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Recently Markov learning models with two unidentifiable presolution
success states, an error state, and an absorbing learned state, have been
suggested to handle certain aspects of data better than the three state
Markov models of the General All or None model type. In attempting to
interpret psychologically, and evaluate statistically the adequacy of various
classes of Markov models, a knowledge of the relationship between the
clagses of models would be helpful. This pa}der considers some aspects of
the relationship between the class of General All or None models and the
class of Stationary Absorbing Markov models with N error states, and M
presolution success states,

Many recent Markov models can be considered as special cases of the
General All or None model [Greeno & Steiner, 1964], which is represented by
the following matrix P and arbitrary initial vector V:

€4 8’ &
all 0 0
1 P=g0 1—w w v Vo= (P(@), P(8y), P(8)

Sl A—wd—2 (A-—-wV

If we let the data take on two values on each trial, say success and error, then
the data sequences consist of a finite string of successes {8}, and errors (E)
and end with an infinite string of successes. The process is in state & on each
trial in which an E occurs, it is in state 8’ on each S prior to the last E, and
it enters state @ on the trial after the last E. Note that the term ““Absorbing
Markov Chain” will be used to mean absorption in a success state. Polson

461



462 PSYCHOMETRIKA

and Greeno [1965] have shown that this class of models need not have the
“stationarity’ property, that is P(E, | E, U 8,) is not constant independent,
of n, contrary to what was previously thought. In addition, recently several
four-state models which contain two preabsorption indistinguishable “suc-
cess’”’ states have been suggested [Atkinson & Crothers, 1964] for experiments
with the same type of binary data as described above. With the loss of sta-
tionarity as a criterion for all or none models, and with the advent of four-state
models, several questions arise. First, are there some simple properties that
characterize all models that satisfy (1) for success, error sequences? Second,
if a N-state model does not imply (1), what statistical properties of data will
distinguish the model from (1), and how can we test the null hypothesis that
(1) gives a satisfactory fit to the data? Third, what restrictions on the N-state
model are necessary for it to satisfy equation 1?

The present discussion is restricted to consideration of the identifiability
of transition parameters. In applications, questions about initial probabilities
depend at least partly on procedures that vary from one experiment to
another. An analysis general enough to cover most procedures would involve
a considerable amount of calculation that would not bear on the question of
distinguishing N-state processes from (1), following the first error. Therefore,
we initially consider the question of whether a model satisfies (1) regarding
data starting with the first error. This is a natural way to narrow the problem
for the all-or-none model. Errors are recurrent Markov events, which means
that everything that occurs before the first error can be ignored in caleulating
probabilities of things that happen later. We say that a model 7', with param-
eters numerically specified, is a member of the General All-or-None Model
Type if the model satisfies (1) following the first error. A model type T' will
belong to the General All-or-None model type if for every probability meas-
ure P(T) generated by a set of parameter values for T, the associated proba-
bility distribution conditional on the first error having occurred satisfies
equation (1). Of course, some model types may satisfy equation (1) after the
first error only with certain restricted sets of parameter values. Because the
concern in the present paper is with the statistical properties of model types
satisfying equation (1), a model type that satisfies equation (1) after the
first error only with parameter restrictions will still be considered a member
of the General All-or-None model type so long as the parameter restrictions
are imposed.

We will say that a state is observable if for every trial » in any complete
response sequence in the outcome space of the experiment, we can say whether
or not the state occurred on trial n. (The terminology differs from an earlier
article [Greeno & Steiner, 1964] where the term ‘‘identifiable” was used to
refer to these states. We now use the term ‘““identifiable” to refer to parameters,
to be consistent with standard usage in statistics and econometrics {Greeno &
Steiner, 1967].)
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Analysis of General All-or-None Models for Binary Data

Recurrence Analysis

In the following discussion, reference will often be made to indistinguish-
sble states. The results will, of course, be applicable to the case in which the
states are distinguishable, but for purposes of analysis, are considered in-
distinguishable.

The following notation will be used. Suppose a Markov Chain has a
set of error states {E, , - -+, Ex}, a class of success states {S;, ---, Sy} and a
class of learned states {L, , --- , Ly}. We will let the events

N
8» = UE:‘” 3

i=1

M
8’1 == Usina

fw3
and
R
"c” = ULl'n *
gl
8o that the event &, §, or £ will occur on any trial on which one of E, , S, ,
or L; respectively oceur. For any sequence, let n’ denote the trial number of
the last &. Define f,, and A, as follows:
fJg = P(gn-l-l m S?H—J—l m et m Sn+l g gn)y J ?_ 11 n Z I
and
hJ. = P(8n+.l m 8n+J—1 Mo m 8n+l i Sn)y J :_> ly n 2 1,
If & is a recurrent event, as it will be in the cases considered in this paper,
the trial subseript, n, can be dropped. Similarly, define f,(z) and h,(s) for
sef{l,--- N} as
10.0) = P&y M Speyas N o= NS [BL), J 21, n2>1
and
h-’n(i) = P(8n+J m 8n+J—l r\ tr f\) 8n+1 %Ein)y J Z 1) n Z 1'
The trial subscript, n, will be dropped because the {E,} are assumed to be

Markov states, and therefore are recurrent events. For J, K > 1,4¢ {1,-- -, N,}
let

10 = 31,6,
) = 310,

The concept of lumpability [Burke & Rosenblatt, 1958; Kemeny & Snell,
1960] will be used extensively.
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Definition 1. We will say that a Markov chain with states X(1), --- ,
X(m) -+ is lumpable with respect to a partition of the states Y (1), --- ,
Y(n), --- if the transition probabilities between the Y(n) are constant and
independent of the trial number, and if the transition probabilities do not
depend upon the choice of a start vector.

