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JAMES C. LINGOES 

THE U N I V E R S I T Y  OF M I C H I G A N  

A method for externally constraining certain distances in mult idimensional  scaling configu- 
rations is introduced and illustrated. The approach defines an  objective function which is a linear 
composite of  the loss function of  the point configuration X relative to the proximity data P and the 
loss o f  X relative to a pseudo-data matrix R. The matrix R is set up such that the side constraints 
to be imposed on X's distances are expressed by the relations among  R's  numerical  elements. One 
then uses a double-phase procedure with relative penalties on the loss components  to generate a 
constrained solution X. Various possibilities for constructing actual MDS algorithms are conceiv- 
able: the major classes are defined by the specification of  metric or nonmetric loss for data and /o r  
constraints, and by the various possibilities for partitioning the matrices P and R. Further general- 
izations are introduced by substituting R by a set of  R matrices, Ri, i = 1, ... r, which opens the 
way for formulating overlapping constraints as, e.g., in patterns that are both row- and column- 
conditional at the same time. 

Key words: constrained mult idimensional  scaling, hypothesis testing, geometric models, nonlinear 
optimization. 

1. Introduction 

Particularly in the context of  nonmetric multidimensional scaling, it has been repeat- 
edly pointed out [cf., e.g., Guttman, 1968] that minimizing a general loss function like the 
one defined by Kruskal's stress measure or Guttman's  coefficient of  alienation does not 
always impose enough constraints upon the solution. There are many cases where one 
knows or hypothesizes more about the point configuration X and /or  its functional rela- 
tion to the data than to simply say that the data can be mapped into distances on X by 
some monotonic function. If  such structural expectations are not incorporated into the 
general loss function as additional constraints upon the solution X, it is hard to say if 
there exists a configuration which satisfies the hypotheses. 

Consider the following two cases: (a) The graph of the optimization function is very 
flat in the neighborhood of  the (local) minimum solution point; (b) the optimization func- 
tion has many local minima with almost the same value but quite different coordinates. In 
both instances, the loss function has, so-to-speak, a "low degree of uniqueness" which can 
imply the existence of different X's which are qualitatively distinct but practically equal in 
alienation. I f  one wishes to test a structural hypothesis about one's data by scaling them 
via an MDS procedure, it is necessary to know what loss would be incurred if the solution 
X were forced to be feasible in terms of constraints that go beyond the simple general re- 
strictions contained in the alienation coefficient, for example. If, under these additional 
constraints, the loss measure is not appreciably higher than the one for the general, un° 
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restricted model, the hypotheses are apparently shown to be compatible with the data, 
provided, of course, the representation is reasonably good in terms of absolute alienation. 
On the other hand, in a more exploratory context, a configuration generated via a general 
MDS procedure may turn out to have properties which are rather unattractive. The re- 
searcher may then decide that he does not want to interpret the solution before these psy- 
chological dissonances were eliminated. Thus, after this preliminary general MDS analy- 
sis, a rescaling of the data would become necessary where certain characteristics of the 
solution--for example, certain order relations among the inter-point distances--are de- 
fined to be inadmissible. 

A third and more technical instance in which further constraints on X are absolutely 
essential is related to cases where one would obtain degenerate or quasi-degenerate solu- 
tions. Such degeneracies can be (a) a consequence of the data as, for example, if SSA-I is 
used on a data matrix which can be partitioned such that all proximities within partitions 
are greater than those between partitions, or (b) they can occur, independently of what- 
ever the data are, as a consequence of the properties of the MDS procedure as in the case 
of an unconditional unfolding analysis [Carroll, 1979]. 

Because of these and other less general reasons, a number of different approaches for 
restricting the general MDS loss function have been proposed recently. Shepard & Craw- 
ford [Note 6] introduce a procedure for constraining the shape of the monotone mapping 
function to convexity, concavity, local linearity, etc. [cf. also, Shepard, 1974]. Another ap- 
proach is taken by Bentler & Weeks [1978]: they allow one to reduce the cardinality of the 
parameter space for X by specifying functional relationships among the point coordinates 
or by setting some of these values equal to an externally provided constant value. A simi- 
lar line of thought underlies Bloxom's [1978] and Carroll et al.'s [1980] methods for con- 
straining MDS solutions in N spaces, i.e., in the context of individual differences scaling. 
A generalization of such restricted metric MDS approaches which allows one to specify 
linear and nonlinear constraints has recently been described by deLeeuw & Heiser [in 
press]. Noma & Johnson [Note 4, 5], on the other hand, developed a procedure in which 
one can constrain the order of point projections on the dimensions of the solution space. 
This approach is generalized by Skarabis [Note 7, 1978] who discusses various procedures 
designed to satisfy order constraints on dimensional projections as well as on inter-point 
distances. These latter constraints cannot be made by specifying projection orders, except 
in special cases like a conditional ordering on the distances. Yet, they seem to be particu- 
larly pertinent to nonmetric multidimensional scaling and many questions asked in this 
context. A completely different approach is taken by Guttman [Note 1] who sketches an 
algorithm that restricts the MDS solution to satisfy certain regional hypotheses derived 
from facet theory. 

