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THE SOLUTION OF SIMULTANEOUS EQUATIONS
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This paper is an attempt to integrate the various methods which
have been developed for the numerical solution of simultaneous lin-
ear equations. It is demonstrated that many of the common
methods, including the Doolittle Method, are variations of the meth-
od of “single division.” The most useful variation of this method, in
case symmetiry is present, appears to be the Abbreviated Doolittle
method. The method of multiplication and subtraction likewise can
be abbreviated in various ways of which the most satisfactory form
appears to be the new Compact method. These methods are then ap-
plied to such problems as the solution of related equations, the sclu-
tioxé of groups of equations, and the evaluation of the inverse of a
matrix.

Introduction

During recent years various articles have appeared, (1) (2) (3)
(4), on the general topic of the solution of normal equations. At first
thought it appears that articles of this type are not needed since the
theory of determinants gives the desired solution, but further inves-
vestigation reveals that classical determinantal methods, excellent for
theoretical purposes, are not the most efficient tools for determining
numerical solutions when the number of variables is large. The im-
provement of the modern calculating machine (in particular the in-
troduction of automatic division and automatic multiplication) has
made available methods which, though algebraically simple, were pre-
viously numerically cumbersome. It appears now that the new nu-
merical methods have been developed sufficiently so that the presenta-
tion of a rather thorough treatment of them, and of their relations to
each other, is wise. From such an analysis we are able to arrive at
new and more compact methods. It should be specified also that we
are not at present investigating iterative nor determinantal methods,
though the methods outlined in this paper can be used in evaluating
determinants,

In many of the problems in which the approximate solution of a
large number of equations is desired, the simultaneous equations are
symmetric with respect to the coefficients of the unknowns (i.e., the
matrix of the coefficients of the unknowns is symmetric). For ex-
ample, if the equations are
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G Xy + Aoy Ty + Cyy T3 + Qg T, 5= A,y

Q2 Ty F Qg Ty + Qg T3+ o T, 55 Ay

(1)

Qs &y F Ogy T + Qg T3 + Gy T, == sy
Oy Xy F Qg T+ Oy Ty + Qg 2,7 Ay

then, frequently 0 =a ji. This is always true, of course, if the equa-
tions are normal equations or their equivalents. This symmetry, if
present, simplifies the resulting techniques. In the present article we
give the techniques for the general situation and also the specialized
techniques in case symmetry is present.

The methods outlined apply to the solution of n equations in n
unknowns. In the interest of brevity, however, we use but four equa-
tions in four unknowns, equations (1), to present the theory. The so-
lutions are not more complicated, just longer, when more than four
variables are involved.

Each of the methods presented is illustrated by application to
the equations

z, + .4z, + 5z, + 62, = .2

Az, + 1.0z, + 3z, + 4z, = 4

(2)
bz, + 8z, + 1.02; + 22, =.6

Bz, + 42, + 22; + 1.0z, = 8

where the a’s are exact values. The solutions in this case are then car-
ried to five significant figures or to four decimal places. All solutions
are indicated symbolically in the tables where no z’s appear explicit-
ly, but the first column presents the coefficients of the z,, the second
of z,, ete. The last column is the conventional check column giving
the sum of the entries in the row.

Method One. The Method of Division

The first method described, which is essentially that given in
Huntington’s article in the “Handbook of Mathematical Statistics”
(5, p. 67), we might call the method of division. Each equation is di-
vided by its leading coefficient and some equation, say the first, is sub-
tracted in turn from each of the n — 1 others giving a new set of
n — 1 equations in n — 1 unknowns. The process is repeated until one
equation in one unknown is obtained. The back solution is then readi-
ly obtained by substitution.
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TABLE 1. METHOD OF DIVISION