Kemeny et al. {1960] have proved that a necessary and sufficient condi-
tion for lumpability with respect to the {¥(z)} partition is that for every pair
Y(2) and Y(J), the transition probability Pxcm .y, has the same value for
every X(m) in Y (3).

Theorem 1. An Absorbing Markov chain T with stationary transition
probabilities, indistinguishable error states {E, , --+ Ey}, indistinguishable
sucecess states {S;, -+, Sy}, and indistinguishable learned states {L, ,---,
L,} is a member of the General All or None Model type (G. A. N.) for all
initial vectors such that P;(8) = 1 if and only if forZe {1, --- , N},

@ @) = Pass N Speger N oo N 8oy | El)
_fa, I>1, 0<a,8<Z1
{ , J=1 0<v<1,
B k@) =P@Eus NN |8 =7, J=1, 0<vy<1

Proof. Let us expand the states of T in the following way. Let the
{E;} states remain the same. Let T be in 8] ,..(?) when E; occurs on trial =,
and 8 occurs on trialsn + 1, -+« , n - & and there will be a future occurrence
of 8 Thus { 8! ...}, forn, k > 1,7¢ {1, --- , N} is the set of all occurrences
of § prior to the last occurrence of &. Define T to be in State @ on trial n if
&£ oceurs on n, or if § does not occur for n’ > n.

Let us say T is in 8’ on trial » if one of the {8/ ,.,(7)} occurs on trial n.
The transition probabilities can be written as follows forn > 1,7¢ {1, -+, N},

(4) P(S£+L.n+k+1(’f) l Sl:,n-Hc(']))

0, i%j or L1

1) = 81l i=J, L=1,n, k>1,

f(z) - Sk(i) ! ! ' =
) Plewens | San@) = 720

f(?') - Sk(’i) !

©®) P | Bs) = M@,

M P(Sian@) | B, = {;’ i, k1
(i)_fl(i)r 1=J, k=1,

(8) P(an+1 IE»'.) =1 - f(i)-
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If T is assumed to belong to the G. A. N., then (1) is assumed to hold on the
states @, &, 8'. Thus
P(&.1 | 8) =w
P@us1]8) =u=1—f
P81 |8) =1 —wp=f

If we let
a=(1—wl -2
©) 1 —w
g=1—-w
v=(1—up

and substitute in (2), then it can be shown that
) = {(1 -1 —dwd — w2, J>2
(1 — up, J =1,
hy = (1 — wp), J>1,

The trial subscript, n, can be dropped on f;, because (1) implies that & is a
recurrent event. But it still must be shown that (2) and (3) also hold for all
fe{l, ---, N}. Assume there exists a k ¢ {1, --- , N} such that

fs #= fs(k).

Consider the initial vector with
P, (Ek) = 1.

Clearly then, T would not satisfy equation (1). The same argument holds
for the {h,;(¢)}. Therefore, (2) is implied, with «, 8, and v defined as in this
proof.

To show the second half of the theorem we assume (2) and (3) hold, and
then demonstrate that @, §’, and & are Markov states with the appropriate
transition probabilities.

Let F be any event on (@, 8, &) that depends only on trials after trial n.
Let G be any event on (@, 8, &) that depends only on trials prior to n such
that,

P&, NG) #0.

Consider

PF|&e.NG) = 2. ﬂ%}g—%@ P, N G).
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Now, since {E;} are all Markov states, and equations (2) and (3) are as-
sumed,

P(F|E., NG = PF|E,) =PF|sg),ie{l, -, N}, n>1L
Therefore, we can write
P(Flg. NG = P(F|&,), n> 1

Hence & is a Markov state. To show that S} ,.,(?) is a Markov state for
E>1,n>1,and7e{l, ---, N} assume

P(8;.u(@) N G) 0.

Then, by the definition of S} ,..(2) and the fact that the {E;} are Markov
states,

PE |8 @®NG) =PEF| 8N N&uNE, NGN1 >mn)
=PF | Spr N - NS NE;, N0’ >n) = PF | 8 nx(®)

Thus, Sk....(7) is a Markov state forie {1, --- , N}, k,n > 1. Clearly @ is a
Markov state since it is absorbing.

We will now consider the transition probabilities. By definition, for
k,n>1,7e{l,---, N},

(10) P(an+k+1 l Szﬁ,mk(?:)) = 0,
(11) P(anq-l | an) = ly
(12) P(Busi | @) = P(S{nui(d) | @) = 0.

By substituting (2) and (3) into (4), (5), (6), (7), and (8), one obtains
forie{l, -+ ,N},n k=1,

(13) P(Slz+l.n+k+1(7:) t Slin-hk(z)) = B)
(19 P(8prier | Stasa(@®) =1 — B,
(15) P(gn«!-l § 87:) =%

(16) P8 18) = 725,

a7 Pmm|m=1_7_1@3

From (13), (14), and (16), it can be seen that the {8} ,..(¢)} are lumpable
to a single Markov state, 8’. By the above equations, the transition matrix
in (18) directly follows.
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Q@ 8’ &
@ 1 0 0
(19) p=* 0 B1-8)
af af
i R gy ey
If we let
w
a=(1~u)(1—1})1_w,
g=0-—w),
and
'Y=(1“u)vv

(18) is seen to be identical to (1). This completes the proof.
An example of a chain satisfying Theorem 1 is given in (19);

L Sg Sl El E2
Ll 1 0 0 0 0
8, o0 1/2 0 0 1/2
Sy 1/4 0 1/2 1/4 0
(19
AL 1‘7 3/41—v) 0 /2 0
1 — 1—

with the initial vector (0, 0,0, P, 1 — P).
It can easily be seen that

20) £00) = 1,@) = {3/80 -/’ T >1
/2, J =1,
@D hD) = 1@ = (/2)", J>1

In Lemma 1, a condition equivalent to (2) will be given. Let n’ denote
the trial of last occurrence of & for a given sequence.

