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The algorithm is applicable to structures such as are obtained from 
additive conjoint measurement designs, unfolding theory, general Fechnerian 
sealing, some special types of multidimensional scaling, and ordinal multiple 
regression. A description is obtained of the space containing all possible 
numerical representations which can satisfy the structure, the size and shape 
of which is informative. The Abelsoa-Tukey maximin r 2 solution is provided. 

Introduction 

The increased use of ordinal data in the social sciences has generated 
a demand for improved methods of analyzing and sealing such data. Presented 
in this paper is a general algorithm O R D M E T  which provides scale-free 
tests and constructs all possible solutions for any linear model for a given 
empirical ordering. The algorithm is applicable to a wide variety of ordinal 
techniques now used in behavioral sciences, such as additive conjoint measure- 
ment,  unfolding theory, special types of multidimensional scaling, ordinal 
multiple regression, and general Fechnerian scaling. Such linear models, 
when combined with an empirical ordering, generate a system of linear 
inequalities. Although any standard linear programming technique may be 
used to test  a particular model, such techniques yield only one scale solution. 
However, if scaling rather  than j ust model-testing is of interest, it is advan- 
tageous to obtain a description of the space containing all possible solutions 
because 1) the size of the space indicates how successfully the scale values 
and the parameters have been constrained, 2) the shape of the space show-s 
which scale values are adequately constrained and which need additional 
data, and 3) it is then simple to select a most  representative scale solution 
using such criteria as the Abelson-Tukey [1963] maximin r 2. 

The solution space for a system of linear inequalities is a convex cone 
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in n-space and the O R D M E T  algorithm is essentially a procedure for generat- 
ing tha t  cone and characterizing i t  by a minimal set of vectors. O R D M E T  
is based upon, and an extension of, previous work by  Goode [1964] and 
Phillips [1971]. Goode [see also Coombs, 1964, pp. 97-102] developed a 
"del ta-method" which produces a solution space for most of the inequalities 
but  is incomplete and in some cases generates numerous side-constraints. 
Phillips corrected that  deficiency in the Goode method by applying a result 
due to Farkas [1902J. The Phillips algorithm indeed produces a complete 
solution space with no side-constraints, but  the obtained description of such 
spaces is often far from minimal, in tha t  it contains redundant  vectors. 
A redundant  vector is one which can be expressed as a positive linear combina- 
tion of other vectors in the cone. Phillips states tha t  these redundant  vectors 
can easily be removed by  inspection. However, practical applications, 
particularly when the ordering is incomplete, result in the generation of as 
many as 10,000 redundant  vectors when the minimal set has as few as 20 
or 30 vectors. Such large numbers of redundant  vectors make computat ion 
of final steps in the algorithm very  expensive if not  impossible, and preclude 
the calculation of a representative solution using the Abelson-Tukey 
technique. 

In this paper the O R D M E T  algorithm is completed (or a t  least im- 
proved) by: 1) the addition of a procedure based on an algorithm by Wets 
and Witzgall [1967] for removing redundant  solutions (Section 2) during 
and after the computation of the basic Goode-Phillips algorithm and 2) the 
utilization of the Abelson-Tukey maximin r 2 criterion for selecting a rep- 
resentative solution (Section 5). In addition, a formal description (Section 1) 
is given of the models to which O R D M E T  is applicable and specific applica- 
tions, some not considered with respect to this algorithm before, are presented 
to illustrate 1) algorithm operation (Section 3); 2) the related theoretical 
development of general Fechnerian scaling (Section 4); and 3) problems 
of error (Section 6). 

1. General Model to which O R D M E T  App l i e s  

Suppose that  an ordering (>~) on a finite set A = {A1 , . . .  , A j , . - -  , 
Ak , - . .  , A~} of n stimuli, stimulus differences, or experimental conditions 
has been empirically established and that  there exists a hypothesized linear 
model for the data. Tha t  is, if S = [S(A1), •. • , S(A~),  . . .  , S(A~)] represents 
the vector of unknown scale values for the stimuli in A, if R = [r~ , r2, • • • , 
rh, •. • , r~] is the unknown vector of parameters, and if V is an n X p matr ix 
of known coefficients v~h such tha t  v~h represents the number of times the 
parameter  rh is included in the representation for A~ , then 

(1) S = V R  + B, 

where B is a constant column vector, is the model to which O R D M E T  
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applies. Equation 1 combined with the empirical ordering [Aj > AI0 implies 
S(Ai)  >_ S(A~)] results in a system of linear inequalities which we denote 
as (A, V, ~ ) and call an ordered metric structure (OMS). A vector of scale 
values S is a solution for an OMS if and only if it satisfies (1) and is consistent 
with the empirical ordering which requires 

(2) Ai > Ak ~ si >_ s~ ~ ~_, vihrh >__ ~_, v~o,,r,, 

where sj = S(Ai). If S is a solution for the OMS (A, V, >),  then there 
exists a positive convex polyhedral cone V* = [VI*, . . .  , V~*, . . .  , Vm*] in 
Re" where each V~* is a column vector such that  S is a scale solution if and 
only if for some non-negative R* and B 

(3) S = V'R* + B. 

Thus, finding V* determines all possible solutions S for (A, V, > ). 
Although the scale values S are often of interest in their own right, 

the values R for the underlying parameters may be more important. This 
necessitates solving for R in (1). Equation 1 was constructed to be consistent 
but  in most interesting applications it is overdetermined since n, the number 
of rows in V, is normally greater than p, the number of parameters or columns 
of V. Thus, if rank of V equals p then (1) may be solved for R by selecting 
any p linearly independent rows of V and then solving the resulting reduced 
system of linear equations. However, it is usually more convenient to solve 

(4) V'S = V'[VR + B] 

which is the normal equation corresponding to (1) and has the solution 

(5) R = (V'V)-IV'[S - B]. 

