
Wk., = 1 × n,  vec to r  of p robab i l i t i e s  of each er ror  s t a t e  on  t r i a l  k. 
Wk,o = 1 X no vec to r  of p robab i l i t i e s  of each  t r a n s i e n t  correct  s t a t e  on 

t r i a l  k. 
P = n X 1 vec to r  of cor rec t  response  p robab i l i t i e s .  
P*  = n X 1 v e c t o r  of  e r ror  p robab i l i t i e s .  
P* = n,  X 1 v e c t o r  of  e r ror  p robab i l i t i e s  for  t r a n s i e n t  s ta tes .  
p* = i t h  e n t r y  of  P * ,  i.e., p r o b a b i l i t y  of  an  er ror  when process  is in s t a t e  i.  

Random Variables 

A ,  = response  r a n d o m  var iab le ,  which  t akes  on the  va lue  0 if a cor rec t  
response  is m a d e  on t r i a l  k and  the  va lue  1 if an  er ror  is m a d e  on  t r i a l  k. 

X = t o t a l  n u m b e r  of  er rors  before  abso rp t ion .  
Y~ = n u m b e r  of  t imes  process  is in s t a t e  i before  abso rp t ion .  
G = n u m b e r  of  er rors  before  first  cor rec t  response.  
F = t r i a l  n u m b e r  of  first  correct  response.  
L = t r i a l  n u m b e r  of l as t  error.  
Sh = r a n d o m  va r i ab l e  which  t a k e s  on  the  va lue  1 if a correct  response  is 

m a d e  on t r i a l  k - -  1 and  an  er ror  on t r i a l  k, and  the  va lue  0 o therwise .  
R = n u m b e r  of  e r ror  runs  before  absorp t ion .  

Other Notation 

Y = 1 X n, v e c t o r  en t r ies  E(Y~) ,  expec ted  n u m b e r  of t imes  t h e  process  
is in s t a t e  i before  abso rp t ion .  

B = no X 1 vec to r  whose i t h  e n t r y  is t he  p r o b a b i l i t y  t h a t  the re  will  be  
no errors  subsequen t  to  a response  in t r ans i en t  cor rec t  s t a t e  i .  

C -- column vec to r  wi th  al l  en t r ies  1, which  serves  to  sum the  ent r ies  of 
a n y  vec to r  which  mul t ip l i e s  it .  

E ,  = m a t r i x  wi th  each  e n t r y  1 o r  0, cons t ruc t ed  so as  to leave  o n l y  t h e  
ent r ies  for  the  er ror  s t a t e s  in a vec to r  which  mul t ip l i e s  i t .  

E ,  -- m a t r i x  which  leaves  on ly  t h e  ent r ies  for t r ans i en t  correct  s t a t es  in 
a vec to r  which  mul t ip l ies  it .  
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Derivations 

Learning Curve 

In  a Markov model, the transition matrix relates the state probabilities 
on successive trials by the formula 

W~+l = W~T. 

By substitution, we obtain 

(1) W~ = W1T k-t, 

where W1 is the starting vector which is given by  the model. The  probabilities 
of a correct response is simply 

(2) Pr  (A, = 0) = W~P. 

Number o] Total Errors 

Since an error is made if and only if the process is in an error state, 
the number of total  errors is the same as the total number  of times tha t  the 
process is in an error s tate  before absorption. Thus, summing over the set 
of error states, we have 

X =  

Taking the expectation, we get 

E(X)= 

E Y e  • 

Z: E(Y,), 

which may be written in vector notat ion as 

(3) E(X) = Y E , .  

As shown by Kemeny  and Snell ([6], p. 46), the entry n,i of the funda- 
mental  matrix N gives the mean number  of times tha t  an i tem starting in 
state i is in state j before absorption. Thus, we may  write 

and substituting into (3), 

(4) 

Y = WI. ,N,  

E(X) = W~. ,NE, .  