Lemma 1. For an absorbing Markov chain T with error states {E,, - - -,
Ey}, success states {S; , -, Sy}, and learned states {L, , --- , Lp}
J=1
@) £ = Py N Suayea N - N Sy | B) = {aﬂ ol
] J = 1
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if and only if forsi e {1, --- , N}
(23) gs(@) = PGy M Sassr M =+ M §piy IE.',. Nn' >n)

-

CYBJ_I
L J>1
Y _
T J =1
\7 1- B
24) p(nf>n[E..n)=7+1°‘_BB.

Proof. The proof follows directly from a consideration of conditional
probabilities.
By Theorem 1 and Lemma 1, the following Theorem is proven.

Theorem 2. An Absorbing Markov Chain T with indistinguishable
error states {F, , --- , Ey}, indistinguishable success states {S;, --- , Su}
and indistinguishable learned states {L,, - - - , Lz} is 2 member of the General
All or None model type for all initial vectors such that P,(8) = 1 if and only
ifforiefl, ---,N},,0<d,8,v <1,

(25) g_](i) = P(8ﬂ+‘/ n 8,..,,_]-1 f\ A m S,,+1 IE,-,. f\ n’ > n)
_ {a’ﬁ’“‘, J > 1
Y

’, J=1
(26) P’ > n|E:.) =7,
where
a' = &
= w
v+ 1— 8
¥ = u
o !
v+ -5
and
(27) hJ('I:) = P(8n+l MM & lEin) = 'YJ: J > 0.

Theorem 2 is interesting for the following reasons. If an Absorbing
Markov chain with error states {E, , --- , Ey} satisfies equation (26), then

(28) 1—§@)=Pn =n|E,)=1—+, i¢{l,---,N},
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since n’ < 7 is impossible if E; oceurred on trial n. Thus,

¥ 2P =n|E,)PE.)
\J £ ) = > P(E.)

Pin' =n|g&) = P<n’ =n

ZP(Ezn)
=(1-7)m=1——y.

i=1

(29)

Equation (29), and thus (26), can be shown to imply the almost geo-
metric distribution of total errors usually associated with All or None models.
Theorem 2 shows that the geometric distribution of total errors is not a strong
enough condition to insure membership in the G. A. N.

In the light of Theorem 2, several useful properties result from writing
the G. A. N. model in the form of equation (1). The following are (26) and (27)
written with the parameters of (1).

B0)  gr=PEusca N8y N - N8y | 8N >m)

_ Ja = 2w - w)’ ™, I =1
@31) P’ >n|8)=1—u
(32) PE.no N - N Enl8) = [0 —upl, J > 1.

The maximum likelihood estimators of «, v, and w, are known [Greeno &
Steiner, 1964). So, if (1), and thus (30), (31), and (32), are assumed to hold,
a direct and separate test can be made of the conditions of Theorem 2 by the
use of (30), (31), and (32).

In summary, Theorems 1 and 2 provide two sets of equivalent necessary
and sufficient conditions for a Markov model with stationary transition
probabilities to belong to the G. A. N. model type following the first error.
The conditions of Theorem 2 can be written so as to provide separate tests
of the necessary and sufficient conditions. Therefore it appears that Theorem
2 might be more useful in a data test. However, in the next section, it will
be seen that Theorem 1 is very useful for theoretical analysis.

Matriz Analysis*

Once Theorem 1 is obtained, a natural question to ask is whether there
exist restrictions on transition matrices that are equivalent to the conditions
of theorem 1. The following definition of a property which may obtain be-
tween classes of states will be useful:

* The authors wish to thank Dr. William H. Batchelder for much constructive
discussion and specifically for his suggestions that lead to a proper level of definition of
the concept of unitary entrance.
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Definition 2. letH = {H,, --- ,Hy} and K = {K,, -+, Ky} be
two classes of Markov states which constitute a subset of the states of some
Markov chain. If H and K are disjoint classes, let ¢, be a random variable
that takes on the number of trials, after trial n, to first passage to K for each
sequence that is in H on Trial n, and remains in H until passage to K. If
there is a 8 independent of n and P,(H), such that for all probability vectors
(P(H,,), *--, P(H;,)) for Trial n,

(33) Plr,=J|H)=af n221l, J20, 0Za, 81,

then we will say that H is unitary relative to entrance into K. If H = K, then
define 7, to be a random variable that takes on the number of trials in H
after trial n before exit, for each sequence in H on Trial n. Then H is unitary
relative to entrance into H, if equation (33) holds.

It is clear that if M = 1, that is if H as only one member, then H will
be unitary with respect to entrance into any class, because H will be a Markov
state, and all Markov states satisfy (33). Also, if the states of H satisfy the
Kemeny and Snell [1960] conditions for lumpability, then H will be unitary
relative to entrance into any class of states. However, Theorem 3 will provide
weaker conditions, not equivalent to the Kemeny et al. conditions, under
which H will be unitary.

The following notation will be needed in this section. Let P(K | H) be a
vector such that its 7th component, P(K | H,), denotes the probability
of a one-step transition from H; to any state in K. Let P” denote P transpose.
Also, the notation [0] will be used to denote the zero vector of dimension
appropriate to the context.