Substituting the solution for S given in (3) yields 

(6) R = (V'V)-IV'V*R *, R* >_ O, 

and defines the entire solution space for the parameter vector R. If V'V is 
not of rank p then V must be reparameterized or the generalized inverse 
substituted for (V'V)-I in the above. In the latter case however, R will not be 
unique but  rather only certain linear transformations of R will be unique. 

Thus, if (A, V, ~> ) is an OMS, then (3) and (6) show that  in order 
to obtain a complete description of possible scale values for both S and for 
the underlying parameters R, one need only obtain the convex cone V*. 
The next section presents the general ORDM ET algorithm for finding V*. 

2. Details o] the O R D M E T  Algorithm 

Without the empirical ordering ~> on A, the model of (1) is trivially 
satisfied by any arbitrary choice of R and B. Requiring a specific ordering 
on A to be consistent with the model as prescribed by (2) has the effect 
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of constraining the allowable choices for R. The O R D M E T  algorithm operates 
by processing those constraints so tha t  a new matrix V* is constructed which 
incorporates both the original structure of V and the constraints implied 
by the ordering on A so that  the vector R* in (3) is again arbitrary. The 
original model VR is used as the initial trial solution VC°)R c°) and at  each 
step ¢, one of the pairwise orderings (e.g., Ai > Ak) is incorporated into the 
solution by constructing V(~)R (~ from V(¢- 'R  c~-1~. Since there are at  most 

2) pairwise orderings on the set A, the algorithm terminates at  most in 

(2) steps. After the redundant columns (i.e., those that  are positive linear 

combinations of other columns) have been removed from the last VC~)R c') 
so constructed, it is relabelled as V'R* and serves as the complete solution 
of (3). 

The key to the O R D M E T  algorithm is a result by Farkas [1902] which 
was first applied to this problem by Phillips [1971]. Farkas has shown tha t  
the linear inequality 

(7) a, l ,  - b,g, >_ o,  
i i 

where a~ and bi are known non-negative coefficients, and where ]~ and g~ are 
positive unknowns, has the general solution 

(8) a,], = w, T ~ x ,  and bigi = ~ x ,  
i i 

where w~ and x ,  are positive. The basic algorithm consists of repeated 
applications of the above result to an OMS (A, V, >~ ), that  is, to the linear 
inequalities generated by the model of (1) and the orderings of (2). 

Initialization. Let V (°) - V, let R (°) = R, and let a = 0. (Note: to 
simplify notation, the a superscript is omitted in the following, but it should 
be remembered tha t  vih and rh are from the current V (~) and R ~) respectively.) 

Step 1. From the ordering on A, select a pairwise ordering (e.g., 
A~ ~> Ak) that  has not yet been processed. The order in which the inequalities 
are selected is arbitrary; the only effect of different processing orders is in 
the number of redundant columns generated. If there are no inequalities 
remaining to be processed, go to Step 5 to remove redundant vectors from V (~). 

Step 2. Transform the inequality implied by the pairwise ordering 

(9) As >~ A~ ~ ~ v~hrh -- ~ vkhrh >__ 0 ~ ~ (v~h -- v~h)rh >_ 0 

into the form of (7--7 by relabelling t--he m c---olumns of thecur ren t  trial solution 
V ¢') so tha t  there are q cohinms labelled V. ÷ where a .  = (vi^ -- Vkh) > 0, 
a n d t  columns labelled V~- where --b~ = (v~h - vkh) < 0, a n d r e  -- q - t 
columns labelled V~ ° where c~ = (vih -- Vkh) = 0. Thus, 

(10) As ~ A~ ~ ~ a.r~ ÷ -- ~ b~r~- ~_ O, 
a 
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where r .  +, re-, and r~ ° are the elements of R (~) relabelled in the same manner 
as their corresponding column in V (~). 

S t e p  3. Check (10) for consistency. 
Case i. (t = 0) The inequality is already satisfied in the current trim 

solution V ('), return to Step 1. 
Case ii. (q = 0, t >__ 1) The system of inequalities is inconsistent so 

(A, V, ~> ) does not have a solution. Stop or use the procedures for error 
described in Section 6. 

Case iii. (q__> 1, t ~ 1) The inequality is appropriate for Farkas'  result; 
go to Step 4. 

S t e p  ~. Construct a new matrix V (~+" from the old matrix V (~) accord- 
ing to the following rules. 

b~ 
i) V.+~a-,)o ( '+" = Va- + ~. V.  + a = 1, q; f~ = 1, t 

ii) V~,+. (~+" = V.  + a = 1, q 

iii) V.( ,+ ,+,  (~+" = V, ° ~ = 1, m -  q -  t 

where V +, V - ,  and V ° are all old columns of V (~) as defined in Step 2. increment  
a by 1 and let m, the number of columns in V (~, equal q(t + 1) + m - q - t. 
Return to Step 1. If  the number of columns of V (~) have increased excessively 
(as defined by computer storage limitations), do Steps 5 through 11 to 
reduce V c~) to a manageable size before returning to Step 1. 

I t  is easy to show that  the above construction is the general solution 
for the inequality of (10). Each value v~h in column V~ ÷ in the old matrix 
has been replaced by the value b~v~h in columns V,+ (~_1)~ C~÷1) for/~ = 1, t and 
by  the value v~h in column V~,÷. (~÷" in the new matrix; each value in column 
V~- has been replaced by that  same value in columns V.÷(~_,~ ~÷1~ for 
a = 1, q, and all columns V, ° have been transferred directly from the old 
to the new matrix, so tha t  

l ' 
a , r .  + (~+~) . X"  b r (.+1) = aar~t+, "1- ~ ~ a+( .~-- l )q  

B 

q 

~ ~ (*+1) (11) b~r~- = 2. ,  o~r.+(~_,~ 

[c~r O (.+i) ----- C . t rq ($+l )+7  

Farkas'  result shows that  (11) is the general solution for the inequality 
in (10). 