In this paper, we will consider a very general alternative approach to constrained metric 
and nonmetric multidimensional scaling. Our procedure is designed such that the metric 
and/or order constraints on the distances of X can be formulated in a particularly simple 
and yet flexible way by using a pseudo-data matrix which describes, by the relations 
among its numerical elements, the external restrictions to be imposed on X. The method is 
first described in general; then, a specification of the general formulation is outlined; fi- 
nally, some applications help illustrate some of the issues involved in such MDS prob- 
lems. 

2. General Definitions and Equations 

In the following section, we state some definitions and equations that are basic to all 
MDS procedures that will be discussed in this paper. 

(2.1) P -- (Po-): an n x n symmetric matrix of proximity measures with 



INGWER BORG AND JAMES C. LINGOES 27 

n being the number of  objects or stimuli. Some elements 
of P may be undefined (missing data). 

(2.2) X = (x,~,): an n x m matrix of  coordinates with m being the dimen- 
sionality of the configuration that X describes. 

(2.3) D = (do): an n x n matrix of distances on X. 

(2.4) R = (r~j): an n x n matrix of  pseudo-data which expresses, by the 
relations among its numerical elements, the restrictions to be imposed on the correspond- 
hag elements in P. The matrix R may only be partially defined, or, expressed differently, 
some r~s may be "missing data". Moreover, R may be partitioned by defining any disjoint 
subsets of  its elements. 

(2.5) Ap = (~e~) = T(P): an n x n matrix generated from P by the transformation 
T. T is a set of functions with elements defined for the respective partitions of  P. T is "ad- 
missible" in the sense that each of  its elements preserves those properties of  its domain 
variables which are considered meaningful. In addition, T optimizes the correspondence 
between P and D in some sense, i.e., T is either a least-squares fitting transformation of P 
with respect to D, or a rank-image permutation of D relative to P. 

(2.6) AR = (~R~) = M(R): an n x n matrix which is a function of  R. The transfor- 
mation M is defined for specified values of  R only. Analogous to T in (2.5), M optimizes a 
relationship between D and R which is either a least-squares fit of  R to D or a rank-image 
permutation of  D relative to R. 

Properties of  M and T 

2. 7.1 Monotone functions. For nonmetric definitions of  M or T, the following mono- 
tonicity cases are relevant [Lingoes & Roskam, 1973]: (a) Po > Pk~ (P being a set of  similar- 
ity data.) ~ 6,j < 6k/, i ~ j ,  k # l. This defines semi-strong monotonicity if  some values in P 
are tied, since p,j --P~t apparently implies nothing about the order relation of the images of  
Po and pkt. Thus, ties in P can be "broken" in A, i.e., A is less restricted and can be con- 
structed to fit D better. I f  no ties exist in P, we have strong monotonicity. (b) p,j > pk, ~ 6ij 
< 3kt & P,j = Pk~ ~ 6~j = 8k~. This is the more general case of  strong monotonicity where ties 
in P are considered meaningful and have to be preserved in the solution X. (c) p,j > p~, 
6,j _< 8~,. This defines weak monotonicity if there are ties in P. Otherwise, we have semi- 
weak monotonicity with the more general case being analogous to (b). 

2. 7.2 Rank images. In a nonmetric context, M and T may generate so-called rank im- 
ages of  D relative to P or R, respectively, denoted by D* and D*. Letting Y stand for ei- 
ther P or R, this means that the operators induce a permutation in D such that the ranks 
of  the elements in the resulting A = D* correspond to the ranks of  the elements in the ref- 
erence sequence Y. The nature-~f the correspondence is determined by the respective defi- 
nition of  monotonicity and, of  course, by the existence of  ties in Y and /or  D. If  ties exist 
in D, the permutation is not determined within the respective sets of  tied values. If  ties 
exist in Y, the values in D* corresponding to those in the respective tied sets of  Y are per- 
muted such that a better fit between Y and Dr* is achieved, provided the monotonicity cri- 
teflon allows such untying (primary approach to ties). Otherwise, the values in these sub- 
sets of  D* are averaged (secondary approach to ties) [Guttman, 1968; Roskam, 1977]. 