Theorem 3: Let H = {H,, --- , Hy} and K = {K,, --- , Ky}, N,
M > 1, be two classes of Markov states. Let C be the matrix of stationary
transition probabilities from states of H to states of H. H is unitary with
respect to entrance into K if and only if there exists a 8 such that

(349) (C = Bluxw)P (K| H) =[0], 0<g<L

Proof. Assume (34) holds. Let P,(H) = (P(H,,), *-- , P(Hu,)) be
any probability vector for H, on frial n. Now

P(r, = J) = P,(H)C'P(K | H), J>1
P(r, = 0) = P,(H)P'(K | H).
By (34),
(35) CP (K |H) = gIP"(K |H) = P(K | H).
It can be simply shown by induction that (35) implies
C*'P"(K | H) = g'P(K | H), E>1.
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Thus, we have

Plra = 7 1) = B prg ) = o PERECLE) >y,

Let
, _ PDP(K | H)
P.(H)
Then
Ptr,=J|H,)=ap, J2>0

Thus H is unitary relative to entrance into K.
To prove the second half of the theorem, assume (33) holds. Now, as was
shown in the first half of the proof,

36) P(r, = J | H) = P,,P((HH)) CPK | H), J>1,
@) Pr=0lH) - PR | m.
By (33), (36), and (37), we have
P.(H) nige ’
PO O ) =, w21, J21, 0Zal, 851,
(38)
PH) o, o
PP | H) = al

Equation (38) holds for all vectors P,(H), with 8 constant. Consider vectors
which start the process out in a single state of H with a probability of 1.

PK |H) = (af , -+, e3)
1,0, ,0C'"P(K | H) = oiB
39 0,1,0,--- ,0C’P(K | H) = off’
©, -+, 0, DC'P(K | H) = aiB”.
Thus we have shown that
o B
(40 LusuC'P(K | H) = C’P(K | H) =
ahe B’

By (39)
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al B
(41) BLuxuP"(K | H) = -
o B
Subtracting (41) from (40) and setting
J =1,
we have
(42) CP'(K | H) — BluxuP (K | H) = (C — Bluxm)P (K | H) = [0].

Clearly 0 < 8 < 1 by assumption in (33). Thus, the second half of the proof
s complete.

Theorem 3 shows that H is unitary with respect to K if and only if
P(K | H) is an eigenvector of C corresponding to an eigenvalue 3 that can be a
probability. The intuitive meaning of the above, and (34) is that the effects
of the matrix C operation on the vector P(K | H) can be represented as multi-
plication by a single constant 8.

The following example shows that the conditions of Theorem 3, and thus
equation (34), are not equivalent to lumpability of the states of H. The values
of the transition probabilities for E, , E, are only restricted by the usual
probability considerations in the example.

Example 1. Let H = {8,, 8:}; K = {E,, E,}.
L Sz Sl Ez El

L1 0 0 0 O]
Sy ¢ 2 % O
@3) S{f 0 3 % %
Eja b ¢ d e
Eif g h i k.

Equation (43) satisfies Theorem 3 with 8 = %, but 8, and S, do not meet
the Kemeny et al. [1960] conditions for lumpability.

In order to apply the new definition and Theorem 3 to the problem of
finding restrictions on matrices equivalent to the conditions of Theorem 1,
some additional notation is necessary. Let

fJ = (f.l(l)) 7fJ(N))

and
P(&|8) = (P(&|8), -, P(&| Sm))
where P(8 ] S,) is the probability that an error state occurs on trial n + 1
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given 8, on trial n. Some symbols are necessary to represent certain sub-
matrices of the stationary one step transition matrix. Let G be the submatrix
of transition probability from the {E;} to the {S,}, C be the submatrix of
transition probabilities from {S;} to {S,}, and D be the submatrix of transi-
tion probabilities from {E,} to {E;}.

The definition of unitary, definition 2, was formulated with respect to
all possible probability vectors for the states of H. For the part of this section
that deals with restricted vectors, the following definition will be necessary:

Definition 8. let H = {H,, --- , Hy},and K = {K,, --- , Ky},
for N, M > 1, be two classes of Markov states which constitute a subset of
the states of some Markov chain. If H and K are disjoint classes, let 7, be a
random variable defined as in definition 1. If there is a 8 such that for all
probability vectors for H, in V, where V is a subset of the set of all possible
probability vectors for H on trial n, (33) is satisfied, then H is unitary rela-
tive to entrance into K over V. If H equals K, define 7, as in definition 2 for
this case. Then if (33) holds for all probability vectors for H in V, where V
is a subset of the set of all possible probability vectors for H on trial n, then
H is unitary relative entrance into H over V.

It is easy to produce examples to show that, in general, the condition
expressed in (34) is not a necessary condition for definition 2, if V is a proper
subset of the set of possible vectors for H, .

Clearly, if H is unitary with respect to entrance into K, then H will be
unitary with respect to entrance into K over V, for all V.

Lemma 2. For an absorbing Markov chain with error states {E, ,

oo, By} N > 1, success states {8y, -, Su} M > 1, absorbing learned
states {L,, ---, Lg}, B > 1, stationary transition probabilities,
PI(S) = 1;

and forze {1, --- , N},

(4-4) fl(i) = P(810+J N Sn+1—-l A RN A sn-l-l ‘Ein)

={aﬂ"‘, J>1, 0<8<1
) J =1, v <1,
(45) hl(i) =P(gn+ln D mgn+1 IEin) =’YJ) J Z 11 hiiThe 4 Sl

if and only if
(A) 8 is unitary with respect to entrance into & over set of all vectors

such that P,(g) = 1

(B) & is unitary with respect to entrance into & over set of all vectors
such that P,(§) =1
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(46) GP'(&|8) = (aB, -+, of)’
(47) PE[&) =)
Proof.