The removal of redundant  columns of V (~) is accomplished by using 
an algorithm due to Wets and Witzgall [1967] for determining the frame 
of a convex polyhedral cone. If  G ( V )  is the convex polyhedral cone formed 
from V, then the column Vh is redundant  if and only if G ( V  - {Vh}) = G(V)  
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or, equivalently, 

(12) Vh = ~ a~V, , a, > O. 

Step 5. Row reduce V (~) to canonical form W so that  it contains a 
k X k permutation matr ix with ones as the only non-zero entries and whose 
columns are called basic; all other columns are non-basic and expressed as 
linear combinations of the basis (i.e., premultiply V (~) by  an appropriate 
real, non-singular matrix P so that  W = P V  (~) is in row reduced form). 
Note that  n - k rows of W will be zero and can be omitted from further  
calculations. 

Step 6. Check the following four test  criteria to determine whether 
each column is necessary, redundant,  or not yet  determined. If any columns 
are redundant  replace them with a zero vector. 
Criterion i) If W~ is non-basic and W~ >__ O, then W~ is redundant  since it  is 
a positive linear combination of basic columns. 
Criterion ii) If W~ is non-basic and has exactly one positive entry w , ,  then 
the basic column Wk for which w~ = 1 is redundant  since after pivoting W~ 
into the basis in place of Wk, Criterion i would then apply to W~. 
Criterion iii) If the i-th row of W contains exactly one negative entry w~k , 
then W~o is necessary since that  entry could never be expressed as a positive 
linear combination of other entries in the i-th row. 
Criterion iv) If the i-th row contains exactly one positive entry w~ then 
Wk is necessary for the same reason as in Criterion iii. 

Step 7. If all non-basic columns of W have been classified as either 
necessary or redundant,  go to Step 10. Otherwise, select a negative entry 
wk~ in an unclassified non-basic column (there must  be a negative entry  
or Criterion i would have classified the column as redundant) .  

Step 8. Find another  negative entry Wkh in the same row as wk~ 
(there must  be another negative entry or Criterion iii would have classified 
column j as redundant).  

Step 9. Find w,,h such that  

(13) 0<_ w,hW~;<-- min~W_~,lw~i~ ,w~h _>0, w ~ h > 0 }  

and then use w~h as a pivot in a simplex or row reduction step. This increases 
the originally negative entry wk~ while all non-negative entries in column W; 
remain non-negative. Repeat  Steps 8 and 9 until  either Criterion i or iii 
classifies W~. Then return to Step 7. 

Step 10. If  any unclassified basic columns remain, replace them in the 
basis with necessary non-basic columns and return to Step 2. Otherwise, 
go to Step 11. 

Step 11. Remove all columns from V (~) and all rh from R (~) for which 
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the corresponding columns of W have been labelled as redundant.  Let  
V* = V (~) and R* = R ('). Stop if no specific numerical representation is 
desired; otherwise, go to Step 12 described in Section 5. 

Since Farkas' method produces a complete general solution at  each 
step, the resulting matrix V* when used in (3) and (6) generates all possible 
solutions for both the scale values S and the parameter  values R for the 
OMS <A, V, > ). 

3. ORDMET Applied to a Simple Unfolding Example 

The application of O R D M E T  to a simple unfolding problem not only 
provides a convenient illustration, but  also gives a more intuitive justification 
for the method than is evident in Farkas' result. The successive solution 
matrices produced by  the heuristic version below are identical (except for 
a possible permutation of columns) to those produced by the application 
of the O R D M E T  algorithm described in Section 2. Consider the following 
hypothetical  data from an unfolding analysis. Suppose that  there are five 
stimuli in the order A, B, C, D, E on a single dimension and assume the 
following midpoint ordering has been obtained from the/ -scales  (see Coombs, 
[1964], pp. 80-92 for details of tha t  process). 

(14) AB, AC, AD, BC, AE, BD, CD, BE, CE, DE 

where X Y  denotes the midpoint between X and Y on the line from A to E. 
This midpoint ordering implies the following ordered metric relations on the 
interstimulus distances 

(15) AB ~ CD, AB ~ DE, CE >~ AB, DE ~ BC. 

Stage 1. The set of all distances { AE, A D, BE, etc. } is taken as the set 
A of Section 1, the values of the single interval distances lAB, BC, CD, DE} 
are used as parameters, and Table l(a) gives the matrix V which represents 
the unidimensional distance model (e.g., AE = AB --I- BC + CD -t- DE) and 
serves as the first trial solution, V (°). 

Stage 2. The first piece of metric information AB >. CD implies 

(16) S(AB) > S(CD) ~ rl - r3 ~ O. 

Let rl = r3 -t- r5,  where r~ is a new r column equal to the unknown positive 
difference between r~ and r.~. In Table l(b)  then, every entry in column V~ (°) 
has been replaced by an entr_yin column V~ (~) and an entry in column V5 C~). 

Stage 3. Next, AB ~ DE implies tha t  r3 + r5 - r~ >__ 0. Let  us imagine 
that  r4 is broken into two parts, r6 and r7, such that  r4 = ro + r7 with r3 _> r8 
and r5 ~ r7 • Then let r.~ = r, + r8 where rs is the unknown positive amount  
tha t  r3 exceeds r6 and r5 = r7 + r9 where r0 is the amount  tha t  r~ exceeds r~. 
So each r4 is replaced by  an ro and an r7, each r3 is replaced by an r6 and an r8, 
and finally each r5 is replaced by an r~ and an rg . This has been done in 
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TABLE 1 
Successive V M~trices Produced by the ORDMET Algorithm for a Simple Unfolding 

Problem 

Ca) (b) (e) (d) 