Trial Number o] the First Success 

To determine the mean number  of errors before the first correct response, 
we make all correct states of T absorbing, so that  the process will be absorbed 
as soon as a correct response occurs. There  will be no contribution to this 
mean when the process starts in a correct state, and the mean time before 
absorption starting in an error state can be computed directly from Q , . .  
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Since the mean time before absorption is the sum of the mean times in 
each transient  state, we have 

E(G) = W, , .N. ,C.  

The mean trial number of the first success is simply 

(5) Z(F) = 1 + WI, ,N. .C.  

Trial Number o] the Last Error 

In  order for the last error to occur on trial k, it  is necessary that  the 
process be in an error state on trial k, and then either move to a transient 
correct s tate  on trial k -~ 1 and be followed by no subsequent errors or 
move to an absorbing state on trial k ~- 1. Thus, we have 

(6) Pr (L = k) = W~,.QeoB -[- Wk.~R~C. 

To find B, we make all the error states of T absorbing, so tha t  the i th  
entry of B will be the probability that  an i tem starting in state i will be 
absorbed in a correct state (one of the absorbing states of the original matrix) 
ra ther  than in an error state. The  matrix can be rearranged to the canonical 
form 

Again using a result by Kemeny and Snell ([6], p. 52), have 

(7) B = No~RoC, 

and substituting into (6) 

(8) Pr  (L = k) = W~,~Q,oNc~RcC + W~,eR.C. 

The  expected trial of the last error is given by  

(9) E(L) = ~ [k Pr (L --- k)] 
k ~ l  

The  sum is taken as follows. Note  tha t  the cell entries of the powered 
submatrix Q~ are identical to the corresponding entries of the powered 
complete matrix T ~. This is a result of the property of absorbing Markov 
chains tha t  it  is not  possible to return to the set of transient states once 
an absorbing state is reached. Since there is no absorbing error state, W~,, 
may be writ ten in terms of the submatrix Q as 

= WI,,Q E .  , 
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and  b y  subst i tu t ion,  

But ,  since the powers  of  Q tend  to 0([6], p. 44), we can wri te  

kQ ~-' = [ ( I  - Q ) - ' ] '  = N 2, 
k = l  

and 

(10) 

T h e  final expression for  the  m e a n  tr ial  n u m b e r  of  the  las t  e r ror  is 

(11) E(i)  2E W1, ,N~E.R.C. = Wl . tN ~Q~N~R~C -{- 

Mean Number o] Error Runs 

An error run  s ta r t s  whenever  there  is an  error  following a success, or  
an  error  on the first trial. Therefore ,  a s ta t i s t ic  which counts  success-error  
sequences will serve to count  error  runs.  T h e  p robab i l i ty  t h a t  such a sequence 
s ta r t s  on tr ial  k is g iven b y  

(12) 1~ (Sk = 1) = ~W~P*, if k 1, 

LW.,cQo°C, n = k - -  1, if k > 1. 

T h e  m e a n  n u m b e r  of error  runs  is g iven b y  

(13) E(R) = ~ Pr (Sk = 1) 

= WIP* + ~ W~.oQo~C. 
k ~ l  

T h e  s u m m a t i o n  is t a k e n  b y  the  s ame  procedure  used to der ive  (10). N o t e  t h a t  

~7 O~-~ E 

T h e  sum can be wr i t t en  

k ~ l  k = l  

= WI, ,NEo,  

and  b y  subst i tu t ion ,  

(14) E(R) = W1P* -F- W,.,NEoQooC. 
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Application to the One-Element Model 

As an  i l lus t ra t ion  of t h e  use  of t he  express ions  deve loped  above ,  t h e  
de r iva t ions  will be appl ied  to  t he  one-e lement  model ,  a n d  a lgebra ic  express ions  
will be  deve loped  wh ich  c o m p a r e  wi th  those  de r ived  b y  B o w e r  [3]. 

Th i s  mode l  can  be w r i t t e n  as 

!i ° ° 1 T - -  (1 - - c ) / n  (1 - - c ) ( 1  --  l /n )  , 

( t  - -  c)/n (1  c ) ( 1  - -  1 /n ) j  

W~ = [0 1In 1 - 1In], 

P =  1 .  