Assume N > land M > 1.

Assume (44) and (45). In the proof of Theorem 1, the conditions of
(44) and (45) were shown to imply that & was a Markov state. Since a Markov
state is unitary with respect to any class of states, conditions (B) follows im-
mediately.

To show condition (A), first define a partition of the set of all occurrences
of 8§ as follows. Let T be in the state Sx.,.x on trial n + K if

(Sn N Sn+l N 8n+2 n--- 8»+K)

oceurs.
Clearly, {S$x...x} for K > 1,7 > 1 is a partition of all occurrences of S,
because it is assumed that P(§,) = 1.
Let X, be any particular history of the process up to trial n. Then, there
exists for every occurrence of 8, a K > 1 such that for J > 1,

(4:8) P(T,, = J | SK'ﬁ) = P(8n+1+1 n Sn+l m e m 8n+1 l Sn f\ X,._l)

- P(8n+.f+1 N 8n+J ARENA Si-ri1 N &k N Xn—K—l)
B PN oo N 8ygiy M 8 N Xoox-1)

— P(8n+J+l m Sn+J n U m 51A—K+1 I gn—K)'
PS. M - NSy ki1 | 84cr)

The fact that & is Markov is needed to derive equation (48). Using the f,
notation, we have obtained

P(ra=J | Sx.a) = fresa — Travs - (gﬁf)lg.r
" B 2 N YRR o W N [ %,k

where
Qy, Kk = P(S,,(\ e M Sur+1 | Sn—K)) J; n, K Z 1.

The value of «, x is determined by the chain, and the initial vector. Let

K

, _oB
Qn. g =

(294

Now, since for n > 1,
n—1
sn = U SK.n ]

Ke=1

we have for J > 0, n > 1,
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49  Plr,=J|8) = ﬂ%‘%\ﬁ 5 Bl = JPI(:S,,)P(sx.n)

o, P(Se)
J Kn) _ 1t
= B z; an K P(S ) = Op kP ,

where

n—1 PS R
aaK_ Zanx Ij((g;})

Because (49) holds for all arbitrary start vectors satisfying the restriction that
P (81) =1,

(49) implies that § is unitary with respect to & over the set of initial vectors
such that

P(g,) = 1.
By (44), setting J = 2, we have
=GP(E|8) = (aB, -*-, ap)".
By setting
J =1

in {(45), (47) follows.
To show the second half of Lemma 2, consider the following. By the
definition of 8§ being unitary over the set of initial vectors such that

P(g) =1
and the fact that the probability of & on trial one is one, we can write
(50 a'B? =P(r, = J|8) =P(r, = J | 8N &).

i TEEEL
Thus,
freaa = P(s, l 81)05'5J; J >0

Consider an initial vector such that for some ¢ ¢ {1, --. , N}

PE;) =
Then,
(61 frs2a@) = P(8; | E.)alf’ = Py(8)GC'P(8 | 8).

Since E, is Markov,
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£,6) = 106, _J 21,

and
P(8,.1 i E.) = P(s;| E.), n 2 1.

The above argument holds forall ¢ {1, --- ZV} Thus the following is ob-
tained.
(52) 7 = IGC'P(8|8) = B/ %P8, | Eed , -+ , P($:En)el)’, J > 2.
Equation (46) implies that

£, = (@B, -+ ,af) = (P(8:E1)a , -+ , P(8:Ey,)ab).
Thus,
(53) f, = (B’ -, a8, J > 2.
Condition D implies that

f, =1.

A similar argument shows that

by = DR =07 e Y, T 22,

hy = .

Thus, the second half of Lemma 2 is complete. By Lerama 2 and Theorem 1,
Theorem 4 has been proven.

Theorem 4. An absorbing Markov chain T with error states {8, , -,
Ey}, N > 1, success states {S,, ---, Sy}, M = 1, and absorbing learned
states {L;, --- , Lz}, R > 1, stationary transition probabilities, and P(&,)=1
is a member of the G. A. N. if and only if

(A) 8 is unitary with respect to enfrance into § over the set of proba-
bility vectors for 8 such that P,(§) = 1.

(B) &isunitary with respect to entrance into § over the set of probability
vectors for & such that P,(8) = 1.

(C) GP"(8|8) = (af, -+, af)".

(D) P'(8 l g = (v, -+, M.

To extend Theorem 4 to a broader class of initial vectors is not difficult.
Consider a start vector allowing sequences in £, 8, or § on Trial 1. Clearly
no new restrictions are necessary to handle sequences starting in £ or &.
Sequences starting in 8 that never enter § also cause no difficulties because
they are put into @. Now, consider sequences starting in § that do enter &.
Since & is a Markov state, once & is entered, the probability of all future
events on the level of 4, &, and § do not depend on what occurred prior to 8.
Thus the probability of these sequences is just the product of the probability
of the initial string of successes terminating in an &, and the probability of
the future events given &. All that is necessary then, is to bring the proba-
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bilities of the strings of successes that start in § and terminate in & into line
with the strings of successes that are preceded by an error and terminate in 8.
It can be shown that the conditions of Theorem 5 are the proper ones.

Theorem 6. An absorbing Markov chain with error states {E,, - - - , Ex},
N 2> 1, success states {S,, ---, Sy}, M > 1, and absorbing learned states
{L,, --+, Ly}, stationary transition probabilities, is a member of the G. A. N.
for all initial vectors if and only if

(A) 8 is unitary with respect to entrance into &.
(B) & is unitary with respect to entrance into §&.
GP'(& | 8) = (aB, -+, aB)"
PT(SI & =@, ,7)
GP'(g | 8) = BP'(& ] 8).