Stage I: Initial Stage 2: AB > CD Stage 3: AB >__ DE Stage 4: CE > AB 

Model V (0) yields V (1) yields V (2) yields V (3) 

r I r 2 r 3 r 6 r 7 r 7 r 8 r 9 rl0 

1 i 

I 1 

I 1 

1 

I 

1 1 

I 

i 

r 4 r 2 r 3 

1 1 2 1 1 

i 2 i 

1 1 I 1 

1 I 1 

1 I I 

1 1 

I 1 

I 1 

1 

i 

r 4 r S r 2 

1 

i 

1 

i 

I 

I 

3 2 

2 I 

2 I 

2 1 

I 1 

I i 

1 

l 1 

r 8 r 9 r 2 

2 I 1 

2 I 1 

1 I 

I 

1 i I 

1 I 

i 

I 

1 

2 2 4 S 

1 2 S 2 

1 1 2 2 

1 1 2 2 

1 1 2 i 

1 1 2 1 

1 1 1 

i 1 i 

1 I I 

(o) (f)  (g) 

Stage 5: DE L BC Stage S: Final Solution Stage 9: Maximin 

yields V(4) V(*) (normalized) T 2 Solution 

~C 

Uff 

r 8 rll r12 r13 rl4 rI5 r16 r 8 rll r12 r14 r16 ,,. 

2 3 S 4 2 4 3 

2 2 4 3 1 3 2 

1 2 S S 1 2 2 

1 1 2 2 1 2 2 

1 2 3 2 1 2 1 

1 1 2 1 1 2 I 

I 1 2 2 I I 

I i 1 i 1 i 

i 1 1 

1 1 1 1 1 

1 1 I 1 i 

I .67 .8 .S .67 

.S .67 .6 .S .67 

• S .35 ,4 .S .67 

,S ,67 ,6 ,5 ,53 

.S ,35 ,4 ,S .~5 

.S .53 .4 0 .Sfl 

0 .~3 .2 .5 .35 

0 .33 .2 0 0 

.5 0 ,2 0 ,35 

1 

.75 

.54 

.46 

,54 

.46 

.2g 

.31 

.0g 

.21 

Table l(c).  Note that the number of columns has increased from four in V (1) 
to five in V (2). 

Stage 4. Continuing, CE ~> ~AB implies that r6 - r9 > 0. So let r8 = 
ro Jr rio where rio is the amount r~ exceeds r9.  This substitution in Table I (d) 
guarantees that S(CE) >_ S'(TB) in the current matrix representation of 
the solution V (3). - -  

Stage 5. Finally, D E  ~> BC implies that r7 H- r9 H- rl0 - r, >__ 0. In this 
case r2 must be decomposed into three parts (r~ = r l l  -~- r12 ~-  rl3) such that 
r~ >_ rt~ , r9 _> r~2 , and rio > r~a . Then the substitutions r7 = r~ H- r~4, 
rg---- r12 Jr rl~, and r~o = rig -{- r,6 are made where r~4, r~5, and r~ are the 
proper non-negative unknown values to convert the respective inequalities 
to equalities. This has been completed in Table l(e) to create V (4). 

Stage 6. The columns in Table l(e) form the matrix V (4) which may be 
used as V* in (3) and (6) to generate all possible solutions for the orderings 
in (15) and the model in Table l(a).  However, V (4) may not be minimal 
so the Wets and Witzgall algorithm for finding a minimal frame for V (4) 
is applied. Although in this case patient inspection may reveal that VI~ (4) = 
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V8 (4) + Vll (4) and VI~ (4) = V8 (4) + V~4 (4) are the only redundant solutions, 
the formal algorithm will be applied for illustration. First, row reduce V (4) 
to canonical form W. 

W8 
1 

0 
(17) W = 

0 

0 

W. W,2 W13 W~4 W~ W~ 
0 1 0 0 1 0- 

1 1 0 0 0 - 1  

0 0 1 0 0 1 

0 0 0 1 1 1 

Note that  there are four rows in W for this four parameter problem and that  
Ws , W~I , W13 , and WI~ form the basis. Columns W,~ and W~ satisfy 
Criterion i of Step 6 of the 0 R D M E T  algorithm in Section 2 and are therefore 
redundant.  The second row satisfies Criterion iii with w~ = w2.16 = - 1 ,  so 
W16 is necessary. With redundant  columns W,2 and W,~ removed, the first 
and second rows now satisfy Criterion iv which in this case implies tha t  
W8 and WH are necessary. 

Stage 7. Since basic columns Wla and W~4 remain unclassified, the 
necessary non-basic column W,6 is moved into the basis and W,3 out re- 
sulting in 

W8 W,1 W13 W14 WI~ 
1 0 0 0 0 ~  

J 
(18) W = 0 1 1 0 0 

0 0 1 0 1 

0 0 - 1  1 0 

Now Criterion iii applies to the fourth row which implies that  W~3 is necessary. 
Also, Criterion iv applies to the fourth row and implies tha t  W14 is necessary. 

Stage 8. All columns are now classified and redundant  solutions V~2 (4) 
and V15 (4) have been removed from V (~) to form the final representation in 
Table l(f) of V*. 

~. General Fechnerian Scaling o[ Dominance Matrices 

A Fechnerian scaling model is defined by  Luce and Suppes [1965] to 
consist of a set of binary choice probabilities for which there exist a real-valued 
function r over a set of stimuli and a cumulative distribution function F 
such that  

I i) F(0) = ½, 

(19) ii) for alla~ , a i  for which p(a~ ,a i )  # O o r l ,  

l p(ai , ai) = F[r(a~) -- r(ai)], and 

iii) p(a, , ai) + p(ai , a~) = 1 



278 PSYCHOMETRIKA 

where p(a~ , ai)  is the probability that stimulus a~ is chosen over ai . In this 
section, we show that the natural ordering (weak stochastic transitivity) on 
the p(a i  , a~)'s and the model in (19) may be used to construct an OMS. 
As such, the ORDMET algorithm may then be applied to find the complete 
general solution giving all possible functions r and F consistent with the 
particular empirical ordering. 