Learning Curve 

T h e  powers  of  t he  m a t r i x  T a re  g iven  b y  

o o 1 
T ~ = - (1 - - c )  ~ (1 - - c ) k / n  (1 - -c )k(1  --  l /n )  , 

- -  (1 --  c) k (1 --  c)k/n (1 c)k(1 1 / n ) j  

so  w e  h a v e  

(15) W~ = [1 - -  (1 - c) ~-: (1 - c)~-' /n (1 - -  c)k- '(1 - l / n ) ] ,  

P r  ( A ~  = 0)  = 1 - (1 - c) k-~ + (1 - c)~-l/n 

= 1 --  (1 --  l / n ) (1  --  c) k- ' .  

Number  o] Total Errors 

T h e  f u n d a m e n t a l  ma t r i x  is g iven  b y  

(16) N = ( I  - Q)- :  

= I I  -- (i  -- c)/n - - ( 1 - -  c ) ( 1 - - 1 / n ) l - ~  ' 

-(1 ~)/n 1 - ( 1 - c ) ( 1  :/n)J 
= l[l -- (l -- e)(l -- I/n) (l--e)(l --I/n)]. 

(1  - -  c)/n : (1  - -  c)/n j" 
S u b s t i t u t i n g  in to  (4), we o b t a i n  

(17) E ( X )  = 1 -- 1In.  
c 
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Trial Number o] First Success 

The  submatr ix  Q,, contains the single en t ry  (1 - c)( l  - 1/n). Thus,  
we have  

1 -- (1 - -c ) (1  -- l / n ) '  

and, f rom (5), 

(18) E(F) = 1 4- 

Trial Number o/Last  Error 

We first find B, as follows: 

1 - -  (1  - c ) / n '  
Nae 

Now, f rom (7), 

(19) 

1 - 1 / n  

Wl,t 

and using N f rom (16), 

(21) 

1 -- (1 -- c)(1 -- l /n)  

R ~ = c ,  C = I .  

B ~ c 

1 - -  (1  - -  c ) / n  

1 - -  1 I n .  

F r o m  (9) it follows t h a t  the mean  trial of the last error is 

1 - 1 / n  
(22) E(L) = c[1 -- (1 -- c)/n] 

Mean Number o] Error Runs 

T h e  sum___~ Wk ,, is found in the  same manner  as (21), except t ha t  we use 

[ 1 1  E ° =  0 " 

Fur ther ,  

Wk.e = (1 -- c)k-~(1 -- l /n) ,  Q,c = (1 - c)/n, R, = c. 

Subs t i tu t ing  into (6), 

(20) Pr (L = lc) = c(1 -- 1/n)( l  -- c) k-1 
1 - ( 1  - c ) / n  

To find the  mean  trial number  of the  last error, we first find the suni 
kWh., from (10): 

= [1/n l - - l / n ] ,  E ,  = [ 0 ] ;  
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We have 

Now, since 

it follows from (13) that  

(23) E(R) 

~ Wk,, = 1In 
C 

Qo, = (1 - c)(1 - l / n ) ,  

1 -- 1In [1 -- (I -- c)(l -- l /n)] .  
C 

Discussion 

While it is a simple mat te r  in the case of the one-element model to 
develop algebraic expressions from the vector equations derived in this 
paper, this becomes far more difficult when the matrix T contains more 
than two states. The derivations are not intended, however, to provide 
an alternate route to the same expressions that  might be derived from 
difference equations. Instead, it is expected that  the vector equations will 
be used in their present form, i.e., first numerical values will be substituted 
for the entries of the probability vectors and matrix which define the model, 
and then the statistics of the learning process will be calculated from these. 
As mentioned previously, it  is possible to write a computer program directly 
from the vector equations to perform these operations. 

The major advantage of this approach is tha t  it  makes mathematically 
tractable even the most complicated Markov model, so long as it can be 
written in the form of a transition matrix and pair of probability vectors. 
This is useful in the case of a model which permits considerable movement 
between transient states prior to absorption, such as [2]. More important,  
however, this ~pproach makes it possible to develop systems with many 
states, such as might be suggested by multiprocess learning theories [e.g., 7], 
without losing the necessary ability to derive testable consequences of the 
theory. 
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