The major results of this section are the following. Previously, one might
have intuitively thought that the only way a large Markov chain with some
classes of unobservable states might belong to the G. A. N. was either that
the appropriate states would lump by the Kemeny et al. [1960] theorem, or
that the chain could be expanded into new states that did satisfy the Kemeny
et al. [1960] theorem. Theorems 4 and 5 prove that the G. A. N. contains a
much larger class of models than one might have previously expected.

It is important to note that, in general, conditions for inclusion in the
G. A. N. will depend upon the class of initial vectors over which membership
is required. Thus, if in a given experiment, the data is generated by a par-
ticular Markov chain, whether or not the data will be fit by a G. A. N. model
may depend upon the value of the initial vector.

Application of Matriz Analysts to Four State Models

In this section, some results are presented regarding an unrestricted
four-state model, with errors occurring in only one state. A table of some
general restrictions sufficient for membership in the G. A. N. is given. Also,
some extant models are analyzed from the present perspective.

Let the following matrix P represent a four-state Markov model with
one error state (¥), two unobservable presolution success states, S; and S, ,
and a learned state (L),

L 8 S
L1 0 0 0
_ S Pas Pap Py P
Si|Pis P, Py Pig
E(Pys Ps. Po. P,
and some initial vector V = (Py(L), Po(S.), Po(S1), Po(E)).

(54 P
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TABLE 1

Example Restrictions on Equation 54 Making P Satisfy G.A.N. Following First Error
fOI‘ (Pz,o, Pl'o)

General Restrictions v = w Restriction

Case 1 P1,2'P2_1 #0

Py1'Pyy = P13 Ps, Po,o(Py1 + Pag) = Po1+Pin
+ Po,5Ps0

P+ P2 <1
(Ps,0, P1,0) = (P1,0P2,2/P1,2, P1,0)

Case 11 P1,2‘P2,1 =0
Py =Py =0 Po,oPa2 = Po1Py1o + Po2P20
Pi1 = P

Since there is only a single error state,

P(8n+J+Ir\.‘.}mgn+l|8n)=Pg,‘z‘; JZO
and,

GP (E | 8) = Py, Py g + Py Pyo)-

By Theorem 5, all that remains to insure that (54) satisfies (1) after the first
error is that 8 is unitary with respect to &. Table 1 lists several ways in which
(34) is satisfied for P, , and P, , . The entries in Table 1 were obtained
by solving the characteristic equation [Murdoch, 1957] of the submatrix
C in (54), and obtaining solutions such that (P, , P;,) is an eigenvector
corresponding to a2 0 < @ < 1. This is the general procedure for obtaining

constraints on (Pz.0 , Pi.0).
o= {Pm P“J
P, P,

So, if a model fulfilling the restrictions of (54) fulfills a condition in Table 1,
it will be a member of the G. A. N. model type following the first error.

By calculating the recursion for each case in Table 1, column 1, the
restrictions necessary for the v = w case of (1) can be obtained. The restric-
tions for v = w corresponding to the column 1 restrictions are contained in
column 2.

In addition to the restrictions in Table 1, Column 1, other specific solu-
tions are obtainable by the same methods, if restrictions are put on (Ps,0 ,
P..o).

One unusual case of (54) which satisfies (1) following the first error is
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P1,1=P2,2=07
Pl,z'Pz,l # 0,

/P1
PI.O = Pz,o P 2.
2,1

As an example, consider Bernbach’s [1965] forgetting model for paired-
associate learning. We give a slightly expanded expression of the model.
There are five states: L, where the correct response is in permanent memory;
H, where the correct response is in temporary memory; I, where an incorrect
response is in temporary memory; @, where no response is in memory, but
where the subject guesses correctly; and E where no response is in memory,
and the subject guesses incorrectly. The transition probabilities are

L H G E I

Llt o 0 0 0]

Hlc 0—0oh @ —-—0l—-—hg Q-0 —-—n1—9 O

(35) P=Gl0 h 1 - hg 1-m1-—yg 0
EI0 (1 —eh a1 — h)g d—-—mna-—-yg eh

Lo (1 —eh 1 — kg Q-mnl-yg eh |

The distinction between states I and E has implications for a special statistic,
the probability of repeating the same error on successive trials. However, in
estimating parameters and in the main evaluation of the model, Bernbach
considered just the sequences of correct responses and errors. For the data
considered in this way, states I and E can be considered as a single state W,
where wrong responses occur. Then Bernbach’s model is in the form of (54),
with state H corresponding to S, , G to S, , and W to E. According to Table 1,
Bernbach’s model is in the G. A. N. model type.! We have, in general,

P1,2P2,1 = h(l — ol — hg # 0;
which is Case I. Then we see that
Py Py — P3Py, = (1 —h)gl —oh — k(1 — )1 — h) = 0.

The restriction P,,; + P, < 1 is satisfied for most parameter values.
However, we have

PO.O(Pl.l + Pz.z) = P0.1P1,0 -+ P0,2P2,0
if and only if e = 0. Therefore, Bernbach’s model usually will not generate

t All examples in this section can be shown to satisfy the Case I restriction on
(P3¢, P1,0).
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data agreeing with all-or-none learning with v = w; however, it will generate
data agreeing with the general all-or-none model of (1).