Two well-known instances of Fechnerian scaling are Case V of the Law 
of Comparative Judgment (C J-V) and the Bradley-Terry-Luce (BTL) model. 
In C J-V, F is the normal integral with mean r(a~) - r(ai)  and variance 
equal to one. In the BTL model F is the logistic function 

1 
(20) p(a,  , ai) = 1 + exp - [ r ' ( a ~ )  - -  r'(a~)] 

where r ' (a , )  = log r(a , ) .  Further, Yellott [1971] has shown that Dawkins' 
[1969] model is a member of this class with 

f 
r ( a l ) - - r ( a ~ )  ~-- - - a l ~ l  

(21) p(a,  , ai)  = 2 e dx .  

The advantage of treating general Fechnerian scaling as a special case 
of the ORDMET algorithm is that no assumptions about the exact form 
of F are necessary. Instead, it need only be assumed that F is monotonically 
increasing, which is equivalent to the binary choice probabilities being strictly 
monotone with the differences in scale values r(a~) - -  r (a i ) .  Furthermore, 
generality is also obtained in that response measures are not restricted to 
binary choice probabilities but to any binary response measure which will 
satisfy the ordinal equivalent of the conditions in (19) and hence be an OMS 
as in (1) and (2). Condition 19(i) is a scale factor which is free. Conditions 
19(ii) and 19(iii) require that the response measure be strictly monotone 
with the distance and that the ordering of the cells on the two sides of the 
diagonal be skew-symmetric. Testing this latter condition requires that the 
complementary observations be empirically independent which is not possible 
with binary choice probabilities. Candidates for such response measures 
include latency measures on binary choices and confidence ratings. 

If we let the set of all pairs (a~ , a~) constitute the set A of Section 1 
and if we construct V so that 

(22) S = V R  + B ~ S ( a ,  , a~) = r(ai )  ~ r(a~) + b 

and if p(a~ , ai)  >_ p(ak , az) :> 1 / 2  is considered to imply that (a~ , ai) >~ 
(ak , a~), then (A, V, ~> ) is an ordered metric structure. Thus, any general 
Fechnerian scaling problem converts naturally to the form of an ordered 
metric structure and the ORDMET algorithm may then be applied to con- 
struct all possible solutions. 

Of course, the real goal of Fechnerian scaling is determination of R and 
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not  of S. However, this is a trivial difference as can be seen by letting the 
smallest R(ai) = 0 and relabelling tha t  ai as ao , so that  R(a~) = S(ai , ao) 
gives the desired description of R. 

TABLE 2 
Hypothetical Data Matrix for Feehnerian Scaling 

(a) (b) 

a 1 

a 2 

a 3 

a 4 

a 0 a 1 a 2 a 3 

.56 

.67 .63 

.74 .70 .58 

!.84 .81 .72 .64 

a 1 

a 2 

a 3 

a 4 

a 0 a 1 a 2 a 3 

1 

5 5 

8 6 2 

10 9 7 4 

As an example of O R D M E T  applied to a general Fechnerian scaling 
problem, consider the hypothetical binary choice probabilities in Table 2(a). 
Each entry represents the proportion of choices for row over column. The 
rows and columns have been permuted using triangular analysis [see Coombs, 
1964, pp. 352-359] so that  all entries below the diagonal are greater than  
.50, and that  entries in each column increase monotonically from top to 
bot tom and the rows increase from right to left. The corresponding rank order 
(1 = smallest) is given in Table 2(b). This hypothetical empirical ordering 
and the general Fechnerian model (with R(ao) set equal to zero to make 
(V'V) -~ non-singular) yield 

-S(a4 

S(a, 

,S(a3 

,S(a4 

(23) S = S(a3 
S(a2 

S(a4 

S(a~ 

Z(a3 

S(al 

ao)- El 
I 

al) 1 

ao) 0 

a2) 1 

al) 0 
= 

ao) 0 

a3) 1 

al) 0 

as) 0 

ao). LO 

o o o- 

0 0 --1 

1 0 0 

0 --I 0 

1 0 --I 

0 1 0 

--I 0 0 

0 1 --I 

1 --I 0 

0 0 1 

I~R(a4) 1 

X tR(aa)I 

tR(a:)I 
LR(al)j 

b 

b 

b 

b 

b + 
b 

b 

b 

b 

_b 

= V R + B  
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where the ordering within S from top to bottom reflects the empirical ordering. 
Formally applying the ORDMET algorithm to the above yields the following 
general solution for the parameter vector. 

(24) R = IR(a3)| = 2 1 3 X tr3*| 

I R(a2)| 1 2 

[ R(al).] 0 1 [_r~* J 

where r,* >_ 0 and b is arbitrary. At this point we know that  the hypothetical 
data of Table 2 satisfy the general Fechnerian model of (19). 

5. A Representative Solution 

When the ORDMET algorithm is used for testing a model, successful 
determination of V* confirms the fit of the ordinal data to the model and 
nothing else remains to be done. However, if a specific set of scale values 
is desired for descriptive purposes or for use as dependent variables in other 
analyses, then one particular solution must be selected from the convex cone 
defined by V*. Unless the solutions given by (3) are tightly constrained 
(i.e. the columns of V* are all very similar), then a most representative 
solution must be chosen from the set of solutions. In this section, a set of 
criteria due to Abelson and Tukey [1963] for finding a maximin linear contrast 
is applied to this problem. Essentially, the Abelson-Tukey technique is to 
find that solution S in the convex cone generated by V* that maximizes 
the minimum squared correlation between ~ and any other solution vector 
in the cone. They showed that this minimum correlation with S must be 
with one of the column vectors of V* (i.e. on an edge of the convex cone) 
so that the part of the ORDMET algorithm that removes redundant columns 
from V* also greatly simplifies the search for ~. Such a maximin strategy is 
conservative in that it protects against the worst state of nature regardless 
of the likelihood of that state; a better solution could be found if there were 
additional information about the distribution of the parameters, but this is 
seldom the case in practical applications of ORDMET. 

