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The vast majority of existing multidimensional scaling (MDS) procedures devised for the 
analysis of paired comparison preference/choice judgments are typically based on either scalar 
product (i.e., vector) or unfolding (i.e., ideal-point) models. Such methods tend to ignore many 
of the essential components of microeconomic theory including convex indifference curves, 
constrained utility maximization, demand functions, et cetera .This  paper presents a new sto- 
chastic MDS procedure called MICROSCALE that attempts to operationalize many of these 
traditional microeconomic concepts. First, we briefly review several existing MDS models that 
operate on paired comparisons data, noting the particular nature of the utility functions implied 
by each class of models. These utility assumptions are then directly contrasted to those of 
microeconomic theory. The new maximum likelihood based procedure, MICROSCALE, is 
presented, as well as the technical details of the estimation procedure. The results of a Monte 
Carlo analysis investigating the performance of the algorithm as a number of model, data, and 
error factors are experimentally manipulated are provided. Finally, an illustration in consumer 
psychology concerning a convenience sample of thirty consumers providing paired compari- 
sons judgments for some fourteen brands of over-the-counter analgesics is discussed. 

Key words: multidimensional scaling, paired comparisons data, maximum likelihood estima- 
tion, microeconomics, consumer psychology. 

1. Introduction 

Psychometric procedures developed for the analysis of paired comparisons data 
typically attempt to utilize spatial models to display the structure in such data. Typi- 
cally, one of two general classes of models have been utilized to represent such pref- 
erence/choice data: vector and unfolding models. A vector or scalar products multidi- 
mensional scaling model (Slater, 1960; Tucker, 1960) represents subjects as vectors and 
objects as points in a T-dimensional space. The projection of object points onto subject 
vector(s) is assumed at least monotone with that subject's preferences. These analyses 
estimate both the subjects' vector directions and object coordinates in a prescribed 
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dimensionality. Vector models have the property that preference or utility changes 
monotonically with all dimensions. That is, these models assume that if a certain 
amount of a dimension is good, even more must be better. (The iso-utility contours in 
two dimensions therefore are parallel straight lines perpendicular to a subject's vector.) 
Work by Bechtel, Tucker, and Chang (1971), Cooper and Nakanishi (1983), Carroll 
(1980), De Soete and Carroll (1983, 1986), and DeSarbo, Oliver, and De Soete (1986) 
present alternative probabilistic vector MDS models that operate on such paired com- 
parisons data. 

The other major type of psychometric model used to represent such paired com- 
parisons preference/choice data is the ideal-point or unfolding model. We will only 
discuss Coombs' (1964, pp. 80-119) simple unfolding model. Here, both subjects and 
objects are represented as points in a T-dimensional space. The points for the subjects 
represent ideal-points, or optimal sets of dimensional values. The farther a given object 
point is from a subject's ideal-point, the less utility that object provides to that subject. 
This notion of relative distance often assumes a Euclidean metric on the space implying 
that, in two dimensions, iso-utility contours are families of concentric circles centered 
at a subject's ideal-point. Carroll (1980) demonstrates that the vector model is a special 
case of this unfolding model where the ideal-point goes off to infinity. The goal in 
unfolding analysis is to estimate both the subjects' ideal-points and the coordinates for 
the objects in a prescribed dimensionality in some optimal fashion. Cooper and Na- 
kanishi (1983), Schfnemann and Wang (1972), Wang, Schrnemann, and Rusk (1975), 
Zinnes and Griggs (1974), De Soete, Carroll, and DeSarbo (1986), De Soete and Carroll 
(1986), and DeSarbo, De Soete, and Eliashberg (1986) provide alternative probabilistic 
MDS unfolding models that operate on paired comparisons data. 

Most economists would be quite critical of the nature of the utility functions 
implied by both these vector and unfolding models. In the vector model, subjects have 
linear indifference or iso-utility curves that imply a constant rate of substitution (i.e., 
the amount of one dimension a subject will sacrifice to obtain a unit of  a second is 
constant and independent of the amount of either dimension possessed by the object in 
question). In simple unfolding models, subjects possess circular (in two dimensions) 
indifference or iso-utility curves around their ideal point. This makes it possible for two 
object points: (cl ,  c2) and (dl ,  d2) to be equally preferred by a subject, where cl > 
dt and c2 > d2, and thus, the first object dominates the second object on both 
dimensions. In contrast, basic microeconomic theory assumes that subjects will have 
convex indifference curves with a decreasing marginal rate of substitution, where the 
amount of one dimension or characteristic a subject will sacrifice for one unit of a 
second is negatively related to the amount of the second characteristic already pos- 
sessed (see Henderson & Quandt, 1984; Lancaster, 1971). 

Against this background, this paper develops a new multidimensional scaling pro- 
cedure incorporating the microeconomic notion of convex subject preferences. The 
underlying model also incorporates recent developments in multidimensional scaling 
that allow for a translation of physical object attributes into derived object coordinates 
(e.g., DeSarbo & Rao, 1984, 1986). These two features described above, convex pref- 
erences and translation from physical attributes to perceptual characteristics, enable us 
to relate our procedure to Lancaster's (1966, I971) microeconomic theory of consumer 
demand. Hence, we call the procedure MICROSCALE. The next section briefly re- 
views basic concepts of utility theory in microeconomics including developments by 
Lancaster (I966, 1971). MICROSCALE is then described in terms of the model, max- 
imum likelihood estimation, and program options. The results of a modest Monte Carlo 
analysis are discussed showing somewhat consistent algorithm performance over a 
number of different model, data, and error specifications. Finally, an application in 
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consumer  psychology is provided where consumer  preferences for some 14 brands of  
over- the-counter  analgesics are analyzed by MICROSCALE.  

2. Microeconomic Conceptualizations of  Preference and Utility 

We first briefly review the traditional microeconomic conceptualization of  prefer- 
ences and describe several standard regularity assumptions concerning them. In par- 
ticular, we discuss the utility function and its relationship to preference orderings. 
Then,  the problem of  utility maximization subject to a budget constraint  is presented in 
terms of  traditional views on consumer  behavior.  Finally, we describe the Lancas ter  
(1966, 1971) view of consumer  behavior  in terms of its differences from the traditional 
views. For  the discussion that follows, we interchange the use of  consumer  with sub- 
ject ,  and goods/services, commodities,  or brands with objects. 

Traditional microeconomic theory pictures a consumer  faced with possible con- 
sumption bundles in some set X*, his consumption set. A consumption/commodity  
bundle x is a collection of amounts of  all goods and services consumed. If  there are N 
goods and services in the economy,  then x is a vector  of  real numbers [Xl ,  x2, • • • ,  
XN]', where xj is the amount  of the j - th  commodity consumed.  Equivalently,  x is a 
point in Euclidean N space. The following discussion is adapted from Henderson  and 
Quandt (1984), Varian (1984), and Russell and Wilkinson (1979). 

Assumption 1: (Consumption Space). The consumption space, X*, is the non- 
negative Euclidean N-orthant .  

The consumer  is assumed to have preferences over  the various commodity bundles 
in X*. x >> y indicates bundle x is preferred to y, x - y indicates bundle x and y are 
equally preferred (consumer is indifferent), and y >> x indicates that bundle y is pre- 
ferred to x. Weak preference relationship___s >> and _~ are similarly defined. We use - ,  >- 
and ~ to designate less than or equal to, greater than or equal to, or not equal to, 
respectively,  for specifying order  relations between the amounts of  all commodit ies 
between any pair of  bundles. 

Assumption 2: (Completeness). For  all x and y in X*,  either x >>__ y, or y ->__ x, or  
both. 

Assumption 3: (Reflexivity). For  all x in X*, x >> x. 

Assumption 4: (Transitivity). For  all x, y, and z in X*,  if x >> y, y >>__ x, then 
x >__> z. 