As 3 second example, consider one case of a model investigated by
Greeno [1967]. There are four states: L, where an item is in permanent mem-
ory; H, where the item is in temporary memory; E, where the item is not in
memory and the subject gives a wrong response; and @, where the item is not
in memory but the subject guesses correctly. The transition probabilities are

L H G E
Ll 0 0 0
o poH|c @=0h A-0al—hy A~ —h-g
Gld —dh A—-dA—-hg 1 —d1—nld-—oyg
Eld Q—dh 1—a@l —-hkg (1 —ad—h(1- g

The model as given here relates to Bernbach’s rather closely. If e in Bern-
bach’s model is zero, and if d in (586) is zero, then the two models are identical.
Further, if ¢ and d are equal in (56), we have the model that Atkinson and
Crothers [1964] called 1.8-2.

Applying the present analysis to the model, we can see that the model
should imply (1) with v = w. Using Table 1, we first see that we are in Case I,
since, in general,

Py Py, = (1 — R — )1 — h)g # 0.
Then within Case I,
Piad Po=(00—-d)QA—hg+ A —ch>0
and simple algebra shows that,
Py P, s = P, ,P,;

The result is consistent with earlier findings; Greeno’s [1967] article has a
proof that (56) implies (1) with » = w.
Finally, consider a more general form of (56),

L S, Sy E
L |1 0 0 0
S:le 1 —eXP (1 -0 —-X)P (11— e —P)
Sy l—ad)Yg A—-a)(1—-T)g A—ad1-—yg
E 1—-—09Z8 11—l —2)8S 1 -0 =28

567 P =

2

Loy

One obtains:
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Py Pys — Py Ps s
=(1-ad1 - gl —aXP — (1 —d)Ygl —e(1 — X)P
=(1-d( —egPIXQ1-Y)— Y1 — X)]
= (1 —d)(1 ~egP[X — Y.
If one assumes, as in (56) and the LS-2 Model,

0 P, +P,,<0
and
Pl,2'P2.1 # 0;

if X = Y, then
Pl.l'P2.2 = P1.2'P2.1 .

Thus with all the apparent complexity of (57), such a model, following the
first error, will imply the G. A. N. model type if P = g, as can be seen by
applying the Case I restriction for (P, , Py.0).

Application of Recurrence Analysis

In the previous section, the matrix analysis was applied to an analysis
of models. In this section, two applications of the recurrence analysis are
made. First, a likelihood ratio test is derived testing a four state theory against
a three state theory. Second, the restrictions imposed upon (54) if (1) is
satisfied are examined.

As a specific alternative to the three-state all-or-none theory, consider
the following four-state theory, which is a generalization of models investi-
gated by Atkinson and Crothers [1964] and Greeno {1967]. The states are L,
where the item is learned; H, where the item is in temporary memory; G, where
the item is not in memory but the subject guesses correctly; and E, where
the item is not in memory and the subject gives an incorrect response. The
transition probabilities are

L H & E
L1 0 0 0
G P="t|¢ A=0oh I—-090 —h)g (1 - 90 —h)1 —g) ,
Gld A-dh A—-d)1—-bh)g (1—-add—h)1 - g)
Eld I—-dh 1-a1—-h)g 1-d0—"r)1~—g)

0<ec,d, by b yg <1,

In the case where h; = h;, Greeno [1967] showed that this model implies
G. A. N. with v = w.
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We can show quite easily, using theorems 3 and 5, that for h; £ k, the
model is not a member of the G. A. N. over the set of all inifial vectors. All
that must be done is to show that (P(E,., | H,), P(E,., | G.)} is an eigenvector
of

H e
o H {(1 — Oh (1 — 9 — kl)g:I
G LA —dh 1 —d)1 ~ kg
if and only if
hy = hy .

The proof requires simple algebra.
However, if we restrict the initial vector such that

P I(E) =1,
then we know that the requirement that P(& | 8) be an eigenvector of C
satisfies one of the conditions of theorem 4, but may not be a necessary condi-

tion. It can be shown that (58) could belong to the G. A. N., with v = »,
over the set of initial veetors such that

P((E)=1
if and only if

hy = hy .
Thus, for the two classes of initial vectors under consideration, the equality
of &, and A, is necessary and sufficient for membership in G. A. N, with v = w.

We will present some results which permit a statistical test of (1), in the
framework of (58). Specifically, the null hypothesis is that in (58),

hy = hy;
and the alternative is that (58) holds but that
0<hy, h, < 1.

The test to be developed is a likelihood ratio test, and we deal with
identifiable parameters. Atkinson and Crothers [1964] partially solved the
problem of identification for (58) by showing that the following three param-
eters are sufficient and identifiable.

r= (1 - c)h'l s
(59) s=(1—d — k),
t=(1-=090 = d1 — hha .
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To use this result in an application, we need the likelihood of data as a fune-
tion of 7, s, and {. The recurrence probabilities give a convenient summary
of the probability measure. We will show that

fr=51-9@-1b’

+ 852 1+ 0 — @@~ i@ + B — @ - B,

(60)
1= St =a-o| gL
where
a="%M,
po YO+ —4s—0 o

2
To begin we define the quantities
X; =PHus N Coyua N -+o ,NCoyy | B,
Y, = PGuis NCossx N o+ ,NCoy | E).
From (58) we have
Xoa=Q0=-0hX;+ (1 - dhY,,
Yi=(0—-00 — k)X, + 1 — (1 — h)gY,,

which holds for all J > 0if we set X, = 0 and Y, = 1. We can translate these
recursions into two second-order difference equations.

X-’+2 - (1 - c)hl + (1 - d)(l - hz)gXJ+1 + (1 - C)(l — d)(h; b hg)X,
=Xs2 — 0 +80)Xsa+ s — )X; = 0
YJ'+2 - (’I‘ + Sg)YJH + (7'8 -— t)YJ = 0.

