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This paper provides a generalization of the Procrustes problem in 
which the errors are weighted from the right, or the left, or both. The solution 
is achieved by having the orthogonality constraint on the transformation 
be in agreement with the norm of the least squares criterion. This general 
principle is discussed and illustrated by the mathematics of the weighted 
orthogonal Procrustes problem. 
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In SchSnemann [1966], a general solution was given for least squares problems of 
the type 

(1) B = A T  W E, 

where A and B are two given matrices of order p X m (m < p). The objective is to find an 
orthogonal m X m matrix T which minimizes the sum of squared residuals; i.e., 

(2) rain tr  E ' E  so that  T ' T  = T T '  = Im . 
T 

The solution for this "orthogonal Procrustes" problem is 

(3) T = V W ' ,  where 

(4) C = A ' B  -- V D W ~ ;  

i.e., V and W are the vectors (which are, if necessary, orthogonalized) in the Eckart and 
Young [1936] decomposition of C = A'B. Technical problems associated with this solution 
are discussed in SchSnemann [1966] and SchSnemann, Bock, and Tucker [Note 2]. SehSne- 
mann and M. Carroll [1970] have extended this solution to include translations and central 
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dilations, while Lingoes and Sch6nemann [1974] have developed a symmetric and dimen- 
sionless measure S to assess the fit. 

Some applications call for an extension in a different direction. Instead of working with 
the uniformly weighted loss function t r  E ' E  in (2), one may wish to weight either the rows 
or columns (of E) or both  differentially in the loss function [Lingoes, in press]. Technically, 
this means tha t  one replaces the Euclidean distance function tr  E ' E  iu (2) by some weighted 
("elliptical") distance ftmction, e.g. 

(5) tr E'D~2E, 

o r  

(6) t r  E D ~ E  ', 

where D~ is any matr ix and D~ is any positive definite matrix. For most applications, 
these would probably be diagonal matrices. There is no particular problem with the first 
case (5), which may be thought  of as a change in the A and B matrices. If we write 

(7) 

and 

(s) 

we have 

(9) 

and 

B = A 7' + E, 

m i n t r E ' D j ~ E  so t h a t T ' T  = T T '  = 1 ,  
T 

D I E  = D I B  - D 1 A T  = B *  - A * T  = E * ,  

A *  = D ~ A ,  

B *  = D , B ,  

where T = V ' W * '  as ii~ (3) and C* = A*'B* = V*DW*'  and T 'T  = TT '  = I as in (4). 
However, in lhe second ca~e (6), the resulting model becomes unwieldy. Again, 

(10) B = A T  -{- E ,  

but  now we seek 

(11) r a i n  t r  E D 2 2 E  ' ,  so t h a t  T ' T  = T T '  = I .  
T 

The function to be minimized is 

(12) ] = t r  E D 2 2 E  ' - -  2 t r  L ( T ' T  - I ) .  

Differentiating (see, e.g., SchSnemann [Note 1]) with respect to T, we find 

(13) 2 0 ] / O T  = A ' B  - A ' A T D  - T Q  = ep, 

where L is an tmkuown matr ix  of Lagrange multipliers so tha t  

(14) Q = L + L '  = s y m m e t r i c .  

In this case there does not  seem to be any simple solution for T and Q since the second 
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term in (13) cannot be eliminated by appeal to the symmetry of Q, which was the key for 
the solution of the unweighted problem given by  (1) and (2). 

A tractable solution for such weighted least squares problems can be obtained if one 
sees to i t  t ha t  the scalar product function, f (x ,  y), for the orthogonality constraint  on T 
agrees with the norm, n(x), for defining the least squal~es criterion so t ha t  f(x, x) = n2(x) 
for all vectors x. To illustrate this principle, we solve the problem of (6), where 

(15) 

and 

(16) 

E D 2  = B D ~  - A T D 2  = E * ,  

r a i n  t r  E D ~ E  ' = r a i n  t r  E ' E * ' .  
T j T* 

A minimization of t r  E'E* '  = tr  E D ~ E  ' (under choice of T) can be viewed as a minimiza- 
tion of the squared lengths of the row vectors E~' in E with respect to the weighted norm 
E~'D2~E~. To render T "orthogonal" with respect to the associated scalar product E~'D%~E~ 
for the rows E~' in E, one would have to impose 

(17) T D 2 ~ T  ' = T ' T * '  = T * ' T *  = I ,  

whet~e T* = TD~ and where the commutat ivi ty  is reqttired for orthogonality. If one now 
differentiates 

(18) ]* = t r  E ' E * '  - -  2 t r  L ( T * ' T *  - I ) ,  

with respect to T* and sets the derivative equal to zero, one obtains 

(19) T * ' A ' B D 2  = L "4- L '  = s y m m e t r i c ,  

analogous to the unweighted case. Hence 

(20) T * =  V W ' ,  or  T = T ' D 2  -~, 

is the solution, where V and W contain the vectors of the Eckar t -Young decomposition of 

(21) C = A 'BD2 = V D W ' .  

This solution for the weighted least squares problem is of the same form as the solution 
for the unweighted problem because T*, not  T, is a rotation in a Euclidean space where 
t r  E*'E* = t r  E ' E * '  is a sum of squared Euclidean distances. To achieve this, we had to 
amend the side condition as in (17) so t ha t  the scalar product which defines the orthogon- 
ality condition corresponds with the norm which defines the least squares criterion. The  
only difference between the solutions is the matrix C in (4) and (21). If the researcher 
were interested in weighting by D1 and D~ simultaneously, then the A* and B* as in (9) 
would be the input  to the solution of (2) instead of the A and B as given. The program 
M F I T  in the G - L series [Lingoes, 1973] has been modified to take into account either, 
both, or neither weighting system. 
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