Assumption 5: (Continuity). For  all y in X*,  {x: x >__> y} and {x: x ~ y} are closed 
sets; or equivalently, {x: x >> y} and {x: x ~ y} are open sets. 

This fifth assumption is necessary to rule out certain discontinuous behavior;  it 
says that, if (x i) is a sequence of  consumption bundles that are all preferred to a bundle 
y and if this sequence converges to some bundle x*, then x* is preferred to y. The most  
important consequence of  continuity is that if y is strictly preferred to z and if x is a 
bundle that is close enough to y, then x must be strictly preferred to z. 

Assumption 6: (Strong Monotonicity). If  x -> y and x # y, then x >> y. 
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This states that more of a bundle is better than less. This is akin to the assumptions 
made in vector/scalar products MDS models. Note that ideal-point (finite) MDS models 
violate this assumption. 

Assumption 7: (Strict Convexity). Given x ~ y and z in X*, if x >>___ z and y >_.> z, 
t h e n t x +  (1 - t ) y > > z f o r a l l 0 < t  < 1. 

Note that a lexicographic preference ordering violates strict convexity (Henderson 
& Quandt, 1984, p. 13). Thus, such preferences are not truly captured by the classical 
theory. 

In classical economic theory, one often summarizes a consumer's behavior by 
means of a utility function, that is, a continuous function u: X* ---> R such that x >> y 
if and only if u(x) > u(y). It can be shown that, if the preference ordering is complete, 
reflexive, transitive, and continuous, then it can be represented by some utility func- 
tion. A utility function u(x) is often a very convenient way to describe preferences, but 
it may not have any coherent psychological interpretation (see Cooper, 1973, for dis- 
tinctions between preference and utility). One relevant property of a utility function is 
its ordinal character. Thus, if u(x) represents some preferences and f: R ---> R is a 
monotonic, increasing function, then flu(x)) will represent exactly the same preferences 
since f(u(x)) > flu(y)) if and only if u(x) > u(y). Utility functions are usually graphically 
displayed with the help of indifference curves, or the sets of all consumption bundles 
that a consumer is indifferent between. One can think of indifference curves as being 
level sets of the utility function. The set of all bundles on or above an indifference 
curve, {x ~ X*: x >_> x0}, is called an upper contour set. A particular level of utility or 
satisfaction can be derived from a variety of commodity bundles. An indifference curve 
is thus defined as {x E X*lu(x) = u0} for some constant u0. Note, Assumption 5 
guarantees that the derived indifference curves are continuous, while Assumption 7 
guarantees that the derived indifference curves are convex to the origin. Convex indif- 
ference curves imply that a consumer has diminishing marginal rates of substitution 
(i.e., the amount of one commodity a consumer will substitute for another and keep the 
same level of utility is a decreasing function of the second commodity). 

In the basic problem of preference maximization, the set of feasible alternatives is 
just the set of all bundles that the consumer can afford. Let w be the fixed amount of 
money available to a consumer, and let p = (Pl . . . .  , PN)' be the vector of prices of 
goods 1 . . . .  , N. The set of affordable bundles, the budget set of the consumer, is 
given by: 

S = { x ~ X * :  p'x--<w}, 

where, as defined, S is a convex polytope. The problem of preference maximization can 
then be written as: 

max u(x) 
s.t. p 'x -< w. 

x EX* 

The solution obtained via Lagrangian maximization is the point of tangency of the 
indifference curve associated with the highest utility and the budget constraint w. The 
regularity conditions, Assumptions 2 through 6, and strict convexity, Assumption 7, 
guarantee the existence and uniqueness of the solution. 

Indifference curves form the basis of much model building in economics and psy- 
chology and it is surprising that few empirical studies exist that focus on their structure. 
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The earliest such study was performed by Thurstone (1931) who constructed indiffer- 
ence curves for quantities of pairs of three different goods: hats, pairs of shoes, and 
overcoats. He constrained the mathematical form of these curves to be hyperbolic 
(convex) and then fit parameters to observed preference data. The second study con- 
centrated on the consumption of eggs and bacon (Rousseas & Hart, 1951). A useful 
aspect of the Rousseas and Hart study was that the most preferred combination of eggs 
and bacon had to be consumed by the subjects, hopefully inducing them to consider the 
alternatives more carefully. One final study, performed by MacCrimmon and Toda 
(1969), represents a major departure from the two papers cited above. Rather than 
assuming convexity, they derived a procedure to experimentally determine the shape of 
individual indifference curves. They examined tradeoffs between money and pens, and 
between money and pastries for seven subjects. The authors concluded that subjects 
had a satiation point for pastries beyond which subjects had no desire for additional 
pastries. This violated Assumption 6 (Strong Monotonicity) and suggested that money- 
pastry preferences did not fit the pure economic paradigm. Money-pen preferences 
were more appropriate. Among the seven subjects, MacCrimmon and Toda found only 
two examples of nonconvexity. One subject exhibited step-function like indifference 
curves. Another subject displayed noticeable concavity in one of his outer indifference 
curves. The authors attributed this latter instance to subject carelessness and con- 
cluded that their money-pen results are largely consistent with convexity. To be fair 
though, we should recognize that the degree of convexity was not great, and that some 
indifference curves exhibited long linear appearing segments. 

L a n c a s t e r ' s  T h e o r y  o f  C o n s u m e r  D e m a n d  

Lancaster's (1966, I97I) theory of consumer demand has been an important con- 
tribution to the consumer psychology literature. It has formed the basis for much 
research in consumer psychology (see Haines, 1975; L a d d &  Zober, 1977; Pekelmen & 
Sen, 1975; Ratchford, 1975, 1979; Ryans, 1974). It has also been the basis for the per 
dollar product spaces used in many consumer psychology models (see Hauser, 1988; 
Hauser & Shugan, 1983; Hauser & Simmie, 1981). The latter two references develop a 
type of probabilistic vector model for external analysis for first choice data in a frame- 
work similar to the Lancaster theory. 

Lancaster's model differs from traditional economic presentations of consumer 
demand in that utility is derived from the characteristics that goods possess and not the 
goods themselves. As Lancaster (1971) argues: 

A steak is seen, in this sense, as something to eat, with many properties that could 
be agreed on by everyone, and not as something with which to make clothing. 
Some may not like steak, or may prefer chicken, or may have a religious tabu 
against eating it, but can still agree that a steak is something with specific proper- 
ties of its own. Those who do not like steak dislike it because of some of its 
properties, not because they see an entirely different set of properties from the 
steak-eaters (p. 6). 

Satisfaction is derived from such properties or characteristics. 
In a system that consists of N different goods and r different characteristics, 

consumers observe a vector of goods x = ( x l ,  . . . ,  X N ) '  and transform them into a 
vector of characteristics e = ( c l ,  • .  • ,  Cr)'  in a linear fashion: 

N 

ci  = ~_~ b iyx j ,  
j = l  

i = 1 ,  . . .  , r ,  



284 PSYCHOMETRIKA 

or equivalently, 

c = B x ,  

where B is the matrix of  coefficients (bij). Lancaster calls this the consumption tech- 
nology matrix (CTM). The j-th column of B represents the amount of each character- 
istic possessed by thej-th good. The relationship c = Bx implies that a goods vector will 
be associated with a unique characteristics vector; but not necessarily the converse. 
The set of affordable combinations of goods, S = {x}p'x -< w}, can be mapped into an 
affordable set of characteristics using the CTM, K = {clc = Bx and p'x - w}. K is the 
image of a linear transformation of a convex set, and consequently, is also convex. A 
fundamental property of  any convex set is that it can be characterized as all convex 
combinations of its extreme points (Lancaster, 1971; p. 26). Therefore, S is the set of  
all convex combinations of its N + 1 extreme points: 

w N 

where pj  = the price of one unit of the j-th good. K is therefore the image of the 
mapping of all convex combinations of these points. Since K is convex, it also can be 
characterized as the convex combinations of its extreme points. Lancaster demon- 
strates that all extreme points in K are the images of  extreme points in S. However,  not 
every extreme point in S need map into one in K. 