2. 7.3 Monotone regression. Another choice for M and /or  T in a nonmetric procedure 
is Kruskal's monotone regression [Kruskal, 1964]. The resulting sequence of fitting values, 
A = /)y, is required to be monotone in some sense with Y, where Y is equal to P or R. 
Under the stronger model, which is related to choosing the secondary approach to ties, the 
values in D corresponding to each respective set of  tied values in Y are averaged first. The 
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resulting sequence of numbers is then iteratively partitioned into larger and larger subsets 
until the averages of  the elements of  these subsets of  "blocks" are weakly monotone with 
Y. Once this is achieved, all values belonging to one block are set equal to this block's av- 
erage. The weaker model drops some constraints as a consequence of requiring only the 
primary mapping of  ties which permits different distances for tied data. Here, the tied ele- 
ments of  Y are permuted first within their respective tie-blocks such that the correspond- 
ing distances all form monotonically increasing sequences (for dissimilarity data). One 
then proceeds as before via blocking and averaging. 

2. 7.4 Met r i c  mappings.  The simplest metric MDS procedure is certainly the linear one 
which defines A as follows: 

where Y is equal to P or R, and 

(2.7.4') b = 

A = a + b Y ,  

IZo(a , j  - d%vo. - Y)I 
z , L v o  - P)~ 

a - - d - b y ,  

where d and )7 are the means of those elements of  D and Y, respectively, to which the sum- 
mation sign in (2.7.4') refers. This simple regression problem is generalized in an obvious 
way if partitions are defined on Y: the summations then extend over the respective subsets 
only, i.e., a separate regression equation is set up for each partition. A substantial number  
of  nonlinear models can also be handled by the linear approach if the regression function 
is linearizable. (Some of  the more common linearizing transformations are described by 
Daniel & Wood [1971]). In such a situation, one has to substitute Y in (2.7.4') by Y*, 
where Y* is the linearized Y. For  example, for the model y,j = aexp (bdu), one sets y* = 
log0~0.). Other, strictly nonlinear models are principally also conceivable in this context, 
but they certainly require special study. We shall not pursue this issue here. 

L o s s  Funct ions  

The multidimensional scaling problem can now be formulated as 

(2.8.1) 

wherea ,  f l_>0, a + f l =  1, and 

(2.8.2) 

(2.8.3) 

L = a L e  + f lLR = min, 

L .  = Y,0(d~j- 6~j<e,) 2, 

L ,  = Go(d o - 3,j,,)):. 

The trivial solution where all points in X are identical is excluded by a norming constraint 
on X. 

N u m e r i c a l  Solut ion 

Problem (2.8. l) represents a standard MDS loss function which can be solved by an 
iterative method such as the gradient minimization employed in most MDS procedures. 
Thus, we rewrite (2.8.1) as 

(2.9.1) L ~'~ = a~s)Le ~" + ff'~LR ~') = min, 

where s is an iteration index. Setting a <'> = k and ff'~ = c leads to problems previously con- 
sidered in KYST [Kruskal et al., Note 2] and ALSCAL [Takane et al., 1977], for example. 
(The usual psychological context is scaling of  replicated data with P being the data col- 
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lected at time t~ and R being the replication.) For the present purpose of  constraining 
MDS solutions, we define 

(2.9.2) l i m ~ f f "  = 1. 

The relative weight of  the loss component related to the external constraints R becomes 
thus greater and greater as the iterative minimization process proceeds, which eventually 
forces X to satisfy the constraints as nearly as possible. Solving (2.9.1) under condition 
(2.9.2) differs from minimizing (2.8.3) only if D is not completely determined by (2.8.3). In 
other words, there must be some leeway for the data to influence X. There are various 
possibilities for such a situation, e.g.: R contains many "'missing data", while P is com- 
plete; R is partitioned such that M represents a set of  functions as, for example, in case of  
a row-conditional matrix, while P is unconditional; R contains a large number of  ties, and 
M and T are monotone mappings using the primary approach to ties, while P contains 
values that are all distinct; etc. 

