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This paper describes a method of matrix decomposition which retains
the ability of factor analytie techniques to summarize data in terms of a rela-
tively low number of coordinates; but at the same time, does not sacrifice the
useful analysis of variance heuristic of partitioning data matrices into indepen-
dent sources of variation which are relatively simple to interpret. The basic
model is essentially a two-way analysis of variance model which requires that
the matrix of interaction parameters be decomposed by using factor analytie
techniques, Problems of judging statistical significance are discussed; and an
illustrative example is presented.

Analysis of variance methods of decomposing matrices provide one of
the most powerful methods presently available to aid one in understanding
matrices of data. Another set of powerful tools which often help one to
understand data is based on factor analytic techniques. Tukey [1962] has
emphasized the potential importance of work showing relationships between
these two techniques and in using each technique to complement the other.
Literature which is directly relevant to this important problem is surprisingly
scant. With the notable exceptions of work by Tukey [1962], Creasy [1957],
and Burt [1947, 1966], investigators have usually used either factor analytic
techniques or analysis of variance techniques, but have rarely used both in
combination. In the present paper, relations between factor analytic and
analysis of variance techniques are discussed and features of both techniques
are combined to form a powerful method for decomposing two-way tables.

The basic purpose of factor analytic techniques is to reduce the dimen-
sionality of the data by expressing it in terms of new coordinates. In addition,
it is generally hoped that the new coordinates will describe meaningful
“dimensions” of the original data. Various types of rotation of the coordinate
axes are often employed in seeking such meaningful dimensions.

*Much of the work on this paper was completed while the author held a US.P.H.S.
Postdoctoral Fellowship at Yale University (1964-65). Many of the ideas in this paper
have been discussed in the author’s doctoral dissertation which was submitted to Yale
University in 1965.
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Standard analysis of variance methods partition data matrices into
independent terms which are relatively simple to interpret; i.e., the grand
mean, main effects which represent the degree to which row elements exert
an effect over all columns and vice versa, and interaction terms which rep-
resent the degree to which the combined effect of a given row and column
element is different from the sum of their individual main effects.

The method of matrix decomposition described in this paper retains
the ability of factor analytic techniques to summarize data in terms of a
relatively low number of coordinates; but at the same time, does not sacrifice
the relative ease of interpretation which standard analysis of variance models
afford. The basic model deseribed here is essentially a two-way analysis
of variance model which requires that the interaction parameters be de-
composed by factor analytic techniques. Tukey [1962] has remarked that
this type of procedure might provide a powerful tool for many types of data
analysis. The present paper expands upon the basic idea of using factor
analytic techniques to study structure in interaction, and works out the
details for both a fixed model and a mixed model version of the technique.
Approximate methods for judging the statistical significance of factors are
discussed; and exact significance tests for judging “factor similarity’” are
presented. The paper is concluded with a numerical example.

1. The Factor Analyiic Decomposition of a Malrix

Throughout this paper the terms ‘“factor analytic techniques” and
“factor model” are used in a generic sense to refer to matrix decomposition
methods which involve solving for eigenvalues and eigenvectors. It is neces-
sary to keep in mind that there are important differences between ‘“factor
model” in the present sense, and the more common ‘“‘Factor Analysis model”’
which refers specifically to a decomposition method which involves inter-
correlating variables and estimating communalities. This paper does not
explicitly consider Factor Analysis models in the narrow sense; but rather,
is eoncerned with the “factor analytic” decomposition desecribed below.

Up to the point where we begin discussing tests of statistical significanee,
we shall treat the data matrix, X, as though its entries represent ‘“true”
population parameters, rather than being estimates of such parameters.
Thus, initially we shall write the factor analytic and all other model equa-
tions without including terms for error,

Factor analytic techniques for rectangular matrices are based on the
fact (see Horst, [1963]) that any two-way matrix, X, ean be expressed as

(1.1) X = ADB’
where

X = a J X K matrix with elements {z;.(j=1,2,--+,J;k=1,2,---, K)},
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A = a J X N orthonormal matrix (i.e., A’A = I, where I represents the
identity matrix) with elements ¢;, (n = 1, 2, -+, N),

D = a N X N diagonal matrix with elements d;, > d, > d3 > -+ >
dn Z et 2 dN y

B = a K X N orthonormal matrix (i.e., B'B = I) with elements 8, ,
N = the rank of X, and if for convenience we let / < K we have N <
J LK.

The matrices A, D, and B of (1.1) can be obtained by solving first for
the characteristic veetors, and characteristic roots of the J X J matrix XX".
The J X N matrix A then consists of the characteristic vectors, and the
N X N diagonal matrix D consists of the square roots of the characteristic
roots of XX’. The K X N matrix B can then be found by solving the equation,

(1.2a) B = X'AD™.

The above solution specifies that the matrices D and A be found by
solving for the eigenvalues and eigenvectors of the matrix XX’ and that
then the matrix B be obtained from (1.2a). It is also possible to solve for
the matrices D and B by finding the eigenvalues and eigenvectors of the
matrix X’X and then obtaining A from

(1.2b) 4 = XBD™.

Thus, for ease of calculation it is convenient to solve for the eigenvalue-
and eigenvectors of whichever matrix, XX’ or X’X, has the smaller dsi
mensions.

One of the primary reasons that the factor analytic model provides a
very powerful method for decomposing matrices is based on the Eckart—
Young [1936] theorem which states that the matrix of rank r which provides
the best estimate, in the least squares sense, of X is obtained by using (1.1)
and simply retaining only the first r columns of the matrices A and B and
using only the first r terms in D. In order to facilitate later discussion, (1.1)
is now rewritten in expanded form as:

(1-3) Tix = dlanﬁu + dzaizﬁu + -+ dnain,Bzm + e 3 dzvauvﬁuv .

Another important characteristic of the factor analytic decomposition
(1.3) is that every set of terms {d ;B G = 1,2, --- ,J;k=1,2, --- K)}
is orthogonal to every other set of terms {d, ;B (G = 1,2, --- ,J; k =
1,2, ---, K)} that is,

(1'4-) Z ; (dnaiann)(dn’ain'ﬁkn’) = 01

for all values of n and n’ where n > 7/, and the symbol ) _; is used to signify
7_. . The fact that the sets of terms in the factor model (1.3) are orthogonal

j=1
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to each other can be proven easily by rearranging (1.4) to obtain
(15) dndn’(z: ainain’)(kz ﬂlmﬂlm') = 0.

Writing Z,» @, for all values of n and n’ in matrix terms gives 4’4,
and 2 BuBin is written as B’B. Since A and B are orthonormal matrices
we know, by definition, that A’A = B'B = I. Hence, for all values of » and »’
where n ¢ 7/, (1.5) reduces to the product of a constant (d.d.-) times zero,
which, of course, is zero. Thus, we see that the N sets of terms of the factor
analytic model (1.3) are mutually orthogonal.

In later discussion it will be important that we know how the matrices A
and B of the factor analytic decomposition differ depending on whether the
matrix X is factored without prior modification, converted to a row or
column-centered matrix (i.e., forcing all row or column sums, respectively,
to equal zero), or is doubly-centered. We will now show that when a row-
centered matrix, Z, is factored, the matrix B of the factor analytic model (1.1)
is column-centered, and hence that Zk Bin = 0 for all n. Premultiplying
both sides of (1.2), which allows one to solve for B when given 4, D, and
X = Z,byal X K {row) vector of unities, U’, gives

(1.6) (U'Z"YAD™ = U'B.

Since Z is row-centered, Z’ is column-centered and U’Z’ is a 1 X J (row)
vector of zeroes. Clearly, the left side of (1.6) is a 1 X N (row) vector of
zeros and B must therefore be a column-centered matrix. It is also easy
to show that when a column-centered matrix is factored, the matrix 4 is
column-centered. It then follows readily that when a doubly-centered matrix
is factored, the ecolumns of both A and B sum to zero.

The Basic FANOVA Model

Since the model described here combines features of both factor analytic
(FA) techniques and analysis of variance (ANOVA) techniques, we refer
to it as the “FANOVA” (factor analysis of variance) model for decomposing
two-way matrices. The standard analysis of variance model for decomposing
a two-way table is,

(1-7) Zin = u -t RB; 4+ C, + vix,

where u (the grand mean) is a constant, >R = > Ce = 0, and i =
> i v = 0 for all j and k. The {R;} and {C.}, respectively, represent the
row and eolumn main effects and the {v;.} represent the interaction pa-
rameters. (The brace notation { } denotes the set of quantities indicated:
e.g., {7 refers to the set consisting of the JK values, v, withj=1,2, - -+, J;
k=1,2 ---, K.) Expressing the analysis of variance parameters, u, {R;},
{C:], and {v,:}, in terms of the {x;.} yields the equations:
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(1.8) b=z,

(1.9) RBi=2; —=x.,

{1.10) Co=2z,—2z.,

(L.11) Vie = T — Ti. — Ta F T,

where a dot replacing a subseript indicates that an arithmetic mean has been
taken over the entire range of the replaced subseript. (The dot notation is
used frequently throughout this paper.)

The basic FANOVA model is essentially a two-way analysis of variance
model which requires that the matrix of interaction parameters {v;.} be
expressed as the sum of several successive multiplicative contrasts such that
each contrast is orthogonal to all previous conftrasts and accounts for a
maximum of the remaining variance of the {y;.}. A contrast among the
interaction parameters {y;,} is a linear function of the {v;}

{1.12) ¥ o= Z kE Wir¥iz = E Ek: WirTie »

where the {w;,} are (known) constants subject to the restrictions 3w =
> % wy = 0. A normalized interaction contrast meets the additional condi-
tion, ».; > s w%, = 1. A multiplicative contrast is here defined as a contrast
among the {v,.} such that,

{1.13) Wix = PiGk »

where, of course, D ; p; = 2 x g = O.

Since the matrix of {v;:} is a doubly-centered matrix (and by conven-
tion J < K), it has a maximum rank of (/ — 1) and hence, when expressed
in terms of the factor model, can be prefectly reproduced by

J—-1
(1.14) Yie = Z An@inBin -

Since the matrix of {v;.} is doubly-centered, the matrices 4 and B of the
factor model decomposition will be column-centered. Thus, > _; @;n=2 B =0
for all values of n; and therefore, the terms {8 ( = 1, 2, -+- , J; k =
1,2, ---, K)} can be thought of as defining a multiplicative contrast among
the interaction parameters {v;.}. Since this is true for all values of n, we
refer to the (J — 1) sets of terms, {d,a;Bin G=1,2, -+, J;k=1,2 .-+, K)},
in (1.14) as snteraction factors.