Lancaster makes most of the traditional assumptions about a consumer's utility 
function. In particular, the utility function is continuous, monotonic, and produces 
indifference curves that are convex to the origin. The only difference is that the utility 
function operates on characteristics rather than goods. The consumer's problem then 
becomes: 

Max u(c) 
s.t. c E K .  

Just as in the classical theory, basic optimization principles imply that the optimal 
c, e*, must lie at the highest indifference curve which intersects K. Since utility func- 
tions are monotonic, this must occur on the outer boundary of K. A point e lies in the 
outer boundary if there is no point e' C K such that c' >> c. This set of outer boundary 
points, E, is called the e~ciencyfrontier. The solution to Lancaster 's model is the point 
on the efficiency frontier that is tangent to an indifference curve if such exists. If not, 
the solution is a vertex of E, each of which is the image of a vertex in S. Lancaster 
(1971) shows that the combination of goods x* that corresponds to c* satisfy p'x* = w, 
and can be found through the following linear program: 

Min p'x 
s.t. Bx = e*, x>-0 .  

We would be remiss if we did not point out that Lancaster 's theory has its critics 
(Ladd & Zober, 1977). Three implicit assumptions have been questioned. First, Hen- 
dler (1975) suggests that the marginal utilities of certain characteristics may be negative. 
Second, Lucas (1975) and Hendler both suggest that consumption technologies may be 
nonlinear. Finally, Lucas and Hendler both argue that utility may not be independent 
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of the characteristics' distribution across categories. For example, a consumer would 
prefer one combination of food to another with the same carbohydrates, protein, et 
cetera. If any or all of these criticisms apply, Lancaster's analysis may break down. In 
particular, the optimal c, may not be the point of tangency between an indifference 
curve and E, as defined earlier (Ladd & Zober, 1977). 

In MICROSCALE, physical attributes are translated into dimensions upon which 
consumers base their decisions. In Lancaster's model, goods are translated into char- 
acteristics upon which consumers base their decisions. Thus, there is a natural corre- 
spondence between MICROSCALE and Lancaster's model. Each takes an observable 
construct, a brand's physical attributes in MICROSCALE and a collection of goods in 
Lancaster's model, and transforms them into an unobservable one, dimensions in MI- 
CROSCALE and characteristics in Lancaster's model, which consumer's ultimately 
use. Our dimensions are somewhat different from Lancaster's characteristics. As 
Ratchford (1975) points out, Lancaster asserts that characteristics should be defined in 
terms of objective measurement and not people's reactions. In contrast, multidimen- 
sional scaling procedures (ours included) can focus on a consumer's perceptions or 
preferences as well as objective characteristics. Ratchford suggests that the vector 
model option in PREFMAP (Carroll, 1972) may be useful in empirical applications of 
Lancaster's theory. Such an approach, however, carries a number of limitations with 
respect to Lancaster's theory. First, as indicated earlier, the indifference curves are 
linear. Second, rotational indeterminacies in PREFMAP (and other two-way opera- 
tionalizations of the vector model) inhibit the dividing by price in goods space. There- 
fore, construction of the efficiency frontier becomes impossible. In contrast, MICRO- 
SCALE not only has convex indifference curves, but also produces unique solutions in 
which all characteristics are positive ratio scales. Additionally, while Lancaster (and 
microeconomics in general) concerns himself with choice among bundles of different 
products, we focus on choice among different brands within a single product class. 
Finally, unlike Lancaster, MICROSCALE takes on a probabilistic form with a just 
noticeable difference term, similar in form to many economic random utility models of 
choice (see McFadden, 1976). 

3. The MICROSCALE Procedure 

The Full MICROSCALE Model 
Let: 

i = 1, . . .  , I consumers; 

j ,  k = 1 . . . . .  N brands; 

t = 1, . . .  , T dimensions; 

~ijk = I 
I if consumer i prefers brand j to k; 
0 if consumer i is indifferent between brands jand k; 

-1  if consumer i prefers brand k to j ;  

Xjt : the t-th coordinate for brand j ,  where Xjt > O; 
Uij : the latent utility derived from the choice of brand j by consumer i as de- 

scribed by a Cobb-Douglas formulation: 
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a i 

T 

1-I Xj~t" + eij,  
t = l  

(i) 

where: 

a i : a multiplicative constant for consumer i, a i >-- 0 ;  

Otit " the t-th coordinate of the exponent for consumer i with: 

O ~ Otit <--- l ,  

Z 0 tit = 1,  

t 

eij = an error term - N ( 0 ,  0-~), where it is assumed that: 

Coy (eij,  eik) = O, for all i, j ¢ k ,  

Cov (eij,  ei 'k)  = 0, for a l l j ,  k, i # i ' .  

Equation (I) is of a form that produces convex indifference curves. Lancaster 
(1971) suggests two possible functional forms: the Cobb-Douglas function (I) and the 
CES (constant elasticity of substitution) production function: 

T I - l ip  
Uij ~- ai ]-I f l i tX f l  p , 

t = l  

(2) 

~'~t=l flit 1, and 0 < w h e r e  ai ,  f l i t ,  and p are model parameters with ai ,  p > 0 ,  T = 

flit <~ 1. 
Lancaster cites two limitations of these forms with respect to utility representa- 

tion. First, they are homogeneous of degree 1, implying that doubling each character- 
istic or dimension would double the utility. Second, they have unit elasticities of sub- 
stitution implying that the proportion of total income spent on each characteristic or 
dimension depends only on the function's parameters and not on consumer's income. 
We note that these also apply to the linear utility representation in the traditional vector 
model. However, as Lancaster points out, these limitations are of minimal concern 
since properties of aggregate  demand are determined by the distribution of preference 
parameters (ait and f l i t)  a c r o s s  the population. Furthermore, also following Lancaster, 
we choose (1) over (2) for reasons of simplicity. Note, in most choice models that have 
multiplicative forms similar to (1), the error term is multiplicative and lognormal (see 
Nakanishi & Cooper, 1974). In contrast, we will assume that the error relationship with 
the utility function is additive and the e/j are iid normal with mean zero and variance 
0 -2 . This is necessary to avoid taking logarithms of negative numbers in the subsequent 
development. 

In MICROSCALE, P(consumer i prefers brandj  to k) = P(Si jk  -- 1 )  = P(Ui j  > 
Uig + s i ) ,  where si is a just-noticeable difference parameter (Thurstone, 1927), 
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= dp ai XTt" - -  X k t "  - -  S i  ~ i j k ,  (3) 

where ~ is the standard normal cdL The denominator vanishes since the variance term 
can be embedded in the a i and si terms. Similarly, 

P(subject i prefers brand k to j) = P(80k  = --1) = P ( U i k  7> Uij + si) 

= cI) al Xkt" -- X)t  - s i  Uijk.  (4) 

And 

P(consumer i is indifferent between brands j and k) = P(r i jk  = O) 

= P(IUi j  - Uik{ < S i )  

---~ 1 --  g2_(t) t '~_(2)  g2_(3) '-'Uk -- '-'ijk = ,-'~k. (5) 

Note that we model a consumer specific just-noticeable threshold term, s i ,  which is a 
departure from Lancaster (1966, 1971). MICROSCALE assumes that consumers make 
choices that follow a random utility model (McFadden, 1976) with thresholds (Krish- 
nan, 1977). Most utility based models of consumer choice assume that the decision 
makers always select the alternative that provides them with maximum utility. Accord- 
ingly, they have no problem recognizing differences in utilities, no matter how small. 
We take the view espoused by Lioukas (1984) who suggests that consumers may be 
insensitive to small differences and that certain thresholds have to be exceeded before 
the consumer notices a difference (the just-noticeable difference). In economics, an 
analogous notion was proposed by Quandt (1956) who argued that a band of indiffer- 
ence exists around the level of utility derived from a given quantity of a good. Small 
changes in the quantity will not affect utility. Later, Krishnan (1977) described thresh- 
olds as minimum perceivable differences between the utilities of choice alternatives. 
According to him, an individual would prefer one alternative to another only if the 
corresponding difference in utilities exceeded that threshold. We adopt this view in 
MICROSCALE. 