An obvious generalization (not previously introduced to simplify notation) is the fol- 
lowing: 

(2.9.3) L ~" = a~'L,, o~ + f f '[LR, ~ + ... + L,~']. 

We will show later that the case where r > 1 is indeed needed for relatively simple con- 
straint patterns. Of  course, (2.9.3) could also be further generalized by allowing for more 
than just one P matrix, for example. 

3. A Specification o f  the General Approach: the C M D A  Procedure 

An algorithm which represents a specification of  the general formulation outlined 
above has been developed and programmed [Lingoes & Borg, 1978]. The procedure is a 
"nonmetric" MDS method which allows the user to impose certain order constraints on 
the distances of  X. In the following, we will denote this method as CMDA, an acronym 
for "constrained/confirmatory monotone distance analysis". 

CMDA makes extensive use of  previous work by Gut tman [1968] and Lingoes & 
Roskam [1973]. It suffices, therefore, to give but a brief outline of  the algorithm [see also: 
Borg & Lingoes, 1979]. 

Assuming the existence of  an initial configuration X, we seek to improve X relative to 
L via a movement in the direction of  steepest descent in Re ~". The minimization of  L is 
conditional to fixed targets A. and AR, respectively. These targets are computed first in 
cycle s. The required gradient is then found via partial differentiation of  (2.9.1) with re- 
spect to X. One obtains the correction formula 

(3.1) 

where 

(3.2) 1 - 8,~p) 

and ~TLR is analogous. For  undefined elements in P or R, one sets 8~e)/d,j = 8 ,~) /d  U = 1. 
Correction (3.1) is carried out for all coordinates iteratively until the t-process converges 
reasonably well. The obtained X then gives rise to new targets A e and AR in s + 1. As to 
the penalty weights c~ ~'~ and i f ' ,  we set a °=°~ = ffs=o) = 0.5 and a t'+') = k /1 .V ,  for k < 1.1, 
and ffs+, = 1 - a ~+'. 
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The target matrices Ap and AR are constructed via rank-image transformations for a 
number of initial s-iterations and later--when the minimization process seems to have 
converged essentially or starts to diverge--via the monotone regression approach. This 
tactic has the advantage of speed as well as preserving distinctness of the points in the be- 
ginning and later exploits the least-squares minimization property of monotone regression 
to ensure convergence [de Leeuw & Heiser, 1977]. 

The generalized loss function (2.9.3) is easily implemented by setting ~TLR = VLR, + 
• .. + VLR, in (3.1). CMDA presently allows for two R matrices. 

Partitions on P or R and the chosen approach to treatment of ties are incorporated 
into CMDA by constructing the target matrices Ae and AR accordingly. Partitions simply 
imply that the respective subsets of Ap and AR are generated independently of each other. 
For rank images, this means that D is not permuted into the unconditional rank order of 
P or R, but rather that each respective partition of D is permuted into the ranks of the 
corresponding partition of P or R. In case of monotone regression, the disparities are con- 
structed for each partition in turn. In the primary approach to ties, ties in the data are un- 
tied by ranking tied data according to the ranking of the corresponding elements in P and 
R, respectively. Using the secondary approach to ties and rank images entails averaging 
all fitting values in A for each set of ties in the data. For monotone regression targets, the 
secondary approach to ties requires a prepartitioning of D [see (2.7.3)]. 

As to a "rational" initial configuration, a number of possibilities is conceivable. None 
of them is very satisfactory since R can be constructed in so many different ways. How- 
ever, since CMDA's purpose is closely related to the existence and testing of structural hy- 
potheses, it seems most appropriate to use a starting configuration that is either directly 
generated from a substantive theory or is the solution of an unconstrained MDS analysis 
modified such that it reflects the substantive hypotheses. 

4. Some Illustrative Applications o f  C M D A  

In the following, we will illustrate the CMDA procedure with the help of some real 
data applications. No attempt will be made to go into much substantive detail: the pur- 
pose of the examples is rather to demonstrate how the procedure can be used. 