General Ilustration
z, x, z, check z, z, £ z, check
N as, ag, 1.0000 .4000 .5000 .60000 | .2000|  2.7000
Gy Gy Gy Gy Ty Ggr .4000 1.0000 .3000 .40000 | .4000|  2.5000
G5 G Gy Gy Oy Ugs .5000 .3000 1.0000 .20000 | .6000|  2.6000
e, %, o, e, a5, e .6000 .4000 .2000 1.00000 | .8000|  3.0000
1 by by by by by 1.0000 .4000 .5000 .6000 | .2000|  2.7000
1 by by b by bey 1.0000 2.5000 .7500 1.0000 | 1.0000|  6.2500
1 by by by by bes 1.0000 .6000 2.0000 .4000 | 1.2000| 5.2000
1 by, by, b, by, bes 1.0000 .6667 .3333 1.6667 | 1.3333| 5.0000
Cpa Cgan Foy | Oy | Ceas 21000 .2500 .4000 | .8000| 3.5500
@psy Casa Fesa | Tasa | Tesa 2000 1.5000 -.2000 | 1.0000|  2.5000
Cper Fser Taar | Voen | Pean 2667 -.1667 1.0667 | 11333 2.3000
1 Yy Yan | Ve | Ve 1.0000 .1190 .1905 | .3810| 1.6905
1 Vgn Yaa |V | besa 1.0000 7.5000 -1.0000 | 5.0000| 12.5000
1 Wy Yy | Vsar | Yen 1.0000 —.6250 3.9996 | 4.2493 | 8.6239
@ssaz Ceaxz | Vssaz | Vesas 7.3810 -1.1905 | 4.6190| 10.8095
Faeaz Veeaz | Vseaz | Feers -.7440 38091 | 3.8683| 6.9334
1 Vg | Yssae | Yesae 1.0000 -.1613 | .6258| 1.4645
1 Ve | Vpere | Year 1.000 -5.1198 |-5.1993| -9.3191
@oerzs | Vsenzs| TVecazs -4.9585 |-5.8251| -10.7836
1 Yseres| Doarzs 1.0000 | 1.1748| 2.1748
1 ‘ssaze| Desaze 1.0000 .8153|  1.8153
1 Veonse| Pezase 1.0000 0602 1.0602
1 bs10s6| berzas | 10000 -9366|  .0634

The solution of (1) is given at the left of Table 1 while the four-
decimal-place approximation to the solution of (2) is given at the
right. If we refer to each main subdivision of the table as a “matrix,”
we may say that the first matrix denotes the equations. The second ma-
trix denotes the equations resulting when each has been divided by its
leading coefficient. The third matrix results from subtracting the first
equation from the others. Thus @5, = by, — b, , and in the illustra-
tion 2.1000 = 2.5000 — .4000. This process is then continued until
one equation in one unknown results and x, = b's...:. Now since
%z + b's3a2 T = bs3.00, it follows that x3_= b's3a2 — b'esaz D'saaza, and
the value z; = b'ss.10 can be obtained from the entries in the first row
of the sixth matrix and the x, previously obtained. Thus from b’ss.,.
we subtract the product of b',::. and the entry to the right of the
“one” in the last matrix, b's,.0; . This result may be checked by using
the second row of matrix 6 with the resulting
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b'ss124 == b's432 = D'siaz D'saiaza
Similarly, using the first row of matrix 4

b's2.130 = 0’521 = V21 D'sa2s = Dsoa Dssinaas

etc. This process is carried out easily from the entries of the table
once the “ritual” is learned.

The check column, column 6, is handled just as column 5, though
column 5 is not involved in the back solution. Thus b'ssazi = besxe
— b'i312 b'eiazs - The check results from the fact that, for every row
in every matrix, the entry in column 6 is the sum of the entries in the
columns to the left.

This method is the least satisfactory (aside from its theoretical
simplicity) of the various methods presented. The symmetry of the
equations, if originally present, is lost with the first set of divisions.
Many divisions are demanded and the method utilizes n{(n + 1) +n —
1= (n + 1)2 — 2 rows. In general the method will give approxima-
tions since divisions are involved,.

Brolyer (6) and Chauncey (7) have shown how this method may
be simplified by the elimination of considerable recording and some
computing. The even-numbered matrices in Table 1 are replaced by
a single row which is placed directly under the equation from which
it was obtained. The processes of division and subtraction are then
performed in one operation with the use of (a/b) — c techniques. The
number of rows in the forward and back solution is reduced to

+1 +2 +
x )z(n ) +n—2 =-7-1~(~ZL~2—-@ - 1, If a;y, = 1, the first division
n(n + 5)

row is not needed and we have - 2 Trows.