Finally, an important special case of the above model arises when data are col- 
lected as forced-choice paired comparisons. In that case, si  is equal to zero and the last 
term in (5) vanishes. We note that, like Thurstone's Case V unidimensional scaling, 
MICROSCALE assumes strong stochastic transitivity. 

Es t ima t ion  

Assuming independence over i, j ,  and k subscripts, the general form of the like- 
lihood function is 
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1 N 
~(1)8~ ) G (2) - a~)t-2 (3)1 -Isu~l FI  F i l l  L J. Jt L .LL X V i jk  i jk  ~'J i jk  , 

i = 1  j < k  

(6) 

and the log likelihood function is: 

I N 

"-'ijk + (1 - {a~:l) in a~jk], (7) 
i =  I j < k  

where 

8 ~  )=  max (0, 8i jk) ,  

6/~] )=  min (0, 6ijk) .  

Given A = ( (S i jk) )  and T, MICROSCALE attempts to estimate (in the full model) a i, 
s i, X = ( X j t ) ,  and a = (o  t i t ) .  We use the method of conjugate gradients with automatic 
restarts (Powell, 1977) for parameter estimation. We impose the following constraints 
consistent with our earlier development (for all i, j ,  and t): (i) a i >- 0, (ii) X j t  >- O, (iii) 
0 ~ Otit < 1 ,  ( i v )  ~ ' t  Otit = 1, and (v) si  >- O. The nonnegativity constraints in (i), (ii), 
and (v]-are implemented by substituting squared quantities for these parameters (e.g., 
substituting a 2 , s 2 ,  Xj2t for their respective unsquared terms in the likelihood formu- 
lationmsee Gill, Murray, & Wright, 1981, pp. 268-269). The constraints on otit in (iii) 
and (iv) above are operationalized by reparameterizing 

t 

(8) 

and estimating 02 . These techniques of constraint implementation still allow us to 
utilize an unconstrained optimization procedure that simplifies the estimation process 
considerably. The Appendix contains a technical description of the alternating condi- 
tional maximum likelihood (ACML) procedure we developed for the estimation of the 
MICROSCALE model. 

P r o g r a m  O p t i o n s  

MICROSCALE can accommodate a number of different model specifications and 
options. One can perform either an internal analysis (where the user estimates both a and 
X) or an external analysis (where the user can fix one or more sets of coordinates through- 
out the analysis). The user can also select among a number of methods for generating 
starting estimates, including a user-defined singular value decomposition (SVD) option for 
X, where all values are made positive by adding the absolute value of the smallest Xjt to all 
values of X plus .001. Also, a variety of specifications are allowed on a i (a  i given exter- 
nally, a i = a ,  a i = 1 ,  estimate general ai ) ,  s i (s  i given externally, si = s ,  si = 0, estimate 
general si) , and  otit " ! (all gwen, ait = a t ,  otit = ~, estimate general air). 

Perhaps the most valuable option that ties MICROSCALE directly into the theo- 
retical work of Lancaster concerns the potential for reparameterizing the brand/product 
coordinates as direct functions of their observed physical attributes. That is: 

Xj t  = f l  ( H j l ,  Hi2 . . . .  , H I M ) ,  (9) 



WAYNE S. DESARBO, KAMEL JEDIDI, AND JOEL H. STECKEL 289 

where Him represents the value of the m-th physical attribute of brandj  (m = I, . . .  , 
M). Expression (9) captures the notion that dimensions are a function of physical 
attributes. Following Lancaster's CTM, we assume that f l  is linear, 

M 

m = l  
(10) 

where the Ymt are unknown parameters. As in CANDELINC (Carroll, Pruzansky, & 
Kruskal, 1980), three-way multivariate conjoint analysis (DeSarbo, Carroll, Lehmann, 
& O'Shaughnessy, 1982), and GENFOLD2 (DeSarbo & Rap, 1984, 1986), one can use 
these reparameterization options to examine what impact such features/attributes have 
on the derived solution. This can often aid in interpreting the resulting solution (see 
Bentler & Weeks, 1978; Bloxom, 1978; de Leeuw & Heiser, I980), and can replace the 
post-analysis property-fitting method often used in an attempt to interpret the results. 
In addition, as we shall discuss, the imposition of these sets of reparameterizations can 
provide an effective tool for understanding the nature of preference or choice. 

It should be noted that when a linear function replaces a product coordinate, the 
number of  background variables in the linear function cannot exceed the number of  
entities that exist for those variables. For example, if N brands have M attributes, N > 
M since one can only identify at most N T  coordinates (for X). Thus, in most a p p l i c a -  
tions, such reparameterizations actually improve the degrees of freedom of the model 
by reducing the number of  parameters to be estimated. Given I (N) (N - 1)/2 indepen- 
dent paired comparison judgments, the number of  estimated model parameters in the 
full model (a  i,  s i ,  a i t  , X) is: 

P = N T + I ( T +  1 ) -  1. 

Note, one of the benefits of MICROSCALE is the fact that one obtains an X config- 
uration that is unique in the positive orthant of a T-dimensional space (there is no 
rotational indeterminacy as in competing models) up to a scale indeterminacy with the 
a i coefficients in the full model (one must set one of the ai's equal to 1). 

Goodness-of-Fit Indicies 
A number of goodness-of-fit measures are computed for MICROSCALE. 

1. A deviance measure (McCullagh & Nelder, 1983; Nelder & Wedderburn, 1972): 
D = - 2  In L. Note that one can potentially test nested models within MICROSCALE 
as the difference between respective deviance measures. One obvious problem with 
this approach concerns the presence of incidental parameters in the likelihood function 
(i.e., parameters whose order vary according to the order of A, such as the Otit'S ) as  
there are no within-subject replications. In such cases, maximum likelihood estimators 
may not be consistent. Other measures should also be examined. 

2. The proportion of correct predictions in A. Here, the proportion of times the 
solution correctly predicts 8ijk is calculated using a simple matching coefficient for the 
total sample as well as for each subject. In addition, a Spearman's rho correlation 
coefficient between ~ijk and ~ijk, predicted choices, is also computed. 

3. Akaike's (1974) information criterion defined as: - 2  In L + 2P. However, as noted 
by Bozdogan (1987), the AIC statistic tends to overestimate the appropriate dimensionality 
for certain models tested, emphasizing the need to examine multiple measures. 