It is often convenient to express the factor resolution (1.14) of the {v;.}
as the produet of two terms, rather than three. In matrix notation we write
(1.14) as

(1.15) I' = ADB’
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where I'is a J X K matrix with entries {v,.}, and the matrices 4, D, and
B are defined by (1.1). If we now define matrices P and Q' as

(1.16) P = ADY? and @ = D'’PB,
we can express the matrix I' as
(1.17) T =PQ.

The above definitions of the matrices P and @ are not unique, but it is usually
sensible to use the definitions given by (1.16) because they keep the entries
of P and @ at approximately the same order of magnitude. Making in the
standard analysis of variance model (1.7) the substitution suggested by
(1.17), and writing the maftrix product P’ in expanded form gives

J=1
{1.18) 2o =p+ R +C+ Z PinQen -

Equation (1.18) expresses a model where the matrix of {v;,} is completely
factored. However, in applications of factor analytic techniques one is rarely
interested in completely factoring a matrix. Rather, it is hoped that an
adequate approximation to the matrix can be obtained by extracting a
number of factors which is considerably less than the rank of the matrix.
In order to take account of this fact we now define the symbol M to refer,
not to the rank of a matrix in general, but to the number of factors actually
retained in order to approximate the matrix being factored. Under these
conditions we can express the initial interaction parameters as

(1.19) Vie = 2 PinQim + i

where (m = 1, 2, --- | M) and the {¢,,} represent the parameters of the
residual interaction, and meet the conditions 2 ; ¢;x = 2.; é; = 0 for all
j and k. Taking the standard analysis of variance resolution of the matrix X,
and substituting the right-hand side of (1.19) for the interaction parameters

{vi} yields
(1.20) Zir = 4 + R,’ + C}c + Z pi’"?km + d’ik 3

which represents the FANOVA model for decomposing a two-way table.
The residual interaction parameters can be obtained by subtraetion as in

¢:‘)‘c = Yie — Z Pinlem

or, alternatively, by using the relation,

J-1

b = Z PinGin -

n=M+1

One convenient scheme for presenting the results of a FANOVA analysis
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is obtained by expressing (1.20) in matrix notation. Letting & represent
a J X K matrix with entries {¢;.}, and defining the matrices R and C as

Vi R, 1.0] v 10 C,]
Ve R, 10 Ve 10 C,
R=] - .l c=| - -
Ve R, 10 Ve 10 C,
vz R, 10/ Vi 10 Ckl

we express (1.20) as

1
(1.21) b'¢ = |Ri P* AR o :
: o
JXK JX@B+MEB+MXK J XK

where the J X M matrix P* and the K X M matrix Q* consist, respectively,
of the first M columns of the matrices P and @; and where the values written
beneath each matrix represent its dimensions.

As mentioned earlier, the basic FANOVA model is essentially a two-way
analysis of variance model which requires that factor analytic techniques
be used in seeking structure in the matrix of interaction parameters {v;.}.
We shall now discuss some of the relations between the FANOVA method
of matrix decomposition and alternative methods of investigating the struc-
ture of a matrix of interaction parameters.

2. Alternative Methods for Decomposing Interaction Parameters

First we will consider the case where neither the row nor the column
elements are quantitative or naturally ordered. The following procedures
all involve partitioning the interaction parameters into a set of highly struc-
tured (or systematic) terms and a set of less structured (or unsystematic)
residual terms, which are obtained by subtraction, Thus, in his test for non-
additivity in a row X column design with one observation per cell, Tukey
{1949] suggests that the interaction parameters be decomposed into the fol-
lowing “one degree-of-freedom for non-additivity” and (J — I}(K — 1) — 1
df for residual

(2.1) Yie = gR;Cr + 851,

where ¢ is a constant, the {R;} and {C,} are, respectively, the row and
column main effects; and the residuals {6;.} are obtained by subtraction
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(e, 0+ = vu — gR,C:). Mandel [1961] has proposed a model which is
more highly structured than (2.1) and which includes (2.1) as a special
case. Mandel’s decomposition for the interaction parameters is given by

(2.2) vie = gRCy + NC + 6/,

where 3_; R\; = 0 and, of course, »_; \; = 0; and the {6,} are the residuals.
Solving for the constant ¢ in (2.2) accounts for one df and solving for the
{x;} accounts for (J — 2) df, leaving (J — 1)(K — 2) df which are accounted
for by the residual. Finally, Tukey’s [1962] “basic vacuum cleaner” includes
the systematic portion of Mandel’s model and goes a step further, as shown
by the decomposition,

(2.3) Yik = ngCk + NG + Ri"7k + 7%

where D, Come = 0, 2% m = 0, and the {6} are the residuals. It is of
interest to note that the three highly structured sets of terms in (2.3) account
for (J/ + K — 3) df, which, as will be shown later, is also the number of df
accounted for by the first interaction factor of the FANOVA model.

The decomposition methods suggested by (2.1), (2.2), and (2.3) all
possess the limitation that they cannot provide useful information about
the structure of the interaction parameters unless there are substantial
differences between row means or between column means, or between both.
The FANOVA model resolution of the {v;.}, on the other hand, is applicable
irrespective of whether or not substantial main effects exist; and also allows
for the possibility that the {y;.} are completely independent of any existing
row or column main effects. Another advantage of the FANOVA method
of decomposing matrices is that it enables one to find up to (/' — 1) multi-
plicative contrasts such that each successive contrast acecounts for a maximum
of any remaining variation due to row by column interaction.

Tukey [1962] briefly mentions that one natural way to continue the
basic vacuum cleaner is provided by factor analytic methods. Depending
on such things as the subject-matter and the primary purpose of doing the
analysis, it may indeed be advantageous to postpone application of factor
analytic techniques until some or all of the interaction variation which is
picked up by Tukey’s vacuum cleaner is removed,

When the levels of factors in a fixed effects analysis of variance design
are quantitative and can be considered as representing equal steps along
some underlying continuum; users of analysis of variance often investigate
the response surface further by partitioning main effects and interaction
terms into orthogonal multiplicative contrasts (trends) such as linear X
linear, linear X quadratic, quadratic X linear, etc. [e.g., Winer, 1962;
Snedecor, 1956]. In general, this procedure requires (J — 1){(K — 1) or-
thogonal multiplicative contrasts in order to perfectly reproduce the JK
interaction parameters; whereas the FANOVA model accounts for the
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interaction perfectly by specifying only (J — 1) orthogonal multiplicative
contrasts. For example, in a 3 X 4 design, six a priore contrasts are needed
to account for all of the interaction variation; while the FANOVA model
accounts for the interaction perfectly by specifying only two orthogonal
multiplicative contrasts. Furthermore, in this example the first interaction
factor of the FANOVA decomposition will necessarily account for at least 509,
{and probably much more) of the interaction variation. Although the relative
advantage of using the FANOVA decomposition becomes much greater as
J (J < K) increases and as the size of K relative to J increases; it seems.
clear that the advantages of using the FANOVA decomposition can be
of practical significance even when dealing with small matrices.

Having discussed some of the advantages of the FANOVA model for
decomposing two-way matrices, we now turn to a discussion of methods
for judging the statistical significance of interaction factors and the residual
interaction.

3. Statistical Tests of Hypotheses tn the Fized FANOV A Model

Our discussion up to this point has focused on applying the FANOVA
model to a matrix, X, whose entries are equal to “true” population pa-
rameters. But in practical applications we, of course, do not know the values
of the population parameters; but rather, use samples of observed data
to estimate the entries in X. In this section we consider problems which
arise in applying the FANOVA decomposition to data containing error.

The fixed FANOV A model

A two-way fixed FANOVA model, and its corresponding analysis of
variance model, is one in which the levels of both ways of the design are
determined by some systematic, non-random procedure. Letting v,;, denote
the 7th observation (¢ = 1, 2, -+, I) in the j, & cell, we make the following’
assumptions which are standard in the analysis of variance,

3.1 Yiie = Tix T €iin

where the {e,;,} represent uncontrolled sources of variation which are inde-
pendently and normally distributed with zero means and equal variance
o2 for every j, k cell; and are statistically independent of the true cell means,
{2}, If for 2, in (3.1) we substitute the standard analysis of variance
decomposition of the {z;.} (1.7}, we obtain the model equation:

(3.2) Yo = u + B; + Co + vin + €

Least squares estimates of u, {R;}, {C:} and the {v;:} in (3.2) are given by
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(3.3) B=y.,

3.9 Bi=y, —vy..,

(3.5) Co=v.s—v..,

(3.6) Pix =Yir — Y. — YT Y. .

Replacing the interaction parameters {y;} in (3.2) by their factor model
decomposition (1.19), we obtain the following expression of the two-way
fixed effects FANOVA model:

3.7 Yie =8+ R + Co 4+ 2. Pintim + b5z + €isi

where all terms are defined and restricted as specified in (1.20) and (3.1).
Since the row and column main effects in the FANOVA model are identical
in all respects to the main effects in analysis of variance, we can use con-
ventional methods for testing the hypotheses that all {R;} equal zero or
that all {C,} equal zero.

Mean squares for interaction factors

Our first step toward developing a rough guide for judging whether
or not the mth interaction factor accounts for a statistically significant
amount of the variation in the {z;} is to define mean squares for the inter-
action factors. We will first write the quantities which must be minimized
in order to fulfill the conditions specified by the FANOVA model. Let 4,
represent the estimated residual interaction terms which result when fij0 <
f < (J — 1)] successive interaction factors have been extracted from the
matrix of {f;,}; that is

b
(3'8) f&ik = ?ik - Z (Zm&imﬁkm ’

where, it will be recalled, d.,&; B Tepresents the contribution of the mth
interaction factor to the 7,kth cell, and can alternatively be written
a5 Pimlim The FANOVA model requires that, for all the values of
f>0(=12 ---,J — 1), we minimize the (/ — 1) quantities

(3.9 E, = Z ; (dretiBer — g-ndin)

where the {(..,é;:} are treated as fixed when solving for estimates of the
{ds0;48:}. Our work is simplified now by recalling that Eckart and Young
[1936] proved that least squares estimates of the {a;}, {Bi )}, and {d,}
which minimize each of the (J — 1) quantities represented by (3.9) can be
found by expressing the matrix of {4,.} in terms of the decomposition specified
by the factor model. Thus we can now write

(3.10) I'= ADB
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where T' represents a J X K matrix with entries {41}, and in general a
caret, ~, indicates that all entries in the matrix are least squares estimates
of population parameters.