Let ]7 be a set of column vectors contained in V*. Then there exists 
an S, unique up to a linear transformation, such that  

i) S = ]?/~*,/~* > 0, 
ii) the squared correlations between S and any other vector in IY are all 

equal to 72, and 
iii) the squared correlations between ~ and any other vector in V* are 

at least as great as the common value of 72 in (ii). 
The common squared correlation in (ii) is maximin; S is the maximin solution 
and can serve as the desired representative solution. Abelson and Tukey 
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presented both a "top down" and a "bottom up" approach for constructing 
given the set of extreme vectors of V*. The following is a slight modification 

of their "top down" approach and is a continuation of the basic ORDMET 
algorithm presented in Section 2. 

Step 12. The matrix W from Step 10 is in canonical form and indicates 
a set of columns forming a basis and necessarily linearly independent. Take 
the columns of V* which correspond to these basic columns as a trial set 
for ?. 

Step 13. Find a vector of weights Z such that if ~ -- 17Z, then the r ~ 
between ~ and Vi* is constant for all Vi* in I 7. Let this constant be ~2. 

Step 1~. i) If the r ~ between S and Vi* for any Fi* in V* is less than ~2, 
then use W to generate a new set of basic columns (i.e. pivot a non-basic 
column into the basis to replace a previously basic column, making sure 
that this does not create a set previously tested). I[Ise the columns of V* 
corresponding to this new set of basic columns of W as a new trial solution I 7. 
Go to Step 13. 
ii) Otherwise, go to Step 15. 

Step 15. i) If the elements zi of Z are not all non-negative, remove the 
column from ~ which corresponds to the lowest z; ( 0 and go to Step 13. 
ii) If Z is non-negative, stop. S = I?Z is the maximin solution and maximin 
r 2 = ~. (Z is simply a particular choice for R* in (3).) 

The above continuation of the ORDMET algorithm will always find the 
unique maximin solution ~ for V*. However, due to its exhaustive search 
of all possible subsets of linearly independent columns of V*, it can be rather 
slow and expensive. Thus, in practice, it is usually better to use the following 
"bottom up" procedure first even though it is not guaranteed to find the 
solution, reserving the "top down" algorithm outlined in Steps 12 to 15 for 
cases where Steps 12' to 15' fail. 

Step 12'. Find the two columns of V* which have the smallest r 2. Use 
these two columns as the first trial solution set ~7. 

Step 13'. Same as Step 13 above. 
Step 1~'. i) If the r ~ between S and V~* for any V~* in V* is less than 

72, then add the V~* with the lowest r 2 to the trial solution set I y and go to 
Step 131 . 
ii) Otherwise go to Step 15'. 

Step 15'. i) If the elements z; of Z are not all non-negative, the 
"bottom-up" approach has failed; use the "top-down" procedure. 
ii) If Z > 0, stop. ,~ = ~Z is the maximin solution and maximin r 2 = ~2. 

As an example, consider again the unfolding problem in Section 3 
(Table lf). Use of the "bottom-up" algorithm yields the following sequence 
of calculations: 
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(12') The lowest squared correlation is between Vs and V14 and has the 
value .278. 

(13') The linear combination S = .487Vs -t- .513V14 has an r ~ with both 
I/~ and V14 of .764. 

(14') However, r 2 for S and VI1 is .628 which is less than r 2 for S and any 
other vector in V*. Therefore, V1, is added to the set eontaining Vs 
and V14 . 

(13') The linear combination N = .415Vs q- .234V,, + .351V14 has an r 2 
of .749 with each column in 17. 

(14') The r 2 between ,~ and any other vector in V* is at least as great. 
(15') The weights in the linear combination defining S are all positive, so 

the maximum solution has been found, f2 = .749. ,~ is displayed as 
Stage 9 in Table l(g). 

Since there are only four linearly independent subsets [(Vs , VI~ , V14 , V,6), 
(ITs , V~ , V~4 , V~), (Vs , VH , V~ , V~), and (Vs , VH , V13 , V~4)] as de- 
termined from W in (18), the " top down" algorithm of Steps 12 to 15 will 
terminate in at most four iterations for this example. 

The solution S, then, is one which is a most representative scale for 
the set A in a well-defined sense. The rows of V* used to determine S, however, 
are not linearly independent but  are additive eompositions of more elemental 
units, the parameters ra. The parameter vector R may be of sufficient theoreti- 
cal interest in its own right to justify some best estimate of the relative 
values of the eomponents of R. An alternative representative solution, then, 
is to apply Steps 12 to 15 of the algorithm to the parameter space of (6) 
to seek directly an Abelson-Tukey maximin r ~ solution for R. Call the set 
of parameters that  results R and the corresponding maximin squared cor- 
relation )~. This is easily accomplished by substituting V* = ( V ' V ) - ~ V ' V  * 

for V* everywhere in Steps 12 to 15 and 12' to 15' as well as substituting R 
for S and }2 for ~2. Then 

(2a)  = 

is an alternate representative scale solution. 
While in general Z ~ S, /? ¢ /~, and ~ ~ ~ ~, in practice the choice 

appears to be of little consequence since S and ~ are very similar (their 
correlation must be at least as great as ¢) and likewise for I~ and R (their 
correlation is greater than ~). For the example of generalized Feehnerian 
scaling of Section 4 (see (24)), the two representative parameter solutions are 

/ ~ ' =  (1.0, .64, .47, .12, .00) and 
(26)  

R'  = (1.0, .63, .48, .11, .00); 

clearly, the distinction is not important in this case. 
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Since any particular scale solution S is unique at most up to a linear 
transformation; the solution can be normalized by choosing an origin and 
unit of measurement to provide a characterization of the solution space as 
a convex polyhedron in a (p -- 1)-dimensional subspace of the n-dimensional 
convex cone. Since each column vector of V* represents an extreme solution, 
this normalization is readily accomplished by linearly transforming each 
column V,, so that for a given row ] (preferably the row corresponding to the 
largest S(A~)) the value of 1 is assigned to vh~ for all h, and then requiring 
that B = 0 and that the sum of the r~*'s equals 1. I t  is usually more convenient 
to consider the normalized solution for R since its rows do not contain the 
linear dependencies that the rows of S do. Graphs of planes of the convex 
polyhedron corresponding to R provide a quick check of how successfully 
given parameter values have been constrained by the ordinal data in relation 
to other parameters. 