4. For situations where 8ij k contains no ties, a phi coefficient and point biserial 
correlation are also computed. 
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Microeconomic Extensions 
Given the above MICROSCALE formulation, a number of interesting analogs to the 

microeconomic theory of the consumer are possible. For example, one can define a con- 
sumer's marginal utility with respect to a particular dimension of a specific brand as: 

MUi(Xjt) = OXjt OXjt ai I-I xjt" +eij 
t=l  

T 
--=- a i o t i t g ;  i '-I H gj~", (11) 

l~.t 

or in the case of reparameterizing X in terms of physical attributes: 

MUi(Hjm) O~lij T = aio~it,YmtXai~ - 1 H at, = X j s .  ( ~ 2 )  

OHjm s~t 

Of particular interest in each case is that marginal utility is a function of both consumer 
(i) and brand (j) (and/or its physical attribute (m)) parameters. With such notions of 
marginal utility, one could determine the marginal rate of substitution (MRS) that, in 
the case of product coordinates, is defined as the rate at which consumer i's consump- 
tion of dimension v can be reduced, without reducing his overall utility, when his 
consumption of dimension r is increased at the rate of an additional unit: 

O Uij 

MRS~i/ M U i ( X j r )  OXjr 
= = - -  ( 1 3 )  

MUi(Xj~).~ OU 0 
oXj~ 

This is also equal to the negative of the slope of the derived indifference curve defined 
in this region. Given the strict convexity to the origin requirement of the indifference 
curves estimated by MICROSCALE, the marginal rate of substitution of dimension r 
for dimension v with respect to a change in the consumption of dimension r, along an 
indifference curve, is strictly decreasing. This implies the notion of a diminishing mar- 
ginal rate of substitution, here defined for the dimensions. A similar extension can be 
derived for the physical attributes as in Lancaster (1966, 1971). 

As an analog to vector MDS models (e.g., MDPREF), one can also solve for 
individual specific preference vectors. For convenience, assume one consumer and two 
dimensions, where X is confined in the positive quadrant of a two dimensional space. 
Given the requirement of strict convexity to the origin of the resulting indifference 
curves, the direction or vector of increasing utility will necessarily have a 0°-90 ° ori- 
entation. The question is to find an exact orientation, which will necessarily vary 
according to the specific orientation of a consumer's indifference curve. Suppose we 
hold utility constant for a consumer and thus concentrate on one indifference curve. 
Then, the shortest ray from the origin to a point on that curve will define the direction 
of increasing preference. If one were to pick an alternative point, one could reorient a 
ray between the origin and that point in the direction of the point with the shortest 
distance, arid with that original (longer) distance attain a higher level of utility (on a 
higher indifference curve). A formal proof by contradiction can easily be shown on 
these grounds. Thus, we want to find the point (r 1 ,r z) that lies on some fixed or 
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constant level of utility U* that is minimum distance or squared distance from the 
origin, where squared distance here is: 

d 2 = (rl - 0 )  2 + (r2 -- 0) 2 = r~ + r 2. (14) 

Now 

1-or I U~(rl,r2) = air~ 'r  2 , (15) 

and solving for r l, we obtain 

={ u,, .),,°, 
r, \ a i r ~ _ ~ ,  (16) 

Substituting in (14), one obtains 

d2=[ v,* ~ a i r ~ _ ~  + rZ2 . (17) 

Taking derivatives of (17), setting them equal to zero, and solving for r2, gives 

r~ = U*~ ( 1 - a l ~  a'/2 
a-7/ \ - - - ' 7 - /  . (18) 

Substituting this in (16), we solve for r]  

( E ~  )l/or, U~ [ o~ 1 ](I-a,)/2 
r~ = \ a i r ~ l _ a  1 = aU [ ~ J  (19) 

Given (r] ,r~) for a specific indifference curve, one can now draw a ray from the origin 
to this point to indicate the direction of increasing utility--or what we call the prefer- 
ence expansion direction (PED). Given the fact that indifference curves for any con- 
sumer will be parallel, we can extend this ray to infinity to denote this direction for 
higher levels of utility (see also Grandmont, 1978, for an alternative vector formulation 
for the Cobb-Douglas utility function and interpretations relating to the elasticity of 
substitution). This formulation generalizes to T > 2 dimensions in a straightforward 
manner. 

Finally, we wish to discuss the remaining issue of utility maximization and optimal 
choice in the derived space. As mentioned, MICROSCALE will produce a configura- 
tion of brands/products (X), indifference c u r v e s  (ait), and we can derive a PED (also, 
if X is reparameterized, we can also represent 7rot by direction vectors in the space 
emanating from the origin). Unlike traditional microeconomic theory, MICROSCALE 
analyses are typically performed for brands in a designated product class (X are brands 
in a/'-dimensional space) as opposed to vectors of commodities. As such, there is little 
sense to impose a budget constraint in MICROSCALE. For example, if the product 
class is over-the-counter analgesics, one typically assumes all are affordable given the 
rather small range of price variation. Instead, analogous to Lancaster's efficiency fron- 
tier, MICROSCALE can construct a technological feasibility frontier (TFF) defined as 
the outer boundary of the convex hull of the outer set of brand coordinates. Depending 
upon the product class and nature of the derived dimensions, this TFF can often be 
interpreted as a limit to the available technology with respect to the derived dimensions 
and the present set of brands studied. If, for the over-the-counter analgesics illustra- 
tion, the dimensions relate directly to ingredients, the TFF could be utilized to define 
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TABL~ 1 

Independent Variables UtiliTed in the MICROSCALE Monte Carlo Analysis 

I III  II III I ......... i' " " " i  "" ' i"  

Factor Des't~amion Levels Code 

Number of Consumers 

II Nmnber of Brands 

i n  

IV 

Number of Dimensions 

10 
20 X 1 
30 X 2 

10 x 3 
15 x 4 

Type of Threshold (si) 

w 

3 x 5 
4 X 6 

V Amount of Error 

m 

Constant X 7 
Varying x 8 

O = 1  
O-- 2 X 9 
o = 3 Xl0  

Normal 
VI Error Distribution Uniform Xl  1 

Exponential X12 

VII Type of Analysis Extemal - 
Internal X 13 

VIII Starting Solution Rational (SVD) - 
Random X14 

existing limits on the amount of specific ingredients (e.g., the FDA limits the amount of  
aspirin per tablet that can be sold without a prescription). This notion may be more 
relevant for external preference analyses where the dimensions are known physical 
attributes. This convex hull can be easily constructed by splines whose knots are the 
brand locations of the outermost brands in the space. Given this convex hull approx- 
imation, the point of maximal feasible utility for an individual would be the point of  
intersection of his/her highest utility indifference curve and this TFF. 

4. Monte Carlo Analysis 

To examine the performance of the procedure, a Monte Carlo analysis was per- 
formed as a number of data, model, and error factors were experimentally manipulated. 
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TABLE 2 

Dependent Measures Utilized in the MICROSCALE Monte Carlo Analysis 
' " " %  " ,,, ,~, ,, ' " i  ~ ' ' " '  """" '  , ,,,,J ' " '  

293 

A. Computational Effort: 

YI: Number of iterations required for convergence. 

B. 6ijk Goodness-of-Fit: 

A matching coefficient of (~ijk' ~tik ); Y2: 

Spearman rho correlation of (Sijk, ~ijk). Y3: 

C. Parameter Recovery for each of ~ 0~ and s_ 

Y4' Y5' Y6: Root mean square error (3 measures--X, 2 ,  s); 

Y7' YS' Y9: Sum-of-squares accounted-for (3 measures--X, 2 ,  s). 

Table 1 presents the list of some eight independent variables and their respective levels 
that were utilized in the Monte Carlo analysis. The dependent measures were defined 
around three major constructs: (a) computational effort, (b) overall goodness-of-fit with 
6 i j k ,  and (c) parameter recovery. Table 2 provides a list of the multiple dependent 
measures used here. 

Given the 3622 structure of the independent variable set, 2,916 trials would be 
required for a full factorial design with no replications. As in DeSarbo (1982) and 
DeSarbo and Carroll (1985), a main effects only design was utilized via an asymmetric 
fractional factorial design (see Addelman, 1962) to provide a feasible computer exper- 
iment. While the assumption of main effects only is clearly a limitation, the resulting 27 
trials from the design provide a modest test of the procedure and its performance in 
recovering several synthetic data sets with known structure. Note, in all trials, o- i 
a i = 1 was fixed. For each of the 27 trials, synthetic data were generated according to 
the first six factors in Table 1. Values of the multiple dependent measures were col- 
lected for each trial and regression/ANOVA analyses of these Monte Carlo results were 
performed. Note, for those dependent measures ranging between 0 and 1, the arcsin 
transformation was applied to the square root of that measure--a  step suggested in 
Snedecor and Cochran (1981, p. 196) to stabilize the resulting variance. The significant 
results of these analyses are summarized below. 