The first application reanalyzes Ekman's [1954] well-known data on the similarity of 
14 colors. These data were previously investigated by various researchers using different 
MDS techniques [e.g., Coombs, 1964; Shepard, 1962, 1978]. It was uniformly found that a 
distance representation is possible in a two-dimensional space. In addition, the expected 
circular order of the color-points was also shown to result from the scaling, thus con- 
firming the color circle as a principle of color perception. Using SSA-I, for example, one 
obtains the configuration represented by the open circles in Figure 1. The solution is in 
excellent agreement with the data, the alienation being K -- 0.03. One notices, however, 
that the points do not fall on a perfect circle, although very nearly so. We will now use 
CMDA to "project" them on a circle such that the projection points are as compatible 
with Ekman's data--in the sense of the loss function Le----as possible. The specifications 
made for the procedure are as follows: (a) As an initial configuration, the SSA-I solution, 
augmented by a fifteenth point somewhere in the center of the circular point arrangement, 
is used. (b) The P matrix corresponds to Ekman's data matrix, but is augmented by a 
dummy variable which represents the "center point" used in (a); the relations of this 
dummy variable to the other objects are defined to be missing data. (c) The constraint ma- 
trix R is also 15 × 15, containing the same value (e.g., all l's or 2's) in row/column 15 and 
"missing data" otherwise. (d) The secondary approach to ties on R is chosen which forces 
all points representing real data to be equidistant from the center point. The thus con- 
strained MDS solution is found in but a few iterations. It corresponds to the solid points 



INGWER BORG AND JAMES C. LINGOES 31 

/ 
/ 

/674 
551 

6 2 8  

' 6 1 0  

J 
/ 

f 
. - - - ---  ..... ------.- _ 4 3 4  

, - , - ~ 4 4 5  

4 6 5  

~,72 

4 9 0  

6 0 0  

584"e --o 
04 

5 5 5  

FIGURE 1 
SSA-I representation for Ekman's color data (open circles); CMDA solution for same data (solid circles); Num- 

bers indicate wavelength of  stimuli. 

in Figure 1. Not surprisingly, its alienation is only very slightly higher (K = 0.04) than the 
one for the SSA solution (K ---- 0.03) which shows that the loss function is pretty fiat in the 
neighborhood of the SSA solution. From this, one may derive the substantive conclusion 
that the elliptic deformation of the color circle in the unconstrained solution is probably 
psychologically meaningless. 

We now consider some data on the perception of simple geometrical objects. A prob- 
lem that has been of considerable interest for some time is how the judgments that an in- 
dividual gives with respect to the similarity of simple geometrical stimuli can be ex- 
plained. These stimuli are commonly constructed by systematically varying some of their 
attributes like "length" and "width" for rectangles [Krantz & Tversky, 1975; Sch6ne- 
mann, 1977], "area" and "eccentricity" for ellipses [Noma & Johnson, Note 4], "length" 
and "inclination" of straight lines [Eisler & Roskam, 1977], etc. Our illustration uses data 
from Noma & Johnson [Note 4] on ellipse perception. They asked subjects to evaluate the 
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pairwise similarities of 16 ellipses constructed according to the two-dimensional design 
depicted in Figure 2. It was hypothesized that the individuals base their judgements on 
the design dimensions but may use monotone psychophysical functions to distort them. 

Scaling the individuals' similarity data via SSA-I, one finds one subject whose data 
lead to a representation (Figure 3) that is grossly angle-distorting or non-conformal with 
K = 0.15. Testing different initial configurations further suggests that this solution is in- 
deed the global minimum for the unconstrained MDS problem. Apparently, the result is 
not in agreement with the substantive theory and might lead to a rejection of  the per- 
ceptual model. In order to evaluate the significance of  the finding, we now use CMDA to 
enforce conformality of  the representation as follows: (a) As an initial configuration, the 
design lattice in Figure 2 is used. (b) With d(i, j) denoting the distance between points i 
and j, nine constraint sets are enforced on X: d(1, 2) = d(5, 6) = d(9, 10) = d(13, 14), d(2, 
3) = d(6, 7) = d(10, 11) = d(14, 15), d(3, 4) = d(7, 8) = d( l l ,  12) = d(15, 16); d(1, 5) = d(2, 
6) = d(3, 7) = d(4, 8), d(5, 9) = d(6, 10) = d(7, 11) = d(8, 12), d(9, 13) = d(10, 14) = d(11, 
15) = d(12, 16); and d(l, 6) = d(2, 5), d(6, 11) = d(7, 10), d ( l l ,  16) = d(12, 15). (b) The 
secondary approach to ties is used on R and all elements within a constraint set are set 
equal to some constant number k. Under these conditions, one obtains the representation 
in Figure 4 which is, of course, in perfect agreement with the hypothesis but only slightly 
higher in alienation (K = 0.16) than the one in Figure 2. (Although we have succeeded 
here in imposing restrictions on the coordinates by constraining the distances, it seems 
generally easier to handle such cases with one of  the procedures designed specifically for 
that purpose [e.g., Bentler & Weeks, 1978; Noma & Johnson, Note 4, 5; de Leeuw & Hei- 
ser, in press; etc.]). The results illustrate one of  the points made in the introductory para- 
graph of  this paper: the loss criterion employed in general MDS procedures like SSA-I 
may be too general for the problem at hand. Tailoring the optimization problem to the 
substantive research problem can make the MDS solution much more meaningful. 