We will now determine the number of linearly independent parameters
which are fit in calculating each interaction factor. The mth interaction
factor is subject to the restrictions

Za5m=0 kZIBkm=0;

and due to the fact that the A and B matrices of the factor model (1.1)
are orthonormal, the mth interaction factor has two restrictions imposed
upon it by the requirements that

=1 2 f.=1
i k

and finally, also due to the fact that A’A = B’B = I, the mth interaction
factor is subject to the following {2(m — 1)] orthogonality restrictions:

Z X ®jm = 0 ; BiiBim = 0
Z Cjollym = 0 ; BioBim = 0

Z Qi (m-1)m = 0 Z Bin-1Brm = 0.
i &

In general then, the mth interaction factor of the FANOVA model has
[4 + 2(m — 1)] or simplifying, (2m + 2) linearly independent restrictions.
Since the mth interaction factor is expressed by the J o, values -+ the
K 8., values 4+ the “regression” weight; d,, ; a total of (/ + K + 1) values
are used to express the mth interaction factor. Thus, the mth interaction
factor accounts for [(J + K + 1) — (2m + 2)] or, simplifying, (J + K —
1 — 2m) df. We now define the mean square for the mth interaction factor as

(3.11) MSpn = SSpn/(J + K — 1 — 2m),

where 88;,, represents the sum of squares accounted for by the mth inter-
action factor and is obtained as described below.

Treating the factor weights {&@;ufim G = 1,2, --+ ,JJ5k = 1,2, - -+, K)}
in the FANOVA model as fixed weights which define a normalized contrast
¥r,, among the interaction parameters, we estimate the “value” of the
contrast in the conventional manner [e.g., Scheffé, 1959} by

(3.12) Vim = Z ; &imékm“?ik = Z Ek:&z‘mékmy.ik .

(Context should make it clear whether we are using the symbol ¥, to refer
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to the value of a contrast or to the function which defiues the contrast.)
The sum of squares accounted for by the normalized contrast ¥, is given by

(3.13) SSyp,. = I¥%,,.

We will now show that d2 = %2, ; and therefore, in practice, the calcula-
tions described by (3.12) will not be carried out since the {d?} are simply
the eigenvalues which are obtained in the process of factoring the matrix I
Beginning with the factor analytic decomposition of ' (3.10), it can be
readily shown that

-~

(3.14) D = A'TB.
Expanding (3.14) gives
(3*15) (im = Z 142 &imfém‘?fk = Z ; &ikékmy.ik s

where it is important to remember that we are treating the {4;,} and {8}
as fixed. Since the right-hand sides of (3.12) and (3.15) are identical we
see that

(3.16) d = ¥pp = Z ; QinbBinl it -

Thus, substitution in (3.13) gives

(3.17) SSp, = Id?,

and making in (3.11) the substitution suggested by (3.17) yields
(3.18) MSp, = I1d2/(J + K — 1 — 2m).

A mean square for the residual interaction

Having defined plausible mean squares for the interaction factors of the
FANOVA model, we now define a mean square for the residual interaction.
The sum of squares accounted for by the residual interaction, Fres, depends
on the number of interaction factors, M, retained in the model; and is ob-
tained by subtraction in the following manner,

(3.19) SSrees = SSpe — I 2. d% = SSze — 2 SSpm

where 88,. represents the sum of squares due to all row by column inter-
action and is defined as

(3.20) SBre =1 Z ;'f/?k =] Z ; Yoo — Yoio — Y. + Z/)2

Alternatively, when the {v;;} have been completely factored, one may wish
to compute the residual sums of squares by using the relation

J-1

(3.21) SSkies =1 2 di

n=M+1
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and checking to see that
(3‘22) SSRC = Z SSFm + SSFres .

The number of linearly independent restrictions imposed on the residual
interaction also depends on the value of I and is obtained by subtraction.
As is well known, (J — 1)(K — 1) df are accounted for in calculating SSg¢ ;
and since the mth factor extracted from the matrix of {9,.} accounts for
(J+K—1—2m) df, we see that [(J—1)(K—~1)—D,. (J+K—1—2m)]
or simplifying, (J/ — 1 — M}(K — 1 — M) df are accounted for by the
residual interaction. Thus we define the mean square for the residual inter-
action as

(3.23) MSygres = SSpree/(J — 1 — MK — 1 — M).

A rough index for judging the significance of inieraction factors and the residual
interation

A central problem in data analysis is that of finding simple and heurist-
ically useful methods of summarizing variation in experimental data [e.g.,
Green and Tukey, 1960; Tukey, 1962]. It is in this spirit that we present
some rough guides for judging the stability of factor weights and describe
some quantities which provide useful summary descriptions of B X C varia-
tion in the data.

One useful measure for summarizing variation of the data is simply
the proportion of B X C interaction variation accounted for by the mth
interaction factor (i.e., SSr,./SSzc). In describing the results of a FANOVA
analysis it is, of course, also useful to calculate the “mean squares” given
by (3.20) and (3.23), since they provide a measure of how much variation
per estimated parameter we have accounted for. One might say that a mean
square tells us how much sum of squares we have “bought’” for each df
“spent.”

Now we shall consider a rough index to aid us in judging the statistical
significance of interaction factors. Recall that 88, equals I d2 , and that

(3.24) cim = Z kz &imﬁkmy.ik .

If the values {@nBim G = 1,2, -+- , J;k=1,2, - , K)} were constants
which had been chosen before observing the {%,.}, we could treat them as
weights in an a préor? contrast; and, for all m, could test the hypothesis
that d, = 0 (i.e., the hypothesis that the mth interaction factor accounts
for none of the variation in the {x;.}) by conventional analysis of variance
methods [e.g., Winer 1962]. But of course, the FANOVA model does use
a posteriori information about the {9;}; and it is for this reason that we
assign (J + K — 1 — 2m) df (rather than one df) to 8S,, . Matters are
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further complicated by the fact that the {d,} are not linear functions of
the observations {y;,.}.

However, asymptotically the {&;,} and {f..} are constants which equal
the {e;,] and {B:.}, respectively; and thus, asymptotically the {d.l are
linear funections of the observations {y.;.}. When we let

(3.25) Aa,‘m = U, = &im and Abkm = 5;,;,” bt 3km 3

it can be shown that the probability that Aa;, > e and Ab,,, > ¢ for any
value of ¢ > 0, approaches zero as the number of observations, 7, upon
which the data is based increases, i.e., limit;_. Ag;,, = 0, and limit;.., Ab,, = 0.
Thus, asymptotically d,, is a linear function of the observations; and con-
sequently, the asymptotic distributional properties of 88,,, (m=1,2, --- , M)
and SSy.., can be defermined by well known procedures for dealing with
linear functions of normally distributed observations. Hence, under the
hypothesis that d,, = 0 (and under the assumptions of the fixed FANOVA
model) the (M + 1) sums of squares [ d°, [ d2, --- ,Id2, - -, Id% and
(SSpo — I 2., d2), following division by ¢? , are asymptotically distributed
asxwith(J + K —-3),J +K —5), -, J+K~—1~-2m), ---,
J+K—-—1—-2M)and (J — 1 — M)(K — 1 — M) df, respectively. Asymp-
totically, it also follows that the M <+ 1 quantities {8S,, (m = 1,2, ---, M)}
and SSy.., are all statistically independent of each other; and that the
expected mean square for the mth interaction factor is

(3'26) E(MSFm) = I”i‘m + 0’3 H
where
(3.27) orm = d2/(J + K — 1 — 2m)

and ¢2 = E(MS,) and
3.28) MS, = S8./JKI — 1) = 2. 2. ‘k,_j Wiie — y.0)*/JET — 1),

The quantity S8,/¢2 is, of course, distributed as x* with JK(I — 1) df.
A statement directly analogous to (3.26) can also be made regarding MSy,., .

From the above facts we conclude that asymptotically (e, I — )
the hypothesis that ¢%, = 0, and the equivalent hypothesis that ¢, = 0,
is rejected at the « level of probability if

(329> MSFm/MSe Z Fa;(J+K~1~2m),JK(I—-l) 3

where the right side of the equation refers to the upper-« point of the F-
distribution with (J/ + K — 1 — 2m) and JK(I — 1) df. Use of the eriterion
described by (3.29) is suggested as a rough-and-ready aid to one’s intuition
in judging whether or not the mth interaction factor accounts for a statistically
signifieant amount of the total variation. It is important to remember that
although the ratio MS;,/MS, is asymptotically distributed as F, its exact
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distribution is unknown. The accuracy of the F-distribution as an approxima-
tion to the unknown, true distribution depends upon the magnitude of
the {Aa;,} and {Ab,,}. In practice the criterion (3.29) will be reasonably
accurate when the values {4;,.8:.} are reasonably stable; i.e., when further
increases in I do not greatly affect the values of the {&;,} and {Bs.}. Thus,
it is possible for 15 or 20 observations on data with very small error variation
to yield reasonably stable values of {&;,) and {B..}; while a much greater
number of observations on highly variable data may yield markedly un-
stable values of {&;,} and {Bin}-

Residual interaction. The residual interaction sum of squares, SSz.es ,
provides a measure of the amount of interaction variation remaining after
removing that variance accounted for by M interaction factors. It is of
course possible to extract enough interaction factors to make S8y,., negligible
or even equal to zero. However, it seems very unwise to extract an inter-
action factor which accounts for an obviously non-significant and trivial
amount of variation. Such a factor, by definition, does not describe systematic
variation in the data. Thus, even in cases where the residual interaction
is obviously substantial, any interaction factor which does not itself account
for a substantial amount of variation should not be retained.

Asymptotically, the quantity SSyr.../o? is statistically independent of
the interaction factor mean squares and is distributed as x* with (J — 1 — M)
(K — 1 — M) df. Thus, as a rough guide, we may reject the hypothesis
that all ¢;, = 0 if

(330) MSFreuL‘MSe 2 Fa: (J=1-M)(K~1~M) ,JE(I-1) -

Note that, of course, the same comments made regarding use of criterion
(3.29) also apply here.

Table 1 outlines the computations for the two-way fixed effects FANOVA
model.

Additional guides for judging significance in the fired FANOV A model

In this section we describe tests for finding lower bounds (conservative
test) and upper bounds (liberal test) for p-values applying to tests of the
hypothesis that d,, = 0. Tests of the bypothesis that all the Fres parameters
{é;:} equal zero can be developed by directly analogous methods, but will not
be explicitly presented.