T A B L E  3 

Matr ix  V* and Maximin r e Solution for Successive Scalings of Four  Points and Six 
Interpoint  Distances. 

Distance True 
Value 

1 

CH .85 

.s6 

AI! .44 

CE .29 

AC .15 

Scaling 1 

v* (~2=.2s) 

1 1 1 1 

O 1 1 .63 

0 0 1 .37 

1 1 0 .63 

0 1 0 .26 

1 0 0 .37 

S c a l i n g  2 S c a l i n g  3 and 4 

V* (~2=.856) V* (;2=.932) 

I 1 I 1 1 i 1 1 1 

.75 1 1 .93 .75 i 1 .80 .87 

.50 .50 l .66 .50 .5 .67 .60 .53 

.50 .50 0 .34 .50 .5 .33 .40 .47 

.25 .50 0 .27 .25 .5 .33 .20 .34 

.25 0 0 .07 .25 0 0 .20 .13 

Scaling 5 

V* 

1 1 1 1 1 

.78 .8 .8 1 .83 

.56 .6 ,5 °67 .50 

.44 .4 .5 °33 ,50 

, 2 2  .2 .3  .33 .33 

• 22 ,2 ,2 0 .17 

(~2=. 963) 

.87 

.59 

. l l  

.29 

Scaling 6 

fi 

V* ;2=.972) 

1 1 1 1 1 

1 .83 .87 .91 

.67 .5S .62 .57 

.33 .42 . 58 i  .43 

.33 

.09 

.83 

.SO 

.SO 

.33 .33 .25 .25 

.17 0 .17 .12 
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The following unidimensional scaling example illustrates this use of the 
convex polyhedron as a characterization of tile parameter space and also 
demonstrates how quickly additional ordinal constraints reduce the size of 
the polyhedron toward a limiting point. Consider the following random points 
on a line: A = .00, B = .05, C = .15, D = .32, E = .44, F = .66, G = .79, 
H = 1.00. These generate the following ordering of interpoint distances from 
largest to smallest: 

(27) AH, BH, CH, AG, BG, DH, AF, CG, BF, EH, CF, DG, AE, 

-B-E, EG, F--H, D--F, AD, CE, BD, EF, GH, CD, AC, FG, DE, BC, AB 

Subsets of these distances were processed by the O R D M E T  algorithm. The 
first subset, labelled Scaling 1, consists of only the ordering information 
for points A, C, E, and H; that  is, the ordering of the distances AC, AE, 
and AH. Scaling 2 consists of all the interpoint distances between A, C, E, 
and H. Scaling 3 is the same set as Scaling 2 with the addition of the point F 
and its interpoint distances; Scaling 4 adds point B and its distances; Scaling 5 
adds point G and its distances; and finally Scaling 6 consists of all 28 distances 
between eight points. Table 3 presents the normalized extreme solutions and 
the maximin r 2 solution for the points of Scaling i as determined by successive 
scalings of the six subsets of distances. Figure 1 depicts the plane of the 
convex polyhedron for the values of AC and AE after each scaling. 

The area of the admissible solution plane (i.e., a cross-section of the 
solution polyhedron) generally contracts with additional metric information, 
but in this case there was no effect from the addition of stimulus B (Scaling 4 
compared to Scaling 3). The decrease in area corresponds to the increase 
in maximin r 2 from .25 for Scaling 1 to .856 for Scaling 2 to .972 for Scaling 6. 
Note the dramatic increase from .25 to .856, which represents the effect on 
the uniqueness of the representation by the change from only ordinal informa- 
tion on points to a complete ordered metric on the four points (Scaling 1 
to Scaling 2). 

6. Fallible Data 
The description in Section 1 of the general model to which O R D M E T  

applies and the subsequent examples have been based on error-free cases. 
However, a probabilistic error term can be added to the basic linear model 
yielding 

(28) S =  V R + B + E  

where E is a random vector with mean zero. If the differences between the 
S(Ai)'s are large relative to the components of E (i.e., if E does not alter 
the ordering ~> on A), then E need not be considered. Thus, an obvious 
strategy for dealing with error in ordered metric sealing is to use replication 
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m 

AE 

0 0 
AC 

AREA = .125 

SCALING 2 

1 t / ' /  
I AREA = .028 A'-E~ ,,,,'" / 

/ /  
/ 

/ 

AREA = .058 

0!'"'"" 
AC 

SCALING 3g 4 
1 / 

/ 
/ 

1 

AREA - .018" 
¢ " ¢ 

/ j 
AE ~ , , 

/ 
/ 

/ 

/ 

_ _  
AC 

SCALING 6 

SCALING 1 
1 / /  

# l  
/ 

AE 

/ 
/ 

/ 
/ 

/ 
/ 

°° A2 
SCALING 5 

FIGURE 1 
Effect of Ordered Metric Information on the Size and Shape of the Solution Space. 

or better control of error-producing factors to reduce the magnitude of E 
and thereby decrease the likelihood that E will cause the observed ordering 
to differ from the presumed underlying ordering. There are of course many 
applications where either extensive replication or control is not feasible or 
not successful in eliminating error. In this section, two techniques for treating 
fallible data in ordered metric scaling are presented. 
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The first is a threshold or criterion technique. While only ordinal in- 
formation is input to the ORDMET algorithm, the ordering may actually 
be inferred from other numerical information. For example, we may say 
A~ > Ak if and only if the mean of several observations of Ai exceeds the 
mean of the observations of Ak or, in the case of Fechnerian scaling, A i >~ Ak 
if and only if p(Ai) >_ p(A~). If we let T(Ai) be the general term for observed 
numerical information (i.e., the response measure) which is on at least an 
ordinal scale, then such rules can be expressed as 

(29) A~ >>. Ak *=* T(A~) >_ T(A~). 