As a final example, we will now investigate a data set imposing order constraints 
only. Gut tman [1965] reports a matrix of  intercorrelations for eight intelligence tests 
(Table 1). A theoretical study of the content of these tests leads Guttman to the formula- 
tion of a two-facet definition with the facets {Ac = achievement, An = analytical} and 
(N = numerical, P --- pictorial}. The respective structuples for the tests are given in Table 
1. Note that there are just four different test types: the digit following the structuple de- 
notes a replication. If  the content definitions are actually useful for organizing empirical 
observations, one should expect to find the following structure of items if Table 1 is repre- 
sented via a nonmetric MDS procedure (Figure 5). 

TAB LE 1 

Intercorrelations for Eight Intelligence Test Items 

Structuple* NAcl  NAc2 NAn1 PAn1 PAn2 PAcl PAc2 PAc3 

1 :NAcl 
2:NAc2 
3:NAn1 
4:PAn1 
5:PAn2 
6:PAcl 
7:PAc2 
8:PAc3 

* .67 .40 .19 .12 .25 .26 39  
.67 * .50 .26 .20 .28 .26 .38 
.40 .50 * .52 .39 .31 .18 ,24 
.19 .26 .52 * .55 .49 .25 ,22 
.12 .20 .39 .55 * .46 .29 ,14 
.25 .28 .31 .49 .46 * .42 ,38 
.26 .26 .18 .25 .29 .42 * ,40 
.39 .38 .24 .22 .14 .38 .40 * 

* See t e x t  f o r  meaning o f  s t ructup les.  
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Design configuration for Noma & Johnson's ellipse data. 
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SSA-I solution for ellipse similarity data of subject from Noma & Johnson's experiment. 
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Expected MDS representation for data in Table 1. 

Scaling the data via SSA-I leads indeed to a configuration which comes close to ful- 
filling the expectations depicted in Figure 5. However, the configuration is too compressed 
in the vertical direction which brings points 3 and 6, for example, so close together that 
d(3, 6) < d(1, 6), contrary to the hypothesis. The question that arises now is just how 
much such an elliptical compression of Figure 5 is due to data constraints. An answer is 
given by enforcing the various conditional orders implied in the facet definitions as side 
constraints for the MDS analysis. For that purpose, we use the matrix in Table 2 as R and 
employ the primary approach to ties. 

Note that by using the primary approach to ties, R imposes actually substantially 
fewer constraints on X than P, since P contains much fewer ties. To be more precise, P 
specifies 378 - 11 = 367 order conditions, but R only 378 - 151 = 227, where a complete 
order of  eight elements implies 378 restrictions and the subtraction factors are due to the 
existence of  ties. (It should be noted, however, that the number  of  constraints or even the 
ratio of  the number of  constraints in P and R is limited informationally. The constraint 
pattern, as well as which constraints are being imposed vis-~i-vis the data, are better in- 
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TAB LE 2 

Constraint Pattern for 
Intelligence Test Iterns* 

I 

1 
2 
3 
4 
5 
6 
7 
8 

*See 

1 2 3 4 5 6 7 8  

- - 5 4 3 3 4 4 4  
5 - - 4 3 3 4 4 4  
4 4 - - 4 4 3 3 3  
3 3 4 - - 5 4 4 4  
3 3 4 5 - 4 4 4  
4 4 3 4 4 - - 5 5  
4 4 3 4 4 5 - - 5  
4 4 3 4 4 5 5 - -  

Table 1 fo r  ident i f ica~on. 

dicators of how much leeway there is for P to influence the solution [cf., Lingoes, Note 3]). 
Using CMDA, one obtains the configuration in Figure 6 with K --- 0.15. The alienation 
increment of the CMDA solution relative to the SSA-I result (0.15 vs. 0.03) is quite sub- 
stantial considering that only eight variables are being represented. It may lead the re- 
searcher to think about additional facets of item content in order to explain the compres- 
sion of  the expected circular point order (cf. also Borg & Lingoes, 1978, for some further 
analyses). 