A conservative test. The significance test described in this paragraph is
conservative in the sense that it will yield too few ‘‘significant’ decisions
(i.e., high Type II error) but keeps the probability of making a Type 1
error <a. Scheffé’s [1959] method for judging all possible contrasts in a
fixed model analysis of variance provides a conservative test for judging
the significance of the M interaction factors and the residual interaction
factor in the fixed effects FANOVA model. Using Scheffé’s method, the
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TABLE 1

Computational Formulas for the Two-way Fixed Effects
FANOVA Model

Source 4af Sums of Squares
2 2
Rows (R) J-1 IK ] vy 5. = Ly
FEREHD .
2 2
Cols (C) K-1 Yy x ~ LKy
Lo
2 2
RxC (3-1) (R-1) IF )y =LKy -85, - 58
ik .3 eee
F1 J+R-3 I&i
2
F2 JHK-5 132
Fu JHK-1-2u 132
1371 JHR~1-24 1&31
Fres (J-1-M) (K-1-M) SSpe = g S8
2 2
Error JR(I-1) ) Vg = L Ily ik
ik ik *J

probability that all contrasts tested will be significant is > 1 — «; irrespective
of the number of contrasts estimated and irrespective of whether the contrasts
are selected a prior? or are chosen after examining the data, as in the FANOVA
model. Applying Scheffé’s method to the problem of judging the significance
of the mth interaction factor in the fixed FANOVA model, we conclude
with probability >1 — « that d,, # 0 if

SSea/l

@3 ST =D

Z (J - 1)(K - 1)F’a:(./—l)(K—l).JK(I--!) .

It is useful to note that the approximate test described earlier (3.29) and
the conservative test (3.31) differ only in that they assign different df to
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SSpa - It is easy to see that the number of df assigned to 8S,,, by the ap-
proximate test (i.e., / + K — 1 — 2m) cascades in steps of two df as the
value of m increases; whereas Scheffé’s method (3.31), in effect, assigns a
constant number of df, (J — 1)(K — 1), to SS8g, irrespective of the value
of m.

A liberal test. The significance test presented below is “liberal” in the
sense that is has high probability of making Type I errors (i.e., rejecting
the null hypothesis when it is true) but has a very low probability of making
a Type II error. Although the liberal test will overestimate the number
of statistically significant interaction factors, it is sometimes helpful to
know the maximum number of statistically significant factors. The liberal
test is based on the fact that an a priori hypothesis always has greater power
than the corresponding a posteriors hypothesis. The liberal test ignores the
fact that a posierior: information is used in selecting the best interaction
factors, and treats the obtained factor weights {&;.f.} as though they
had been known a priori. Thus, the liberal significance test for the mth
interaction factor is obtained simply by using conventional methods for
testing the significance of a priori contrasts [e.g., Winer, 1962]. Thus, in
the case of the fixed FANOVA model, we reject the hypothesis that d,, = 0 if

SSFm/l
ME,

L]

(332) 2 Fa;l.JK(I-l) d

In using the FANOVA model it is often useful to apply the asymptotic,
the conservative, and the liberal tests in combination, First, the conservative
and liberal tests, respectively, enable one to find the lower and upper bounds
on the p-values applying to given interaction factors; and the asymptotic test
can then be used to aid one in judging the significance of those factors which
are neither accepted by the conservative test nor rejected by the liberal test.

An “exact test.” As mentioned earlier, conventional tests which are
exact are available for judging the significance of @ priori contrasts. It is
valid to treat contrast weights as @ prioré so long as the basis on which they
are selected does not use information about the specific set of parameter
estimates to which they are to be applied. Thus, in addition to using data
from previous experiments as a basis for defining a priori weights {&;,.8:n}
which define an “a priord interaction factor,” it is also valid to use a randomly
selected subset of data from a single experiment to define a priori inter-
action factors. Given I observations in a two-way fixed model, some pro-
portion, p, of the observations are randomly selected from each cell to
define, say, set V of data; and the remaining (1 — p)I observations per
cell define set W of data. The data from, say, set V are then decomposed
according to the FANOVA model. Since ¥V and W comprise two statistically
independent sets of data, the interaction factors (and main effects) found
for set V of data can be used to define contrasts which are a priori with
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respect to set W data. Set W data is then analyzed by using conventional
methods for judging significance of @ priori contrasts (obtained from set V)
in a fixed model analysis of variance.

4. Judging “Factor Similarity” in the Fized Effects FANOVA Model

Consider a three-way (G X R X C) fixed effects analysis of variance
model with ¥;,;, representing the ith (i = 1, 2, --- , I) observation at the
tth (¢ = 1,2, ---, T) level of G, jth level of R, and kth level of C. Assume
that we have the FANOVA decomposition for the B X € “summary table”
of data obtained by averaging over observations and over levels of G. The
problem of judging factor similarity, as defined here, arises when we wish
to judge whether or not an interaction factor accounts for an equal amount
of variation at each level of G, Say, for example, that our dependent variable
is performance score on some tasks; and the levels of R and C are three different
diagonastic categories and four different drugs, respectively. Having averaged
over levels of G, say a stress vs. no stress manipulation, and having obtained
the FANOVA decomposition of the diagnostic category by drug summary
table; we want to test whether each component of the FANOVA decomposi-
tion accounts for an equal amount of variation of the category by drug
profile of results within both the stress and no stress groups. The significance
tests described in the following section are all exact; and require only the
conventional assumptions for the three-way fixed effects analysis of variance
model.

Fit of the over-all interaction factor at each level of G

Letting x,,; represent the population value which is estimated by ¥.¢ ,
we first obtain the least squares estimate of the overall R X C profile of
scores {z_;.} by caleulating

4.1) Lo =Y..ix;

and then obtain the FANOVA model decomposition of the {y. ;:}. We then
approach the problem of judging factor similarity by testing whether regres-
sion of the 7' subtables of R X C means {y_,;x (j=1,2,---,J;k=1,2, .-+, K)}
on the mth set of estimated interaction factor weights {@nBem (G = 1, 2,
o, J3k = 1,2, .-+, K)} leads to significantly different regression weights
{dm (t = 1,2, -+-, T)} for different levels of G.

The significance test described below is based on the fact that the
parameter estimates associated with B X C and G X R X C variation are
statistically independent quantities. This means that information about
R X C variation tells us nothing about G X R X C variation. Therefore,
we can treat the M sets of estimated interaction factor weights {&;:8um (7 =
1,2, -+ ,J;k =1,2 ---, K)} and the residual interaction parameter
estimates {¢;} as (3 -+ 1) mutually orthogonal contrasts which are a priore
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with respect to @ X R X C variation. Thus, it is valid to test the hypothesis
that our estimate of the mth interaction factor accounts for different amounts
of variation at each level of G by simply making the same assumptions and
using the same computational procedures as are used to test the hypothesis
that, say, a (linear R) X (quadratic C) contrast accounts for equal amounts
of B X C variation within each level of G. The basic idea expressed in this
paragraph should be remembered since it is central not only to the significance
test described in this section, but also to tests which are described later
in the paper.

Following conventional procedures for testing the significance of
@ priort interaction contrasts [see Winer, 1962], we obtain least squares
estimates of the T regression weights {d,,, ({ = 1,2, ---, T)} by calculating

(4-2) sz = ; ; dmﬁkmy.m ’

where of course, the {&;,, (j = 1,2, -+ ,J)} and {8, k = 1,2, -+, K)}
are treated as fixed weights which define an interaction contrast. We then
compute

4.3) SSerm = I 2 (dim —d.)? =1 d% — SSim,
H t
where

@4 8Srm = IT(3 2 Qsubiny..c0)" = ITd .

Since (T — 1) independent parameters are estimated in computing SSgz.. ,
we define

(4.5) MSBepm = S8grn./(T — 1).

Under the usual assumptions of the analysis of variance model the quantity
SSera/d: is distributed as non-central x* with (T — 1) df. Hence, for any
given value of m, we reject the hypothesis that all {d,,, (¢ = 1,2, ---, T)}
are equal if

(4.6) MBerm/M8B, 2 Foizos, rsra-1 -

It is important to recognize that (4.6) provides an exact test of the hypothesis
that the contrast defined by the estimates {&;.8km (G = ,2 -,k =
1,2, ---, K)} accounts for an equal amount of variation of each level of G.
However, strictly speaking, (4.6) is not a test of whether the population
parameters {aimbim G = 1,2, ++- ,J;k = 1,2, -+ | K)} define a contrast
which accounts for an equal amount of variation at each level of @; and it is
reasonable to treat it as such only to the extent that the estimates {&;,,8:. (j=
1,2 ---,J;k=1,2, ---, K)} reflect the “true” pattern of factor weights
in the population.
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Similarly, a test of the hypothesis that the estimated B X C residual
interaction, Fres, accounts for an equal amount of variation at each level
of G is obtained by treating the Fres parameter estimates {$,;} as defining
a fixed contrast which is a priori with respect to G X R X C interaction
variation. Hence we compute

(47) MsoFrea =aSSOFrea/(T - 1)

where
(4'8) SSG’F:M = I ‘Z (Z kZéimy.lfk)z/Z ; éfk - SSFI’GO ]
and

(4.9) SSF“, == SSRC - IT Z J:, .

The significance of variation due to G X Fres interaction is tested against
the usual error term, MS, .
The S8 accounted for by the remaining G X R X C interaction is given by

(4.10) SSerciress = SSere — 2 SS¢rm — SSorres »

where SSgrc represents the SS due to the overall @ X B X C interaction.
The terms on the right side of (4.10) are mutually orthogonal and, respectively,
account for (T — 1)(J — 1)(K — 1), (T — 1)M, and (T — 1) df. Hence
we define

{4.11) MBozciress = SSarcicen/A,

where A = [(J — I}(K — 1) — (M + DKT — 1). The hypothesis that no
G X R X C interaction remains after removing variation due to G X Fm
(for all m) and G X Fres interaction is rejected if

(4‘12) MSGRC[rea]/Mst ...>.. Fa;X.TJK(I—l) .

Table 2 summarizes the computations used in partitioning the overall
G X R X C variation in order to judge factor similarity.

The methods used above for judging factor similarity can of course
also be applied to the problem of judging the similarity of main effeet profiles
for different groups of Ss. Space limitations require that a comparison of
the above technique and that of simply treating the overall B X C inter-
action as a measure of profile similarity be left for a later time. We now turn
to a discussion of the three-way repeated-measurements FANOVA model.