Because of the presence of error and the resulting artificial precision in the 
measurement of T(A~), it is sometimes inadvisable to translate very small 
differences among the T(Ai)'s into the ordering on A. The following rule 
for translating the ordering on T into an ordering on A avoids this problem 
by establishing a minimal threshold difference that must be exceeded to 
create an inequality (see Davidson, Suppes, and Siegel [1957] for an applica- 
tion of this to an additive problem,) that is 

(30) A; ~> A~ if and only if T(Ai) -- T(Ak) > 0. 

A priori assumptions about distributions of the error or prior experience 
may be used to determine 0, or the ORDMET algorithm may be used to 
find the minimal 0 for a particular model and given observations T. The 
value of 0 need not be constant, but may instead be a function of T(A~) and 
T(Ak). Such would be the case if T(A~) represented a binomial probability 
and 0 were chosen so that an inequality was generated if and only if the 
two probabilities were significantly different for a given level. 

A second technique for dealing with error is to find the minimum number 
of pairwise reversals that would make the ordering on A consistent with the 
given linear model. This is equivalent to finding V* such that the Kendall's 
r between the ordering induced on S by V* and the ordering > is maximized. 
Such a solution is easily found by systematically eliminating subsets of the 
input inequalities to ORDMET. However, such solutions will not in general 
be unique, so the complete solution space may consist of the union of several 
convex cones. Tversky and Zivian [1966] describe their algorithm for finding 
a solution that maximizes r, but their algorithm finds only one solution 
vector in one of the possible cones, with no information as to its uniqueness. 

As a n  example of how these error techniques can be applied to real 
data, consider the two-factor additivity data in Table 4(a), from a study 
by Birnbaum [1972]. Subjects made "morality judgements" of all pairs of 
"immoral behaviors" in a 5 X 5 design. The additive model for this study is 

(31) S ( A , ,  B~) = R(A,  -- A1) -{- R(B, -- B~) + K 

where A,  and Bi represent descriptions of immoral behaviors, S(A~ , Bi) is 



A1 

A2 

A3 

A4 

AS 
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T A B L E  4 

Moral i ty  Judgments* from a 5 X 5 Design 

(a) 

O r i g i n a l  Average Va lues  

BI B2 BS B4 

(b) 

Rank Order  

B5 B1 B2 BS B4 B5 

1.78 2.28 2.33 2.49 2.65 

3.36 4.45 4.77 4.95 5.55 

3.90 5.14 5.19 5.14 6.19 

4.22 5.29 5.52 5.76 6.92 

4.61 6.16 6.16 6.52 8,17 

A1 

A2 

AS 

M 

A5 

1 2 3 4 5 

6 9 I I  12 18 

7 15.5 15 IS .5  22 

8 16 17 19 24 

i0 20.5  20.5  23 25 

* Da ta  from Birnbaum [1972] 
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the psychological value for the immorality of the pair, R(A~ - A1) is the 
psychological difference between stimulus component A~ and A1 , and K is 
an additive constant equal to S(A1 , B~). The rank order implied by the 
values of T (where T ( A ,  , Bi) is the mean response over 100 subjects on a 
nine-point rating scale) in Table 4(a) is given in Table 4(b). When the model 
of (31) and the ordering of Table 4(b) are input to ORDMET an error is 
detected and no solution is generated. The problem is that T(A ,  , B3) <_ 
T(A~ , B4) for all A~ except As . This is a violation of the monotonicity 
(independence) axiom of conjoint measurement [see Krantz, Luce, Suppes, 
and Tversky, 1971] and must be eliminated if an additive representation is 
to be found. Setting 0 equal to .05 will eliminate the violation caused by 
(A3 , B3) > (A3 , B4) and will eliminate several other inequalities [such as 
(A3 , Bs) ~> (As , B3)] as well. When the reduced set of inequalities is input 
to ORDMET~ a solution is found. The maximin r 2 solution and the parameter 
solution space are presented in Table 5(a). Alternatively, the solution requir- 
ing the fewest number of pair reversals may be sought, which in this case 
yields a solution very simitiar to that  of the threshold technique. For the 
data, reversing either of two subsets of orderings wilt achieve additivity: 
1) reversing (A~ , B4) ~ (A, , B3) for all i not equal to 3, or 2) reversing 
(A3 , B3) ~> (A3 , B4). The latter is clearly the minimum necessary reversals 
and the corresponding maximin r 2 solution and parameter space are presented 
in Table 5(b). 

Because of the relatively low level of 0 (less than 0.7 per cent of the range) 
and because only one pair reversal was necessary to yield a fit to the model, 
it does not seem that Birnbaum's rejection of the additive model based on an 
analysis of variance of the data in Table 4(a) was justified. Note also that 
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8 . 1 7 0 0  ÷ 

o" 

6 , 8 9 2 0  ÷ 

÷ 

5 . 6 1 4 0  ÷ 

÷ 

4 . 3 3 6 0  + 

3 . 0 5 ~ 0  + 

÷ 

1 . 7 8 0 0  ÷ *  

$ 

25  

2 

3 

O. o584C0 1 .1680  
• 29200 .81600 1 . 4 6 0 0  

Solut£on 

FIGURE 2 

Estimation of Non-Linear Response Function. 
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