At this point, it seems necessary to add a few more comments on multiple R's. What 
we have attempted in Table 2 was, in fact, to specify a constraint pattern for a circumplex. 
However, upon close investigation, the R matrix turns out to be slightly over-restrictive, 
i.e., it imposes more side constraints than are actually needed in this context. I f  one de- 
fines an ordinal circumplex by the property that the distances from each respective point 
to all other points form a function with only one bending point, then this implies an R 
that is row- and column-conditional at the same time. Such a constraint is actually easily 
formulated by using the same R matrix twice, i.e., column-conditionally as R~ and row- 
conditionally as R~. The fact, however, that the facet design for the data in Table 1 implies 
a weak order only, requires slightly more exotic splittings: conditionalities are here to be 
set up over the item "blocks" {1, 2}, {3}, {4, 5}, and {6, 7, 8}. This could be achieved by 
using a separate R matrix for each super-row and super-column defined by the item 
blocks [Kruskal, Note 8], but CMDA thus far handles only two R matrices. 

5. Discussion 

The proposed approach for externally constraining the distances in an MDS con- 
figuration uses the so-called exterior penalty function method. There are, of  course, a 
great variety of  other procedures in nonlinear programming which could also be consid- 
ered. One of the more popular alternatives is the gradient projection method, previously 
used by Skarabis [Note 7] in this context. The projection method, however, assumes that 
the projection point of Ve on the tangent plane to the feasible region is "'close" to a point 
on the surface of the feasible region. If  this is not so, the procedure becomes very com- 
plicated indeed [Luenberger, 1973]. Since one should not expect that the feasible set (de- 
fined by R) is always convex in MDS, the projection method does not seem to offer any 
advantages over the chosen penalty function approach. A more important reason for 
adopting the latter method is, however, that a feasible region might not even exist in some 
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FIGURE 6 
CMDA solution for data in Table 1. 

applications, i.e., one may define R in such a way that the constraints cannot be perfectly 
satisfied in a given dimensionality, but the approximate imposition of  structure seems suf- 
ficient for the purpose at hand or leads to a solution that is visually more accessible to in- 
terpretation. In such a case, it is completely unclear how a projection method could be 
constructed at all. 

Although the penalty function method seems to have principal advantages in the 
considered MDS context, there are some problems associated with it that deserve further 
study. The most important  and obvious question is related to the choice of  the weights a 
and ft. The starting values a ~°~ = fl~0~ = 0.5 have been found not to be optimal in all cases. 
Rather, a higher fl-weight right from the start is often better. As to the shifting of  the rela- 
tive weight to fl in the s-process, it is apparent  that a fast incrementing of  fl causes the 
trajectory of  the gradient search to curve relatively fast toward the feasible region such 
that the final X satisfies all constraints but is not optimal in terms of  Le. One can test for 
such a solution, however, by restarting the procedure with new weights, say, a (°~ = ffo~ = 
0.5, etc., thus moving in "leaps" toward the optimal X, or, if  the optimal X has been 
reached already, returning to this solution due to the effect of  the increasing ft. 
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Leaving these technical problems behind, one can nevertheless see from the illustra- 
tive applications of  the CMDA method that one point made at the beginning of  this paper 
is actually valid: data structures may often be represented by a variety of  MDS configura- 
tions that are not "much" different in alienation. This allows one to pick a more meaning- 
ful solution rather than having to deal with some unconstrained and blindly descriptive 
representation which may suggest that certain substantive expectations are not compatible 
with the data. On the other hand, the constrained scaling method is not particularly pow- 
erful in discriminating among competing theories. In a number of  empirical applications, 
we have found that the difference in alienation for various constraint conditions related to 
different hypotheses is often very "small". This, of  course, raises the question of how to 
evaluate such differences, and, more generally, whether global fit coefficients are very use- 
ful in this context at all. We cannot offer any simple answers to these questions at this 
time, but it should be pointed out that studying point-alienation coefficients [Borg, 1978] 
or the matrix of "residuals" [Kruskal & Wish, 1978] can provide more detailed informa- 
tion as to the sources of  alienation. 
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