5. The Three-way Repeated-Measuremenis FANOV A Model

In this section we consider a design in which repeated measurements
which vary along two dimensions (R X C) are taken on several subjects (S).
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TABLE 2

Partitioning of GxRxC Variation in Order to
Judge Factor Similarity

Source daf Sum of Squares

GxF1 (T~1) 1] & -ss

2 %1 F1
GxF2 (1-1) 174 -ss

t t2 F2
GxFn (T-1) 1]d -ss
x P tm Fm

=2

GxFM (T-1) 1] dyy = SSpy

t
GxFres (T-1) 1JCL} 3jky tjk)z /11 $§k = 55pres

t jk : ik

GRC[res] A SSepe ~ ) SSomm = SSrres

* A= [(I-1)(K~1) ~ (M+1)]1(T-1)

We also allow for one or more independent replications (Rep) within each
cell. We write this design as Rep (S X B X C) where replications and subjects
are treated as random and the levels of B and C are treated as fixed. The
analysis of variance model for this design is

(5-1) Yniie = B + S; + Ri + C. + Yir + 0ii + 7o+ T+ Grin ’

where y:;: denotes the observation on the hth (A = 1, 2, - -+, H) independent
replication of the 7th subjeet’s score on the j, kth measurement. We make the
following assumptions:

a. ZR,- = Xk:C,, = E‘Yik = ;'Yik

= Zoii=k27rik= Z'riih= I‘Z‘l'mp=0
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b. The {S.}, {6:;}, {m}, and {r.;;} are jointly normal with zero means.
c. The {e;;z} are independently and normally distributed with zero
mean and variance o7 ; and are independent of the {S:}, {8}, {7ul,
and {r.;:}.
The analysis of variance model (5.1) implies the following decomposition
of the “true’” measurements {z;,} averaged over the population of subjects
and replications,

(5-2) i = p+ B + Co + vir .
A least squares estimate of z;; is given by
(5.3) Eie = Y..ine

Applying the FANOVA model decomposition to the matrix of {y. ;.} yields
least squares estimates of the grand mean, the row and column main effects,
and of the M interaction factors and the residual interaction. It is in the
spirit of trying to provide some heuristically useful ways of summarizing
the results of a FANOVA. decomposition of three-way mixed model data,
that the following quantities and indices are presented.

Interaction factors in the repeated-measurements FANOV A model

The sums of squares and mean squares for the M interaction factors
and the residual interaction, Fres, for the three-way repeated-measurement
FANOVA model are directly analogous to the corresponding quantities for
the fixed FANOVA model and are given by

(5.4) SSp. = HId, ,

(5.5) S8rres = S8Sze — 2 8S8pm,

and "

(5.6) MS;,, = 88;,/(J + K — 1 — 2m),

(5.7) MSgres = 885ree/(J — 1 — M)(K — 1~ M) .

The above quantities summarize variation in the two-way table of data
which is obtained by averaging over replications and subjects. The following
two paragraphs describe measures which summarize variation due to in-
dividual differences in the size of the contribution of various interaction
factors to the scores of individual subjects.

Variation due to individual differences can be investigated by treating
the factor weights {@;nfin G = 1,2, -+ ,J; k = 1,2, --- K)} as fixed
weights which define a contrast; and eomputing for each interaction factor
the I quantities

(5'8) CZ.'”. = Z’: kz diiynﬁk'ny.iﬂa .
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The larger the value of {d.,} for a given subject, the larger the absolute
conlribution of the mth factor in determining his B X C table of scores
Y G=1,2 +--,J;k =1,2, .-, K)}. Thus, the sth subject’s B X C
table of measurements as estimated solely on the basis of (a) his “score,”
d.., , on the mth interaction factor and (b) the overall factor profile defined
by the weights {@/nbim G = 1,2, --+, J;k = 1,2, ---, K)}, can be ob-
tained by

(5.9) y.s’ik(m,) = dimdimﬁkm .

For the mth interaction factor, the sum of squares of deviations of subjects
individual regression weights {d;, ({ = 1, 2, --- , I)} around the average
regression weight d ,, is

(5.10) S8skm = H 2 (din — d.w)® = H 20 din — SSpn .

Sinee caleulations of 884, involves fitting only (I — 1) linearly independent
parameters, we define

(5.11) MSssm = SSsra/ — 1).

Similarly, we compute variation due to individual differences in the
absolute size of the contribution of the contrast defined by the estimated
Fres parameters {¢,.} by

(6.12) SSsrres = H Z (Z kZ éiky-iik)z/z ; 43?1: — SSrres -

As in the case of the interaction factors, only (I — 1) linearly independent
parameters are fit in caleulating SSgy.., and we define

(5.13) MSSFres = SSSFres/(I - 1)-

At this point it seems natural to describe a quantity which we will refer
to as the F/R ratio (Fixed/Random) and which is obtained by

(5.14) (F/R)rm = MSr,./MSspn.

A similar ratio can, of course, be computed for the residual interaction and
for main effects. The calculations made in obtaining the F/R ratio are similar
to those used in computing an F-ratio for judging the significance of say,
a linear X quadratic trend; but, we emphasize that the distribution of the
F/R ratio is not known. Although no attempt to discuss the distribution
properties of the F/R ratio will be made here, some of its heuristic usefulness
should become more clear when it is discussed in the context of an illustrative
example which is presented later. The following presentation of a liberal
and conservative test of the hypothesis that d,, = 0 may also help to suggest
“interpretations’” of the F/R ratio.
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A conservaiive test and a liberal test

Conservative test. A conservative test of significance of interaction factors
and the residual interaction in the three-way mixed FANOVA model is
obtained by a straight-forward extension of Scheffé’s [1959] method for
judging all possible contrasts among main effects of the fixed way of a two-way
mixed model analysis of variance. We can think of the interaction parameter
estimates {4;,} as being obtained by taking the mean over the range of ©
of the quantities {7,;,} which are given by

(5.15) Ceie = Yoime = Yoox — Yoir. + Yoin. s

Since only (J — 1)(K — 1) parameters are estimated in caleulating the JK
quantities, {9}, it is possible to write (J — 1)(K — 1) = V new values,
{3, (v =1,2, ---, V)} which retain all the information in the {%;,}. Similarly,
it is possible to express the I setsof {4, G = 1,2, --- ,J; k=12, --- , K)}
in terms of new values, {4,,}, such that

(5.16) 2,=25,.
Under the assumptions of the mixed analysis of variance model, the I vectors
(@s1, 22, " 5 2in,y * -+ , 2;p) are independently and normally distributed with

an arbitrary pattern of means and with a variance-covariance matrix of
arbitrary form. From this point it is simple to extend Scheffé’s [1959, pp.
271-74] method to obtain the present test which allows us to reject, at
the <« level, the hypothesis that d,, = 0 if

SSFm/]- 1)(J_1)(K“1)F (F=1) (B~1)  J~{F—1) (K~-1)
—2—1—(3—1711{—1) eHITRED IR EmD

Clearly, the test (5.17) can be used only when I > (J — 1)(K — 1). The
inequality (5.17) can also be written as

SSr./(J — DK
(5.18) Crm = SS%T& _(Uli)(K 3 = 2 Foir-n&-n.1--nE-n -

Although the test given by (5.17) and (5.18) is exiremely conservative
in the sense that it has very high probability of making Type II errors;
it may well be of practical use when I (the number of observations) is large
relative to (J — 1){(X — 1). In most applications it is probably wise to let
« equal .15 or .20 when using this test. A conservative significance test for
the residual interaction (or any other contrast among the {v;} is obtained
by substituting the appropriate ‘“fixed” and ‘random” SS for SS,, and
S8srm in (5.17) or (5.18).

Liberal test. As in the fixed effects FANOVA model, a liberal test of
the hypothesis that d,, = 0 is obtained simply by treating the interaction
factor weights {@;nBim G = 1,2, -+, 3k =1,2, --- ,’E‘K)} as though they

(5.17)
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defined an a priori contrast. Thus, we reject the hypothesis that d,, = 0 if

Srm/1
(5_19) LFm = ‘S—SF‘S:/’: 2 Fa;l.l—l .
It is sometimes convenient to compute Lp,, by using the relation
(5.20) Lew=(J+K~1-2m)F/R)p,n .

It is interesting to note that the ratios Cr, , (I'/R)rm , and Ly, all
differ essentially in that they assign different df to SSg, and/or SSgpm ;
and that

(5'21) CFm < (F/R)Fm < LFm .
An ““exact test”’

As in the fixed FANOVA model, it is a simple matter to obtain an
exact significance test of the various FANOVA components of variance if
we have some a priori basis for predicting what the precise form of the
components will be. Thus, instead of trying to test the significance of inter-
action factors obtained by factoring interaction parameter estimates ob-
tained by using the entire set of subjects, the I subjects (observations) can
be randomly divided into two groups, say, V and W. Since this results in
two independent sets of data, it is now possible to use the FANOVA de-
composition of, say, set ¥V of data to define contrasts which are a priors
with respect to set W data. The estimated main effects {B;} and {C.},
the M sets of estimated interaction factor weights {&;.8um (G = 1,2, -++ , J;
kE=1,2 ..., K)} and the residual interaction parameter estimates {¢;.}
can all be used as contrasts. Conventional methods can then be used to
judge the significance of the contrasts (obtained from set V data) when
applied to set W data.

A stgnificance test for S8 X Fm interactions when H > 1

As discussed above, the quantity SSgr,, provides a measure of variation
due to individual differences in the absolute size of the contribution of the
mth estimated interaction factor to subjects’ measurements. Thus, if the
profile of estimated weights of the mth interaction factor accounted for an
equal amount of variation in each subject’s B X C table of measurements,
it would be true that d,,, = d,,, = --- = d,,, = -+ = d;, and therefore
8Ssr., would equal zero. When the {@;,.8im G = 1,2, -+- ,J;k=1,2, -+, K)}
are treated as fixed, it can readily be shown that

(5-22) E(MSSFm) = HU??Fm + 0'3 »
where ¢ = E(MS,) and
(5.23) o'?‘JFm = E (dl'm - dm)z/(I - 1)'
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Since variation due to B X C interaction is statistically independent of
variation due to S X R X C interaction, we can treat all sets of {QimBrm
G=12---,J;k=1,2, ---, K)} as fixed weights which define contrasts
which are a prior: with respect to S X R X C variation. Thus, under the
usual assumptions for judging the significance of orthogonal a priori con-
trasts, we reject the hypothesis that ¢%p, = 0if

(5.24) MSsrm/MS, 2 Foir-1,10x@-1) -
Similarly the hypothesis that o%,., = 0 is rejected if
(5.25) MSsrrea/MS, 2 Foirer roru-n -

We postpone consideration of significance tests for § X Fm interactions
when H = 1 until after the following discussion of SRC [res] interaction.