The solution of a second-order difference equation is deseribed by Goldberg
[1958]. In the present case we have

XJ = Klmi, + KZm.Zly

Y; = Kam{ -+ K4m2J,
where

m, = @50 + \/(r—;sw —4gbs =0 _ 4 4y,

my = 30 = \/(rzsg)z—‘lg(’”s—‘):a-—b.
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If m; = m,, a different set of equations apply [Goldberg, 1958]. The constants
are determined by the initial conditions.

Xo = O,
-Xl = (1 - d)h'2 ]
Yo = 1,

Y, =0 — 1 — hyg.
Then we obtain

Kz = _‘I{ ( d)h2

% '

-1 _ _ (=90 —h)g—(a—b),
K4~—1 Kg;l ‘Z

We now obiain the f; :
fr=X,1-00—=h)(1 -9+ Y,1—-d1A—h)1—g)

= 8= o 41y — @ B0~ 90 = )L = 9)

R T A e sr ey

1 —=a1—-nd -9

and substitution of r, s, and ¢ gives (60).

We do not see a way to develop closed-form estimates of r, s, and ¢ from
(60). However, estimates would be easy to obtain using iterative search on a
computer. The general hypothesis consists of (60). Since errors are recurrent
Markov events, each error can be considered as the beginning of an indepen-
dent observation of the system. We can describe the data after the first error
by tabulating the values of n; , the frequency of success runs of length 3,
where 7., is the number of times that an error is followed by no more errors.
Then the likelihood function is

=1~ N"ffify o

which will be a finite product for any set of experlmental results.
The restricted hypothesis is (60) with &; = h, . This is obtained in the
identifiable parameters by the restriction

t = rs.

Note that this specializes the recurrence probabilities so that @ = b; hence,

o= LoD s+ 206 + B = (L~ 9o + 50"
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Then r and s could be estimated easily by direct calculation. However, an
iterative search program could be written to maximize the likelihood under
the restriction using the general estimation but with the search restricted
to the £ = rs plane.

Now we will turn to our second topic of this section. What constraints
are imposed on (54) by requiring (1) to be satisfied also. Suppose a set of
data satisfies (1), following the first error, with u, v, and w estimated by using
the maximum likelibood estimation procedure [Greeno, et al., 1964]. One
then obtains

=0 -90 -1 - J>I1,

where 4, §, and % are maximum likelihood estimates. In terms of Theorem 1,
one obtaing

I

B=1-—av.
The restrictions imposed on (54) have to be examined in two cases.

Case 1. Assume,

P,y Py, #0.

Let
(61 Xs = P(8a0s N Spssas M oo ;N Sy | B
(62 Yy =P, N Spsa N oo NS0 | E)
It can be easily shown that
(63) Xsi2=0X;,+b0X;, =0
(64) Yoo =aY; 4+ 0Y;, =0,
where

a=P,,+P,,

b= P1.1P2.2 - P1.2P2,1 .
Now, using (63) and (64), one can show that

(65) f.mz = X:+1P2.o + YJ+1P1,0 = af:n - bf.r .
Since it is assumed that (1) is satisfied, the {f;} is almost geometric, and hence,
(66) f.l+z = /3sz 3 J Z 0.

Combining (65) and (66), one obtains
(67) 52 =af — b = B(P,,, + P32 — (Pl.lpz.z — Py 4Ps,1),
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if
Bf: # 0.

Since § = 1 — 1 is fixed by the estimation procedure, (67) provides a restric-
tion on (54). In addition, the following restrictions on (54) also apply.

(68) fz = PO,IPI.O + Po.2P2.o = (1 - 12)(1 - 5)"3
(69) fl = Po,o = (1 - ’&)13.
Case 2.

P1,2'P2.1 =0

Starting with (61) and (62), it can be shown that
(70) fr = K\Z]7 + K,Z]™' J>1,

where K, , K. , Z, , Z, depend upon the particular instance of Case 2 being
examined. [Goldberg, 1961]. Case 2 splits up into many special cases, but the
following analysis holds for all cases.

In order to use the same general technique that was used in Case 1, let
us ask if there is a pair (a, b) such that

(71) f.r+2 = afJ+l - bf.l ’ J_Z 1

where f, is not identically zero for all J.
Using (70) and (71), one obtains

(72) K\ Z{™(Z; — aZ, + b) + K,Z;7'(Z; — aZ; + b) = 0, J 2> 1.

If
Zl ;é ZZ;

then for (72) to hold and for the f, distribution not to be identically equal to 0
forall J > 1,

(73) Zi—aZ, +b=0
(74) Z;—aZ,+ b =0.

Equations (73) and (74) provide 2 equations in e and b. Assuming Z, , Z,
both not zero, one obtains

(75) a=2 +2

(76) b= —2.2Z,.

If one of Z, , Z, is zero, but both are not zero, one obtains the solution that
a=2Z2#0

b=0.
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If, however, Z, and Z, are equal, then if {; is not equal to zero for all J > 1,
Z? —aZ +b=0.

Thus, there always exist a pair (a, b) for Case 2 such that (71) holds.
Again, assuming that the data satisfy (1), (66) can be also assumed. Combin-
ing (66) and (71), (67) is shown to hold for Case 2. As in Case 1, the additional
restrictions in (68) and (69) also clearly apply to Case 2.

This analysis provides a method to examine various cases of (54) in order
to analyze the restrictions imposed upon (54) assuming it satisfies (1) follow-
ing the first error. An extension of the same type of analysis to runs of sue-
cesses prior to the first error is also possible.
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