Concerning computational effort and the first dependent measure (Y1), the only 
consistent finding is that internal analyses (X13) tend to significantly increase the 
amount of computation involved in estimation, as opposed to external analyses where 
X is fixed. 

Concerning overall goodness-of-fit and the second pair of dependent measures (Y2 
and Y3), we observe consistent findings with respect to the two higher values of o(X 9 
and X10) significantly reducing overall goodness-of-fit. Also, the uniform error mis- 
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specification appears to significantly increase both measures here. The matching coef- 
ficient is significantly lower for larger sets of brands (X 3 and X4), constant threshold 
specifications (XT), and external analyses (Xz3). 

Concerning parameter recovery and the pair of measures concerning X(Y4 and 
YT), consistent results are obtained with respect to the fact that external analyses (X13) 
result in better recovery of X (since X is fixed) and that somewhat poorer recovery 
occurs in larger dimensionality (X5 and X6) where more parameters are estimated. 
Surprisingly, using the rational start procedure (X~4) tends to result in poorer sums- 
of-squares accounted-for-values. With respect to ot recovery, the only consistent find- 
ing across the two measures (I"5 and Ys) is the fact that larger stimulus (X 3 and X4) 
sets (i.e., more data) tends to result in significantly better t, recovery. For Y5, speci- 
fying larger dimensionality (X5 and X6) detracts significantly from ot recovery, while 
the uniform error misspecification surprisingly improves such parameter recovery. For 
Ys, holding X fixed in external analyses (Xl3) improves the RMS measure. Finally, 
with respect to s recovery and Y6 and Y9, the only consistent finding is that it appears 
harder to recover the true s when s is allowed to vary over subjects (X8), and thus, 
when there are more parameters to estimate. 

Overall, with some exceptions, these Monte Carlo analyses appear to give a some- 
what consistent description of the performance of MICROSCALE. All else held con- 
stant, MICROSCALE tends to require more computational effort for internal analyses; 
data recovery suffers as tr is larger; and, parameter recovery tends to improve as the 
data set size increases (especially with respect to J) and there are smaller numbers of 
parameters to estimate--a common finding in nonlinear model estimation. Perhaps the 
most unexplainable finding concerns the role of the uniform and exponential error 
misspecification that one would initially hypothesize to have deleterious effects across 
all these dependent measures, but yet has scattered incidence of positive benefits in 
some cases. In addition, the rational start had relatively no effect on all but one mea- 
sure, and that effect was negative (Y4)- 

Obviously, there are limitations to such a modest study. Barring restrictions on 
computer time, it would have been preferable to perform a full factorial experiment 
with replications to measure possible interaction effects that may confound main effects 
only estimation. Such a study would have been prohibitive from a cost/time perspec- 
tive. In addition, it would have been beneficial to specify additional levels per factor 
(especially concerning the error misspecification factor) and perhaps additional factors 
(e.g., control parameters for the algorithm). 

5. A Consumer Psychology Illustration 

Study Design 
A sample o f / =  30 undergraduate students at a major northeastern business school 

were asked to take part in a small study designed to measure preferences for various 
brands of existing over-the-counter (OTC) analgesic pain relievers. These respondents 
were initially questioned as to the brand(s) they currently use (as well as frequency of 
use) and their personal motivations for why they chose such brand(s) (e.g., ingredients, 
price, availability, etc.). They were then presented fourteen existing OTC analgesic 
brands: Advil (ADV), Anacin (ANA), Anacin-3 (ANA3), Ascriptin (ASC), Bayer (BAY), 
Bufferin (BUF), Cope (COP), CVS Buffered Aspirin (a generic) (CVS), Datril (DAT), 
Excedrin (EXE), Nuprin (NUP), Panadol (PAN), Tylenol (TYL), and Vanquish (VAN). l 
The letters in parentheses are plotting codes that will be used throughout this paper. 

I The products listed are registered trademarks of their respective companies. 
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TABLE 3 

OTC Analgesic Brand Descriptions 

Mg. of Mg. of Price Maximum 
Plot Mg. of Aoe~- Mg. of Mg. of Buf[e~ in U.S. Recommended Msd~ 
co~ sr~t Aspirin minaphoa roepro~ C~elne Compoends Don~ r~sage Share 

I 2 3 ~ 5 6 .... 7_ 8 
i l l  illllllllllll 

ADV Advil 0 0 200 0 0 6.99 6 3.7 

ANA Anaein 400 0 0 32 0 3.97 10 10.3 

ANA3 Amein-3 0 500 0 0 0 5.29 8 6.8 

ASC Aseriptin 325 0 0 0 150 3.29 12 2.6 

BAY Bayer 325 0 0 0 0 2.69 12 20.6 

BUF Buffedn 324 0 0 0 100 3.89 10 8.8 

COP Cope 421 0 0 32 75 5.31 8 0.4 

CVS CVS 500 0 0 0 100 1.99 12 0.3 

DAT Dalril 0 500 0 0 0 5.75 8 2.1 

EXE Em:edtin 250 250 0 65 0 4.99 8 12.0 

NUP Nuprin 0 0 200 0 0 7.59 6 3.4 

PAN Panadol 0 500 0 0 0 4.99 8 3.2 

TYL Tylenol 0 325 0 0 0 3.69 8 22.7 

VAN Vanquish 227 194 0 33 75 4.99 12 1.1 

Feature 

1 1.000 
2 -.653 1.000 
3 .442 - .323  1.000 
4 .354 - .063  -.239 
5 .623 - .458  -.288 
6 -.673 .199 .716 
7 .704 - .302  -.611 
8 -.074 .038 -.203 

Correlations 

1.000 
-.065 1.000 
.061 - .447  1.000 

-.019 .624 -.828 
.013 - .424  -.356 

1.000 

.051 1.000 

Initially, they were presented colored photographs of each brand and its packag- 
ing, together with price per 100 tablets, ingredients, package claims, and manufacturer 
(see DeSarbo & Carroll, 1985). Table 3 presents summaries of selected portions of the 
descriptions for each of the brands. Each subject/consumer was requested to read this 
information and return to it anytime during the experiment if he/she so wished. After a 
period of time, they were asked to make paired comparison preference judgments for 
all possible 91 pairs of brands. They were told that they had to choose one from each 
pair (i.e., no ties were allowed). The presented pairs were randomized for each subject. 
DeSarbo, De Soete, Carroll, and Ramaswamy (1988) have utilized these data in fitting 
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TABLE4 

Goodness-of-Fit Irdicies for Analgesics Data 
IIIIIII IIIIIII 

Model 
DF ha L MC PBC 

r "m' ,  , ~  IIII111~1,, 

PHI 

1 

2 

3 

4 

13 -1494.71 .713 .510 

55 -1148.70 .808 .674 

98 -1037.77 .828 .717 

141 -875.54 .855 .769 

.425 

.615 

.655 

.710 

Correlations Between Xand Brand Descriptors 

Descriptor Dimension 

I 

1 .474 -.806 

2 -.127 .156 

3 -.541 .849 

4 -.072 -.328 

5 .067 -.585 

6 -.856 .749 

7 .558 -.813 

8 .597 .030 

various stochastic ultrametric tree models designed for such paired comparisons. 
DeSarbo, De Soete, and Jedidi (I986) have also reported analyses (two-dimensional 
solutions) utilizing the DeSarbo, Oliver, and De Soete (1986) and DeSarbo, De Soete, 
and Eliashberg (1987) vector and unfolding models for these paired comparisons data 
using reparameterization options for the brand coordinates. 