The SRC]res] interaction

The S X R X C variation remaining after variation due to all 8Sy,,,
and SSy,., has been removed is given by

(5.26) SSsrctrees = SSsre — 2, SSsrm — SSrsres

where SSgzc represents the SS due to the overall § X B X C interaction.
The df assigned to the terms on the right side of (5.26) are (I —1)(J —1)(K—1),
(I — DM, and I — 1, respectively; and it is easy to show that X = [(J —
K — 1) — (M + 1)J{I — 1) df should be assigned to SSgzcires; - Hence
we define

(5.27) MSsroiress = SSsrorrest/A

Under the hypothesis that the true variation due to SEC[res] equals zero,
i.e., 03pcires; = 0, the quantity SSszcires is distributed as o7x” with A df,
and we reject the hypothesis that o5pcires; = 0 if

(5.28) MSsrcirest/MS, 2 Fanrrxw-1 -

If H = 1, we cannot test the hypothesis that o%z¢(res = O.

Having described a significance test we now turn to a brief discussion
concerning the “interpretation’” of the SRC[res] interaction. The overall
8 X R X C interaction provides a measure of the degree to which the profiles
of subjects’ B X Cmeans {y.;;x = 1,2, -+, J;b6=1,2, -+, K)} differ
from each other. Thus, if all subjects’ B X C mean profiles are perfectly
parallel, 8Sszc = 0. As indicated by (5.26), the interaction of subjects with
the M interaction factors and the residual interaction of subjects with the
M interaction factors and the residual interaction factor accounts for only
a part of the total S X R X C interaction. The M -+ 1 interaction contrasts
employed in the FANOVA model are selected a posterior: to exhaust all
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the B X C sum of squares; but since these same contrasts are a prior: with
respect to 8 X R X C interaction, they behave in the same manner as any
other (M + 1) mutually orthogonal a priori contrasts, such as linear X linear,
quadratic X linear, etc. Thus, the FANOVA model partitions the S X & X C
interaction into two major parts; with one part consisting of M -+ 1 com-
ponents representing individual profile differences with respect to inter-
action factors and the residual inferaction, and the remaining major part
representing individual profile differences with respect to B X C contrasts
which are orthogonal to the interaction factors and the residual interaction.

Significance of 8 X Fm interactions when H = 1

When only one replication within each <, 4, k cell is available one may
wish to assume that o%po(res; = 0 and reject the hypothesis that o%p, = 0 if

(529) MSSFm/MSSRC{ms} 2 Fa;!-1.h b

where A = [(J/ — DK — 1) ~ (M + 1)]J(I — 1). Similarly, one may reject
the hypothesis that o% 5,,, = 0 if

(530) MSS Frea/-NISSRCtrea] Z Fa;l-—l,)\ .

Since E(MSszciresi) = Ho%rorres + 02, it is easy to see that the tests
described by (5.29) and (5.30) will err on the conservative side if 6%z ¢(res) > O

Table 3 presents a summary of the computations used in decomposing
R X Cand § X R X C sources of variation according to the requirements
of the three-way repeated-measurements FANOVA model.

6. Judging ''Factor Stmilarity” in Repeated-measurement Designs

Described in this section is a test for judging “factor similarity’” over
different groups (@) of subjects in a design which consists of fixed repeated
measurements (£ X C) on randomly selected subjects (S) who are nested
in the fixed groups (see Winer [1962] for a discussion of this design). For
convenience we assume that there is only one replication per cell, and that
each group contains an equal number of subjects. Thus, in this design there
are T groups of I subjects; and JK measurements are obtained on each of
the IT subjects. Many learning experiments are of this type; with levels
of @ being different experimental treatments, levels of R being different
stimulus characteristics, and levels of C being different blocks of learning
trials. The population B X € profile of measurements in the ith group is
defined by theset {z,;(, G = 1,2, --- ,J; kb = 1,2, ---, K}}, and is esti-
mated by

{8.1) v = Y.ein -
Assume that the overal R X Cprofile {y. ., § =1,2, -+ ,J; k =
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TABLE 3

Computations for Decomposing RxC and SxRxC
Variation in the Three-way Repeated-Measurements FANOVA Model

Source af Sums of Squares
RxC (J-1)3(x-1)
. 22
ja J¥K-3 HId;
F2 J+K-5 deg
T J+K-1-2m nra’
2
™ J+K-1-2M HId
Fres  (J-1-M)(K-1-M) 8Spa = L SSp,
SXRxC (I-1)(J-1)(K-1)
a 9
SxF1 I-1 H 3); ( g ]z 041807 151 - S5py
~oe 2
SXF2 I-1 HLC) ] a8,y 1) = S5p,
i Jk J
SxFm I-1 H JEL ( g ) %nBin? 150 = SSpm
- 2
SKEM I-1 BY CL Y eoyBoy sap) 85 oy
§ 5k 3 3
SxPres I-1 HY (Y} % v )2 /AN ;2 88
5 q Jk7 ik L jk Fres:
i Jjk ik
E3
SRCLres] A $Sgpe é SS¢rm = SScrpes
2 2
Error IJK(H-1) g g g z yhijk - H g :E]: }}; y.ijk
%A o= [(I-1)(K-1) - (M+2)I(I-1)
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1,2, ---, K)} has been computed and then decomposed into the FANOVA
model components:

(6.2 Y =2+ B+ C+ Y duinBin + i1 -

By a method directly analogous to that used in the fixed FANOVA model,
we then approach the problem of judging “factor similarity” by testing,
for each of the M interaction factors, the hypothesis that the contrast de-
fined by the {@;nfim G = 1,2, -+, J;k = 1,2, --- , K)} accounts for an
equal amount of variation in each of the 7' population group profiles {z,;. (j =
L,2 - ,J;k=1,2, -+, K)}. Of course, we also can ask a similar question
concerning the residual interaction and the main effects.

The parameter estimates associated with the analysis of variance
sources, B X C,G X B X C, and S(G) X R X C [i.e., (S within @) X B X (]
lie in three mutually orthogonal spaces are statistically independent. This
means that information about variation due to B X C interaction tells
us nothing about variation due to @ X B X € and 8(G) X R X C variation.
Hence, it follows that the interaction factors (and the residual interaction)
which are estimated on the basis of information about B X C variation,
define contrasts which are a prior: with respect to variation due to the
G X R X Cand S(G) X B X C sources. A test of whether the @ X Fm
term is significant is presented here as a test of “factor similarity.”” The
significance of G X Fm variation is tested by conventional methods [e.g.,
Winer, 1962] for judging the significance of, say, a @ X (linear R) X (quad-
ratic C) term in an analysis of variance design of the type now being discussed.

Following conventional methods, scores for the IT subjects on the
mth estimated interaction factor are computed from

(6.3) Czs'tm = Z ; &;mékmy;:u .

For each value of m (i.e., for each a prior: contrast defined by the 3 inter-
action factors) we now have scores for each of the IT subjects. Under the
assumption that the variance of the normally distributed {d:., (¢ = 1,
2, -+, I)} is the same for all T groups, we can do a one-way analysis of
variance on each of the M sets of data {d;,, (1 = 1,2,---,I;t=1,2,---, T)}.
The group main effect obtained will actually be the G X Fm effect, and the
error variation will actually be variation due to S(G) X Fm, i.e., individual
differences (of subjects nested in groups) in the size of the contribution
of the mth estimated interaction factor to subjects’ scores. Thus,

(6.4) SSerm = I 25 (d.sm — d..)7%,

and since 8S;,, = ITd 2,
(6.5) SSerm = I 2 d%m — SSpm .
t
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The 88 for the error term is
'(6.6) SSS(G)Fm = Z 2 (‘ium - Ci.m)2 = Z Z d?,,,. — S8¢rm — SSem .

The mean squares are

(6.7) MSGF,,. = SSGF,,,/<T - 1),
and
(6-8) MSS(G)Fm = SSS{G)Fm/(I - I)T-

Under the usual assumptions for judging the significance of orthogonal
a priori contrasts, we reject the hypothesis that the mth estimated inter-

action factor contributes equally to subjects’ measurements at each level
of @ if

(69) MSGFm/MSS(G)Fm = Fa;T-—l.(I—-l)T .

T

We emphasize that, as in the fixed model the test of “factor similarity”
suggested by (6.9) is an exact test of the hypothesis that the contrast defined
by the estimates {&imfim (G = 1,2, ++- ,J; k = 1,2, --- , K)} accounts
for an equal amount of variation at each level of G.

G X Fres variation. A significance test for variation due to the @ X Fres
source is obtained by computing the I7T scores

(6.10) Wy = Z Ek:d;ikyi!ik )

and doing a one-way analysis of variance on the {#;,}. However, since
> 3. #% = 1, it is necessary to divide the SS obtained by >.; >.& ¢%
in order to make the values commensurate with the other S8 obtained in
the overall analysis. Thus,

(6.11) SSorres = [I 20/ 2 Z_:a?,,] — SSrrer 5
[ i
(6'12) SSS(G)Fres = [E z‘: w?t/z ;é;k] - SSGFres - SSFrea 3

where
(6.13) SSpres = ITH?. = 88zc — 2. SSpm .
The hypothesis that the contrast defined by the {$:z} accounts for an equal

amount of variation at each level of @ is rejected if

SSG’Fres/(T - 1)

(6.14) SSscorrn/ I = 1T 2 For1,a-nr -

GRC[res] variation. Deseribed in this paragraph is a test of whether a
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significant amount of @ X R X C interaction variation remains after varia-
tion due to G X Fm (for all m) and G X Fres interaction has been removed,
Variation due to GREC[res] interaction is obtained by computing

(6-15) SSGRC(res} = SS¢rc — Z SSerm — SSorFres »

and variation due to individual differences in the contribution of GRC[res]
variation is given by

(6-16) SSS(emczm; = Sstmc - E SSS(G)Fm - SSsm)rm .

The mean squares are

(6.17) MSercrress = SSercires/d,
where § = (T — )[{(J — 1)}(K — 1) — (M + 1)}, and
{6.18) MSBserzeiress = SSs@rcires/?;

where » = T(I — 1[(J — YK — 1) — (M + 1)]. The hypothesis that
no ¢ X R X C interaction remains after removing variation due to G X Fm
(for all m) and @ X Fres interaction is rejected if

(6'19) MSGEC[res]/NISS(G')RC[real 2 FQ:B,: B

The test given by (6.19) is a conventional one and assumes that the variation
in 88 (e rcires) 18 homogeneous,

Table 4 presents a summary of the computational formulas used when
judging “factor similarity” over different groups of subjects in a repeated-
measurements FANOVA model. Work by Gollob [1965] illustrates use of
the above tests of “factor similarity.”