M I C R O S C A L E  A n a l y s i s  

A MICROSCALE analysis was performed on this resulting 30 × 14 × 14 array in 
T = I to 4 dimensions with s = 0, given the absence of ties in 8ij k , and a = I to reduce 
the number of  estimated parameters. Given the excessive collinearity between many of 
the brand attributes as shown in Table 3, we decided to perform non-reparameterized 
analyses. Table 4 provides a number of goodness-of-fit indicies, that appear to suggest 
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7 

6 

5 4/! 
ANA." 

3 

IIIIIIIII 

u = 4  

2 
• E X E  ~ . . _ _  u = 3  

B A Y  u = 2 
1 - ASC - ~  i 

B u r  • C V S  _ . _ - - - - -  

0 =,I, I I I =I I 

0 1 2 3 4 5 6 
FIGURE I 

Student one's MICROSCALE joint space representation for the analgesics data, 

u = l  

7 

the T = 2 dimensional solution is most parsimonious in describing the structure in the 
~ijk (AIC = 2407.16). 

Figures 1 and 2 present the resulting joint space two-dimensional plots for two 
selected students. Common to all these figures is the notion that the first dimension 
(horizontal) appears to separate the major, highly advertised, high market-share brands 
from the remaining brands. Of particular interest here is the fact that CVS, a local 
generic brand popular in the area of the study, is also located in this group of higher 
market share/advertised brands (Anacin, Bayer, Bufferin, Tylenol), reflecting the par- 
ticular environment under which the study was conducted. Also, this dimension is also 
highly correlated with price (-.856) indicating that the brands toward the positive end 
of this dimension (mostly aspirin-based) are much cheaper in cost than the ibuprofen 
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7 

6 

5 

4 

3 

2 

1 

0 
0 

u = 6  

ANA3 
T Y L ~  u = 4 

DAT = PAN ~ ~  
. 

1 1 = 2  

r 

-,-'--------.--...._.~'~ A = u =  1 A S C  B A Y  
III • 

COP .,VAN BUF • ¶CVS 
• . I  I I I I 

1 2 3 4 5 6 7 
FIGURE 2 

Student two's MICROSCALE joint space representation for the analgesics data. 

and specialty aspirin brands located near the origin. The second dimension (vertical) 
clearly separates the ibuprofen brands from the aspirin-based brands, with the aceto- 
minophen brands near the middle of the dimension. Note how Excedrin is located 
below the acetominophen brands near the aspirin brands given the fact that it is com- 
prised of both ingredients, Thus, the two dimensions appear to relate rather directly to 
the type of analgesic ingredient, cost, and popularity as demonstrated by the correla- 
tions between X and the features presented in Table 4. 

Each figure shows the PED for each of the two students. We do not construct the 
TFF given the nature of the derived dimensions. Student one (Figure 1) displays sym- 
metric looking indifference curves. For this student, the aspirin substitutes appear to be 
more desirable, especially Tylenol that has highest predicted utility. The PED for this 
student points near the direction of Tylenol. On the other hand, the second student 
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(Figure 2) displays rather skewed indifference curves. For this student, the ibuprofen 
brands, Nuprin and Advil, have highest utility. The PED for this student is directed just 
to the southeast of these two brands. Thus, MICROSCALE can reveal individual 
differences in conceptualization of preference/choice/utility--a feature missing in the 
wandering vector or ideal point models (De Soete & Carroll, 1983; De Soete, Carroll, 
& DeSarbo, 1986). 

One can also compute the predicted utility values (Jij for each of the 14 brands by 
subject. A noticeable congruence between (Jij, the brand utility means, and the actual 
market shares (r = +0.78) is observed, where the major, heavily advertised brands 
such as Tylenol, Advil, Anacin, Anacin-3, Bayer, Bufferin, Excedrin, and Panadol are 
predicted on average to have higher overall utility. 

Finally, given the fact that MICROSCALE is prone to locally optimal solutions, 
we performed ten computer analyses for the two dimensional solution with different 
random starts (SVD default option for X) and examined statistical summaries for these 
ten analyses, including means and standard deviations. With the possible exception of 
one run, all of the solutions rendered relatively similar goodness-of-fit measures (as well 
as parameter values for X and or). Thus, there is some evidence of somewhat stable 
solutions with MICROSCALE, 

The DeSarbo, Oliver, and De Soete (1986) Vector Model Comparative Results 
Given some similarity in utility assumptions between MICROSCALE and the 

vector model (i.e., the more the better), we decided to compare the above MICRO- 
SCALE two-dimensional solution with a two-dimensional solution obtained from ap- 
plying the DeSarbo et al. (1986) vector model on the same data using similar program 
options. The resulting two-dimensional solution with crij k = 1 and no reparameteriza- 
tion option, produced a log likelihood value (the overall mathematical structure of this 
likelihood and that of MICROSCALE are equivalent in the case of no ties) of -1152.44 
(AIC = 2472.88), a phi coefficient = 0.637, a matching coefficient of 0.819, and a point 
biserial correlation of 0.629. Thus, this alternative model is not as good a representation 
as MICROSCALE according to the AIC statistic. Two of the other goodness-of-fit 
statistics are higher because many more free parameters are estimated in this vector 
model as compared to MICROSCALE. 

Table 5 presents the correlations of this solution with the eight brand attributes 
reported in Table 3. Note, unlike MICROSCALE that produces a unique brand space, 
these loadings (interpretation) will change according to the specific type of rotation 
used in this vector model to interpret the results! As with most two-way, bilinear 
models, there is an indeterminacy of the resulting coordinates to any non-singular 
transformation. The first dimension appears to relate to market share. The second 
dimension contrasts the aspirin versus ibuprophen brands. The former also tend to be 
cheaper and involve higher maximum dosage recommendations. This interpretation is 
apparent by inspection of the resulting joint space representation shown in Figure 3. 
One of the advantages of this type of procedure over MICROSCALE is the ability to 
portray all subjects in one joint space plot versus having to inspect 30 of them. As 
shown, preference tends to be heavily in favor of the more popular, high market-share/ 
highly advertised brands (the first dimension). However, there is substantial variation 
in preference concerning the second dimensionmingredients. 

But how similar are the results from this vector model with those obtained from 
MICROSCALE? We performed canonical correlation analyses for the two resulting 
brand coordinate spaces as an "approximate" configuration matching procedure and 
obtained canonical correlations of 0.966 and 0.883. Given the uniqueness properties of 
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I I I  

TABLE 5 

The DeSafoo et al. (1986) Solution Correlations Between 
the Derived Brand Coordinates and Attributes 

HH IIII • , ! - -  ! ! ' .  A L L - -  , ! '  , .  '!11~ IIIIIIII I" 

Dimension 

~ t o ~  .................. I ii n 

1 .313 -.701 

2 -.370 .238 

3 .129 .759 

4 .278 -.301 

5 .482 -.476 

6 .320 .813 

7 .048 -.792 

8 -.748 -.208 

the MICROSCALE solution, these canonical correlations would necessarily be over- 
stated somewhat. Using the MICROSCALE dimensions as dependent variables and the 
brand coordinates for the vector model as independent variables in multiple regression 
analyses, the two resulting adjusted R 2 values were 0.882 and 0.867 indicating some- 
what high consistency between the two solutions. In addition, measures of association 
between the utility scores were computed for each of the two models across the 30 
subjects (average correlation across subjects = 0.94). With the possible exception of 
one or two subjects, there appears to be substantial congruence between these derived 
utility scores across this sample. 