Methods directly analogous to those presented above for judging factor
similarity can be used to test whether main effect profiles, or B X C inter-
action profiles are the same over 7' different groups. We will not discuss this
possibility further here; but emphasize that the resulting significance tests
taken singly require only that the “contrast scores’” assigned to subjects
in each group meet the usual one-way analysis of variance assumptions;
and are valid irrespective of the form of the population variance-covariance
matrices associated with the original measurements,

7. Ilustrative Example

In order to emphasize and clarify central features of both the fixed
and the mixed FANOVA model a detailed illustrative example is now pre-
sented. The basic FANOVA decomposition of a two-way table of data ig
the same for both the fixed and mixed FANOVA model. In the case of judging
the statistical significance of various components of the decomposition,
however, the fixed and mixed models differ in several important ways;
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with the procedures for the mixed model being considerably more complex. It is
for this reason that we present a detailed example of a mized model analysis.
Gollob [1965] has described the results of applying a mixed effects FANOVA
model to the problem of predicting the evaluative (good-bad) rating of a
sentence subject as it is deseribed by the total sentence. All sentences fit
the sentence frame: The adjective man verb noun. For example: The vicious
man harms criminals. The kind man likes aleoholics. All possible combinations
of eight adjectives, six verbs, and four nouns were used to construet 192
sentences. Twenty-four Ss rated the man described by each stimulus sentence
on an 11-point good-bad scale. We will discuss the FANOVA decomposition
of the three-way table of data resulting after averaging over the adjectives
(evil, cruel, eynical, uncouth, uninteresting, friendly, considerate, kind). The
verbs and objects used are presented in Table 5. In the resulting table we
let y,;: represent the 4th §’s mean rating (over adjectives) of men described
by sentences containing the jth verb and kth adjective. Least squares estimates
of the grand mean g, verb main effects {V;}, object main effects {0,}, and
interaction parameters {v,:] were obtained by substituting y ;» for z; in

TABLE 4
Computational Formulas for Judging “Factor
Similarity” in the Repeated-measurement FANOVA Model

Source 4af Sums of Squares
GxRxC (T-1) (3-1) (K~1)
2 *
GxFl (T~1) 1 Zt T, =Sy
GxF2 (T-1) 17 & -ss
L ez F2
GxFm (T-1) 1§ &% - ss
s .tm Fu
CxFM (T-1) 1] & -ss
* c St 3
GxFres (1-1) 1] (I )by 271 6% ~ss
xkre AR TR AL L AL Fres

GRC[res] 8 SSepc = L 55gmm ~ SScrres
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S(G)xRxC  (I-1)(T) (J-1)(K-1)
2
G)xF I-1T - -
S(G)xF1 (1-1) Zi{ df,, - SSgpy — SSpy
2
S(6)xF2 (I-1)T 21 Xh 3f,s = SSgps = gy
S(G)xFm  (I-1)T E ) «ifm - 88 = S5
t
. . .
S(G)xFM (I-1)T 11 df oy = SSgmy = SSpy
-t
-~ 2 .\2
S(G)xFres (I-1)T Y ¢l Yooy, . 0°0Y] ¢ -85S -ss
ic 1 jk itj_li_ ik ik GFres Fres
S(G)RC{res] vt 585 cyre " Zl 55¢(6ymm ~ 555 (C) Fres
& SSFm = rréi where 3:1 represents the mth eigenvalue obtained in

using the factor model to decompose the matrix of {ij}'

55 rres ™ 8820 - z‘ SSgn -

+ & = (T-D{ G- (K-1)-(+1} ]
$ v = TE-DI-1(K-1)-(#1)]

formulas (1.8) to (1.11). The {y._;:} and the parameter estimates are presented
in Table 5. An analysis of variance summary table for this data is presented
in Table 6. The verb and object main effects and the verb X object inter-
action are all highly significant. Using percentages based on variance com-
ponent estimates, [see Hays, 1963; pp. 406-7, 438], we find that the verb
main effect accounts for 589, the object main effect for 297, and the verb X
object interaction accounts for 409, of the “between predicates’”’ variation
[e.g., for the verb main effect: ¢2/(6? + ¢; + ¢%) = (1.52)/(1.52 -+ .05 +
1.03) = .58].

To obtain the FANOVA decomposition of the {y. ;} we now must
express the 6 X 4 matrix I, of interaction parameter estimates {9;}, in
terms of the factor model (1.1). Since J > K we solve for matrices D* and
B by finding the eigenvectors {3;.} and eigenvalues {d2} of the 4 X 4 matrix
V1" and then use (1.2b) to obtain the matrix A. The matrices 4, D, and B
are presented in Table 7,
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TABLE 5
Observed Means, Fitted Values, and Interaction Parameter Estimates®

The three entries in the j,kth cell are the
(a) mean rating (over observations and adjectives) for the predicate
(b) value fitted by summing the grand mean and main effects, and
(¢) dinteraction parameter estimates.

The main effects are given in brackets along the left and upper margins.

grand mean [.22} [.16] {-.11] [-.27]
= ~,43 physicans colleagues alcoholics  criminals
1.77 1.42 1.88 ~.72
[ 1.51] helps (1.31) (1.24) (.98) (.82)
46 .18 .90 -1.55
1.22 1.10 1.32 -.18
[ 1.30] befriends (1.09) (1.02) (.75) (.60)
.13 .08 .57 ~.78
1.22 .95 -1.00 -1.82
[ .27] praises (.06) (.00) (-.27) (-.43)
1.16 .96 ~e72 -1.39
-1.14 -1.03 ~1.26 -.40
[ -.53] criticizes (-.73) (-.80) (~1.07) (-1.22)
-.41 -.23 -.19 .82
-1.95 ~1.83 ~1.95 -.04
{-1.02] frustrates (-1.22) (-1.29) (-1.56) (-1.71)
-.73 ~-.54 -.39 1.67
-2.37 ~2.25 ~2.25 -1.00
[-1.54] hates (-1.75) (~1.81) (~2.08) (-2.23)
-.62 -.44 -417 1.23

* The slight inaccuracies which appear in this table (and in the following
tables) are due to rounding error.

Table 3 summarizes the computations used in partitioning variation
due to B X C (Verb X Object) and S X B X C (8 X Verb X Object) inter-
action in a three-way mixed-effects FANOVA model. Thus the sums of
squares accounted for by the mth interaction factor is given by

(7.1) 8Ss, = Id2,

where the {d?} are the eigenvalues of II* and have been obtained in the
process of factoring the table of interaction parameter estimates, I'. Since
the number of Ss, I, equals 24, and from Table 7 we see that d° = (3.703)% =
13.711; we compute the SS accounted for by the first interaction factor
by SSz, = (24) (13.711) = 329.064. The mth interaction factor is assigned



HARRY F. GOLLOB 107

TABLE 6

Analysis of Variance of Mean Ratings

Source daf Ss MS F
Predicates 23 1146.70
v 5 741,11 148.22 56.06%*
0 3 22.56 7.52 14.60%
Vx0 15 383.02 25.53 30.54%
Individual
Differences 552 721.91
S 23 93.72 4.07
SxV 115 304,03 2.64
S$x0 69 35.54 .51
SxVx0 345 288.62 .84
Total 575

* p < .001 by Greenhouse and Geisser conservative test (see
Winer, 1962). This test allows the relevant variance-
covariance matrices to be of arbitrary form. The test
rejects the null hypothesis if the usually computed ratios
exceed the tabled value given for the F~distribution with 1
and (I-1)df.

TABLE 7

Factor Analytic Decomposition (T=ADB') of the Interactiom
Parameter Estimates

The Matrix A The Matrix.D The Matrix B'

ﬂ.,(&jl} _LZ_(EJZ} E(a_ﬂ} 4 3, a, phys coll ale crim

e —
helps «453 <533 485 F1 | 3.703 [ 1] Fl{ﬁkl} L419  .296 .133 ~-.848
befriends 2222 +357 -.534 F2 [} 1.497 0 F2(§k2} «336 ~.362 «855 -.158
praises 501 -.758 .051 F3 o 0 084 F3(§k3] 679 =-.729 ~-.027 .077
criticizes =-.259 ~.047 -.482
frustrates -.523  -.105 .492
hates ;. 394 .020 -.015
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(J + K ~ 1 — 2m) df, so the first factor is assigned (6 + 4 — 1 — 2) = 7 df.
Each successive factor is assigned two df less than the preceding factor.
The MS for the first interaction factor is 329.064/7 = 47.010. The results
of making the preceding computations for all three interaction factors are
presented in the top half of Table 8.

The 88 accounted for by the S X Fm interaction is computed by thinking
of the weights {@;,fu, G =1, +-+,J;k = 1, --- , K)} as defining a contrast;
and applying the standard formula for normalized contrasts,

(7'2) SSsrm = Z (Z Z&imékmyiik)z — 88rn = Z (z?m — 8S8em -

) i & i
In calculating the {d,.} for the mth interaction factor it is useful to obtain
(7-3) Wikm = &imélcm ]

where &;,, and B, are the entries in the mth columns of the matrices A
and B, respectively. The I values {d;, (¢ = 1, ---, I)} are then computed by

(7.4) din = Z ; Wiaml ik »

and are substituted in (7.2) to obtain S8gp, . A convenient check on the
computation of the {cfim} is provided by the relation d., = d, . The S8
and MS for § X F1, 8 X F2, and § X F3 are presented in Table 8.

TABLE 8

Summary Table of Variation Accounted for
Interaction Factors

Source df Sums of Squares Mean Squares (F/R)Fm F-Ratio
V20 15 383.016 25.535
F1 7 329.064(85.92) 47.010 9.41
F2 5 53.784(14.04) 10.757 13.70
F3 3 .169( .04) .052 .24
SXVX0 345 288.621 .836
SxFL 23 114.892¢39.81)F 4.995 9.14%
SxF2 23 18.046( 6.25) .785 1.44
SxF3 23 4.969( 1.72) .216 40
SVO[res) 276 150.714(52.22) .546

+ Percentage of Vx0 interaction accounted for by the mth interaction factor.
¥ Percentage of SxVx( variation accounted for by "source.”

* p g .0001
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Having computed the relevant mean squares, we will now decide how
many interaction factors we must retain in order to adequately account for
the verb X object interaction. Using the liberal test (5.19) we obtain ratios
of (7)(9.41) = 65.87 and (5)(13.70) = 68.50, respectively, for F1 and 2.
These ratios are impressively large when considered in the light of the fact
that mean ratings of the type analyzed in this example are known to be
very stable over different groups of subjects [Gollob, 1965]. In general,
the more reasonable it is to assume that different groups of subjects would
give highly similar mean ratings {y ;}, the more reasonable it is to think
of the liberal test as being an approximation to the ‘“exact test” which actually
applies weights obtained from one set of data to a different set of data.
Note also that although F2 accounts for only 149, of ¥V X O variation,
individual differences in the size of its contribution are so slight that F2
is judged more statistically significant than F1 which accounts for 859, of
the ¥V X O variation. For the third factor the liberal test yields a ratio of
(3)(.24) = .72 which is obviously not statistically significant. In addition,
Table 8 shows that the third interaction factor accounts for only .049
of the ¥V X O variation; and Table 11 shows that its largest possible con-
tribution to any predicate is only .03. Furthermore, Table 8 shows that
variation due to § X F3 is small and nonsignificant; and therefore, F3 is
not an important factor in describing individual differences. It is clear that
the third interaction factor is of neither statistical nor ‘“‘practical” signif-
icance; and therefore, we will not consider it further.