Thus, the MICROSCALE procedure provides a slightly better fit to this data 
according to an AIC criteria. Its primary advantage is the unique brand coordinate 
space derived where the user need not worry about selection of an appropriate rotation. 
Yet, both solutions are reasonably congruent with respect to the basic structure of 
utility derived from this same data set. Note, there are differences concerning policy 
implications for individual utility maximization. In the DeSarbo et al. (1986) vector 
model, to maximize a subject's utility, a brand would be positioned in the space (within 
a technologically feasible area) where its projection on a subject's vector would be 
highest. In MICROSCALE, this utility maximizing brand location for a given subject 
would be positioned at the intersection of the subject's highest indifference curve and 
the TFF. Future experimental research should focus upon the specific conditions under 
which a particular utility representation is most appropriate. 
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FIGURE 3 
DeSarbo et al. (1986) vector model joint space for the analgesics data. 

6. Conclusion 

We have described the complete MICROSCALE procedure including data require- 
ments, model structure and properties, the ACML algorithm for parameter estimation, 
a modest Monte Carlo analysis documenting algorithm performance, and a consumer 
psychology application contrasting MICROSCALE with the results of a recently de- 
veloped vector model. While these initial results look promising, further research is 
required to more fully investigate the MICROSCALE procedure. As mentioned in 
section 4, more ambitious Monte Carlo experimental designs are required allowing for 
the estimation of interaction effects and investigating the frequency of locally optimal 
solution problems. The sensitivity of the procedure to empirical/synthetic data that do 
not satisfy strong stochastic transitivity should also be thoroughly tested. Extensions of 
MICROSCALE to accommodate incomplete paired comparisons designs should be 
investigated given the difficulty in collecting such N ( N  - 1)/2 responses per subject. 
Finally, further applications are desired using empirical data from a number of different 
disciplines to examine the appropriateness of this convex indifference curve specifica- 
tion, contrast the results of MICROSCALE with the results of more traditional vector 
and unfolding models, investigate respective policy recommendations, and so forth. 
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Appendix: The MICROSCALE ACML Procedure 

Algorithm: 

MICROSCALE uses a conjugate gradient method with automatic restarts (see 
Powell, 1977). The estimation method is an alternating conditional maximum likelihood 
procedure (ACML) where the log of the likelihood function is maximized with respect 
to a specific set of parameters (i.e., the object/brand coordinates, the consumers' t~ 
parameters, the multipliers, ai's,  and the thresholds si 's)  holding the other sets con- 
stant. Estimation alternates across all the parameter sets until a convergence tolerance 
is satisfied. 

Phase 1: Input Options 

The user must specify the number of consumers (I), the number of brands ( J ) ,  the 
number of dimensions (T), the type of analysis (internal or external), the option for the 
multiplier a i (varying by consumer, constant, or set equal to one), the option for the 
threshold (varying by consumer, constant, or set equal to zero), and, the file name 
containing the input data. This file should include the brand coordinates if an external 
analysis is to be performed or if a rational start is available. In addition, it should also 
contain H if the reparameterization options are requested. 

Phase II: Starting Estimates 

Options exist for the user to specify a random start, a rational start for X (a singular 
value decomposition, SVD, analysis on the aggregated preference data obtained by 
summing over the rows of the complete pairwise comparison data (upper and lower 
diagonal) as suggested in Carroll (1980), with subsequent translation of origin to satisfy 
the positivity constraint of the brand coordinates) or, a given start. 

Phase III: Estimate X, a, a, and s 

We need to impose nonnegative constraints on the brand coordinates ( S j t  ~ 0), 
~ t = l  Olit the subject parameters (Otit ~ 0 and T = 1) the multipliers (a i --> 0) ,  and the 

threshold parameters (si >- 0). To accomplish this, we estimate the corresponding 
squared entities: 

, a 2, and s 2 
T 

E o,2, 
I = 1  

as suggested by Gill, Murry, and Wright (1981, p. 268-269), and as described in section 
three of this paper. 

Partial Derivatives 

Let 

T 

uij = N (x),) 
t = l  

UDijk = a2(Uij - Uik), 
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¢,(. ) = ,~(Un~sk - s~), 

O ( * )  = ¢(--VDij k - s2i).  

303 

where 

0 l n L  

Oai 

O l n L  

Osi 

1 
= ~_,~, 6ij+k ~ 4~(" ) [2a i (U i j  - Uik) ]  

j < k  

I 
- aijk ~ 4 . ( * ) [ - 2 a i ( U ~  - u~)] 

+ 
(1 - ~ ( - )  - qb(*)) (4~(*) - 4~( "))[2ai(Uij - Uik)]; 

1 
~ =  .Y_,Y_,, ~,.j+, .--(77.) ~(. ) r -2, , ]  

j < k  

1 
- 8~k ~ $(*)[ -2s i ]  

(i - lau~l) 
(1 - o ( .  ) - o ( * ) )  

(44") + 4,(*))[2s~]; 

, , .  L + ~ < )  r a : - .  i ~o~,,,~-i 

: z ,  <,,,>z t /J 

( l -  180,1) ra~'U" i 20~. "~] 

+<'-+<"-+<'" t )J; 
" '"  ~ + <~< > r a 4 ° " "  °""]1 
00ic j < k  

- ~;7' ¢--2E t too,,. ~ U , . /  

(' - I~,:l) r~/ou,, ou,~) ]  
+(1-¢,(.)-¢,(*)) (4'(*)+'t'('))[a"!ta-b-~., a o , , ,  ' 

(Ai) 

(A2) 

(A3) 

(A4) 
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0U6 

aOi,, 

2 20it' 

Note,  for  the case where a i = a,  and s i ----- S, and Oit = Or, for  all i, we need to sum 
over  all i ' s  

a In L a In L 

Oa i Oai 

a In L 0 In L 

OS i OSi 

and 

a In L a In L 

dot  i OOit 

The Reparameter i zed  Case 

0 |n L= Z Z Z  ~ijk ~ [ ~O,~mt" O~/mt,~/Ij 
O~/mt' i j<k 

L 
(1 - {'u'l) (@(') + , ~ ( . ) ) [ a ? ( ~ ,  

+ (1 - 0 ( . )  - 4)(*)) 

where  

OUij / n j m ~  / 202' ~ 

- - =  Uij I ) t ~ t ) '  OTmt' 

n jm = the value of  feature  m for  brand j ,  

(A5) 

M 

Sit  = Z njrn'~rnt • 
m = l  

At the start, a~ = I, a ?  = 1, s?  = 0, and X j t ' s  are randomly generated from a 
uniform distribution if no rational (or given) starting solution is provided for an internal 
analysis. In the case of  external analysis, the methodology solves for  whatever  param- 
e ter  set(s) are not fixed/given. Holding a ,  a, and s constant ,  the algorithm uses the 
conjugate gradient method with automatic restarts (Powell, 1977) to estimate X (as- 
suming an internal analysis). Then it estimates a ,  holding a, s, and X constant.  Finally, 
a and s are est imated in this same manner.  The algorithm repeats these major  iterations 
until a convergence tolerance is satisfied. 
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Phase V: Output 

T h e  fol lowing goodness-of-f i t  measures  are  c o m p u t e d :  (a) the l ikel ihood func-  
t i o n - - a n  A I C  (Akaike ,  1974) statist ic is a lso ca lcula ted;  h o w e v e r ,  c o n c e r n s  have  b e e n  
expressed  by  B o z d o g a n  (1987) on  its t endency  to over -es t imate  the t rue d imensional i ty ,  
(b) a match ing  coefficient (MC), (c) S p e a r m a n ' s  corre la t ion  (SCOR),  (d) Phi coefficient  
(PHI) ,  and  (e) point  biserial corre la t ion  (PBC).  The  last measure  can  be  c o m p u t e d  w h e n  
there  are  no  ties a l lowed in 8ijk(s i = 0). One  also obta ins  the  h is tory  o f  i terat ions,  the  
b rand  coord ina tes  (X), the subject  coord ina tes  (¢t), the Oij scores ,  and the indifference 
cu rve  plots  by  subject  including the T F F  and PEP .  
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