The conservative test described by (5.18) assigns (J — 1)(K — 1) = 15 df
toall 88z, and I — (J — 1)(K — 1) = 9 df to all SSgr,, . The resulting
ratios for F1 and F2, respectively, are Cp, = 1.74 and Cp, = 1.79 which
reach significance only at the .25 level. This test is very conservative indeed!

The (F/R)p, ratios for the three interaction factors are presented in
Table 8. Although no such evidence is now available, experience with using
the FANOVA model may show that under some conditions it is a useful
procedure to look up tabled p-values as though the F/R ratios were dis-
tributed as F, with (/' + K — 1 — 2m) and (I — 1) df. Or perhaps some
empirically determined cut-off point such as a F/R ratio of say, 3 or 4 required
for “significance” will be found useful for some types of subject-matter.
Under the assumption that we will at least be somewhere in the ball-park,
we pretend that the F/R ratios are distributed as F,, ;. x_1—om r—1 and find
that for both the first and second factor p < .0001.

On the basis of the above considerations, we tentatively decide that
the first two interaction factors are necessary and sufficient to adequately
account for the V X O variation. Thus, ¥ = 2 and SSy,., , which would
ordinarily be found by subtraction (88,, — Z,,. SSr.), 1s identical with F3.
The SS due to SVO[res] interaction is given in Table 8.

Since we have only one replication per cell we use MSgy0y,..; 88 an
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error term in judging the significance of the S X Fm “‘sources” of variation.
The results, which are presented in Table 8, show that 8 X F1 interaction
(which accounts for 409, of S X V X O variation) is highly significant
and that § X F2 and § X F3 interactions are slight and non-significant.
Thus, a major portion of individual differences in the profiles of V X O
interaction parameter estimates for Ss can be accounted for simply by
assigning each 8§ a “score” which determines the size of the contribution
of F1 to his ratings.

Qualitative features of the FANOV A decomposiiion.

Keeping the grand mean separate for convenience, Table 9 presents
the FANOVA decomposition of the data. Table 10 shows (a) the size of
the contribution of F1 to each j, k cell, and (b) the residual in each j, k& cell.
Table 10 also presents the percentage of 8S,, which is contributed to given
rows and columns of the table. (Thus, 20.529, of the S8 accounted for by
the first interaction factor is in the four cells defined by combinations of
“helps” with each of the four objects.) Table 11 presents the corresponding
data for the second factor. It is helpful to note that the proportion of mth

TABLE 9%

FAROVA Decomposition for Predicate Means

Verb Obi : F1 F2 phys coll alc crim
helps 151 1.00 1 .87 65| Verb [1.00 1.00 1.00 1.00
befriends 1.30  1.00 E 43 .44 | 0bj .22 16 -1 -.27
praises .27 1.00 5 .96 -.93 F;— .;1 .57 .26 ~1.63
criticizes | -.53 1.00 | -.50 -.06 | w2 41 -4 1,05 .19
frustrates |-~1.02 1.00 : -1.01 -.13
hates S1.56  1.00 1 -.76 0z 7
ZVx0 Var. — ——-—e- — 85.92  14.04 99,96
I Predi- (grand mean = ~,43)
cate" Var.t 58.46 1.87 34.08 5.57  99.98

* This table is read as follows: Consider the predicate 'praises criminals"
{obtained mean rating = -1.82). The Ix4 (row) vector associated with "praises"
times the 4x1 (column) vector associated with "eriminals" vields (.27)(1.00)
+(1.00)(~.27)+(.96) (-1.63)+(-.93)(~.19) = .270-,270-1.565+.177 = ~1.39; and
adding the grand mean (-.43) gives a “predicted” rating of -1.82.

+ The "% 'Predicate' Var" for the mth interaction factor was computed by multiplying
the proportion of Vx0 sums of squares accounted for by the mth factor times the
percentage of predicate variation (estimated on the basis of variance components)
due to Vx0 interactilon.
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TABLE 10

The First Interaction Factor

The two entries in the J,kth cell are

(a)

dlaj lBk

the first factor residual.

factor, 1 and

(b)

The "weights" for verbs {&jl} and objects {ékl}

are bracketed in the margins, and al = 3.703,

111

the contgilgution of the first interaction

[al = 3.703] [.u19] [.296] [.133] [-.848] % SS;
phys coll alc crim  in row J
[ .453] help ¢ .70) ( .50) ( .22) (-1.42) 20.5
-.24 -.32 .68 -.12
[ .222] befrnd ( .3u4) ( .24) ( .11) ( -.70) 4,9
-.21 -.16 .46 -.09
[ .501] praise ( .78) ( .55) ( .25) (-1.57) 25.1
.38 41 -.97 .18
[-.259] crit (-.40) (-.28) (-.13) ( .81) 6.7
.00 .05 -.06 .01
[-.5238] frust (-.81) (-.57) (-.26) ( 1l.84) 27.4
.08 .03 -.13 .03
[-.394] hate (-.61) (-.43) (-.19) ( 1.,24) 15.5
-.0L -.01 .02 -.01
9
% ssFl
in col k 17.6 8.8 1.8 71.9 100.1

factor variation contributed by the j, kth cell is
(7-5) (am&imékm)g/‘irzn = &?MBZm y
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where it will be recalled that d,&,,8.. represents the contribution of the
mth factor to the j, kth cell. The proportion of Fm variation contributed
by the cells in the jth row is
(7.6) QinBin = Qim ,

N
and similarly, the proportion of Fm variation contributed by the kth column
is 42, .

The Verb and Object main effects. As shown in Table 9 the verb main
effects account for 589 of the total variation due to predicates, are highly
significant, and distinguish sharply between ‘“good and bad” verbs. The
large verb main effect suggests that when other information is averaged out,
a man who, say, hates tends to be thought of as a ‘“hater;” and similarly,
a man who, say, helps tends to be thought of as a “helper.” The object
main effect in both sets of predicates also clearly separates “good and bad;”’
and although it accounts for less than 29, of the variation due to predicates,
is still highly significant. Thus, when other information is averaged out,
it seems that Ss rate a man negatively (or positively) simply for being asso-
ciated with negatively (or positively) evaluated objects.

The first interaction factor. Upon examining Table 9, one readily notes
that the first interaction factor accounts for the bulk, about 869, of the
Verb X Object interation. The verb and object weights of the first interaction
factor clearly suggest the distinction between ‘“good and bad” verbs and
objects. Note, however, that the object ““alcoholics” is assigned a small, but
positive weight. In general, F1 confributes a positive evaluation when the verb
and object have evaluative connotations of the same sign; and contributes a
negative evaluation when the verb and object have evaluative connotations of
opposite sign. For example, F1 contributes a large positive evaluation to the
good-good and bad-bad predicates, “helps (4) physicians (+)” and “hates
(=) criminals (—);” and contributes a large negative evaluation to the
good-bad and bad-good predicates, “helps (4) criminals (—)” and ‘“hates
(—) physicians (4).” This result is, of course, what would be predicted
by ‘‘balance” theory [e.g., Heider, 1967; Abelson, 1963].

The second interaction factor. The second interaction factor seems to
describe an aspect of meaning which is more subtle than the simple good-bad
dimension of the first factor. The second interaction factor assigns all the
negative verbs weights near zero, and distinguishes between the positive
verbs by assigning “praises” a large negative weight and assigning “helps”
and ‘“‘befriends” moderately sized positive weights. Notice also that the
object ‘“‘aleoholic” is assigned a large positive weight, while “physician’
and “colleague” have moderate sized negative weights, and the weight
assigned to ‘“‘criminal” is near zero. The net effect of the weight assignments
is that the second interaction factor contributes a highly negative component,
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relative to the other predicates, to “praise alcoholics;” and it seems reasonable
to hypothesize that there is a sense in which Ss think of alecoholics as people

TABLE 11
The Second Interaction Factor

The two entries in the j,kth cell are
(a) the contribution of the second interaction
factor, dzajZBkQ’ and

(b) the second factor residual.
The "weights" for verbs {&32} and objects {ék2}

are bracketed in the margins, and 32 = 1.497.

[d2 = 1.4971 [.336] [-.362] [.855] [-.158]1 % SSFQ

phys  coll alce crim  in row j

[ .533] help (-.27) (-.29) ( .88) (-.13) 28.4
.03 -.03 .00 .00

[ .357] befrnd (-.18) (-.19) ( .u6) (~.08) 12.8
-,03 .03 .00 .00

[-.758] praise ( .38) ( .u1) (-.97) ( .18) 57.5

.00 .00 .00 .00
[-.0u7] crit ( .02) ( .03) (-.06) ( .01) .2
-.02 .03 .00 .00

[-.105] frust ( .05) ( .06) (-.14) ( .03) 1.1
.03 ~,03 .00 .00

[ .020] hate (-.01) (-.01) ( .03) ( .00} 0.0
.00 .00 .00 .00

%
] SSF2

in row k 11.3 13.1 73.1 2.5 100.0
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who are relatively less deserving of praise than are colleagues or physicians.
Simultaneously, the second factor suggests that Ss consider colleagues and
physicians as people who, relative to aleoholics, are less in need of help
and friends. This interpretation seems intuitively reasonable, and although
the second interaction factor accounts for less than 69, of the predicate
variation, it attained an even higher level of statistical significance than
did the first interaction factor which accounts for 349, of the predicate
variation. This, of course, is due to the fact that there was little individual
difference in the importance of the second interaction factor. Thus, the
aspect of meaning which it suggests seems to be particularly stable across Ss.
In this light, it is not surprising that we were able to arrive at a reasonable
interpretation of the factor. It is also of interest to note that the variance
accounted for by F2 is concentrated primarily in those cells which define
predicates whose object is alcoholics. The role of F2 is further clarified by
noting that F1 accounts for only about 139 of the variation due to inter-
action of all verbs with alcoholic; whereas F2 accounts for 8697 of the variation
due to interaction of all verbs with aleoholic., Thus, the second factor is
the primary determiner of interaction between the verbs of this study used
in combination with aleoholics as objects. One advantage of the present
method of analysis is that this point is brought out clearly. Although this
completes our discussion of the present illustrative example of a mixed
FANOVA analysis; more details and additional data are presented in
Gollob [1965].
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