2

Method Two. The Method of Single Division

The method of single division is characterized by the leading
element in the case of but one of the n equations. The resulting equa-
tion is then combined with each of the n — 1 other equations in turn
to give n — 1 equations in n — 1 unknowns. The new equation can be
written at the bottom of the n equations. There is no great loss in
generality and a somewhat simpler technique results if the variables
are eliminated in 1, 2, 8, 4, order, (divide the top row of each matrix
by its leading coefficient), though a somewhat more complicated tech-
nique can be worked out if no such restriction is made. It is necessary
that this leading coefficient be different from 0.
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The method is derived by the elimination of z, from each of the
last three equations of (1),

a4, ;%, + L1 O3 2 - G»ija -+ a45$4 = CLS,- N 3.: 2, 3, 4 (3)
and from the first equation of (1) divided by its leading coefficient,
2y + bps + b2 + bk, = by . (4)

We multiply (4) by a,; and subtract from (3) to get
(@25 — @15 bas) Tz + (€a; — Qg5 baa) X5 + (@4 — Gy b)) T =055 — @y by,
which can be written
Opjy Ty + Qyja X5 + Qyjy T, = 0555, 7=2,3,4. (5)

The process is repeated to eliminate z,, z;, efe., in turn.
Thus

Ogia2 X3 T Qujrs Ta = 512,

With @ij10 = @ij3 — Gajs bissy -

The forward technique is simple. Divide the first row in any
matrix by its leading coefficient to form the last row in the matrix.
Take any element in the matrix and subtract the product of its lead-

TABLE 2. METHOD OF SINGLE DIVISION

General ! Illustration
z, X, X z, check 5 @, z, z, x, check
a, 6, Gy 0, a, a; | 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
o, 8, GO, o, o, Gg, | 4000 1.0000 .3000 .4000 4000 | 2.5000
a; 6, G, G, o, a;; | .5000 .3000 1.0000 .2000 6000 | 2.6000
a, 4, o, a a,, @, | .6000 .4000 .2000 1.0000 | .8000 | 3
1 b, by b, by, be; | 10000 .4000 .5000 .6000 | .2000 | 2
Gory Qg Oyp, Q52 bgo.q 8400 1000 .1600 | .3200 | 1.42
Cr51 @351 Pusa %531 LR 1000 7500 1000 ' .5000 | 1.2500
Bogy Bagq Cugs ay . Qs .1600 -.1000 .6400 ' .6800 | 13
1 baoy bina bysy bony 1.0000 .1190 .1905 - .3810 | 1.6905
Gias Gyzne | %saze | Teane 7381 -1190 | 4619 | 10810
Gginn Cgnz | Tpaag o Tgans ~1190 .6095 | .6190 | 1.1095
bysas | Bssae | besas 1.0000 -.1612 = .6258 | 1.4546
sz | Togazs i Ggy122 5903 . .6935 1.2838
1 Borgas | Bopazs 1.0000 ! 1.1748 2.1748
1 bosaze | Desaos | 1.0000 | 8152 | 1.8152
1 bioase | Deziras 1.0000 . .0602 : 1.0602
1 by, 90 ; Bo1.204 | 1.0000 | ~.9366 ¢ .0634
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ing row element and its bottom columnar element and the result is
the proper entry for the corresponding place in the next matrix, The
solution of (1), with the added check column, is shown in Table 2.
This method, essentially, has been given by Deming (8), who did not
restrict the order of elimination. It has also been given, essentially, by
Aitken (9) who calls it the “Method of pivotal condensation,” though
Aitken placed the divided row at the top of the matrix.

The back solution is obtained by subtraction. Thus bs;.e, is Ob-
tained by substituting z. = bs,.1>; in the equation 5 + bz Ta = bssna
80 that s = bssa2 = busae bsaszs . This is easily done since it is only
necessary to record bss..: and subtract from it the product of the term
before it (b..:.) and-the term associated with the “one” below it
(bss.12). Similarly the computation of bs.yse = bsza — beza bseaes —
b3, ; b3z can be reduced to a simple ritual.

This method is much preferable to the method of division in that
fewer divisions and subtractions are required and there is less record-

2 p—
ing. Also this solution demands but L"‘_%"__i rows for the for-
ward and back solutions. Furthermore this solution retains symmetry,
if originally present, for if a:; = a;: , then

Q35 Qiy

1

Qij1 = G5 — Gy byy =ay; —

=&jis,

@ij12 = GQjige, ete.

This symmetry has not been used (though it could be used for check-
ing) in the foregoing method so that this method is applicable to non-
symmetric equations.

Method Three. Method of Single Division—Symmetric

This method is essentially a special case of the method above
though some adjustments are needed because of deleted entries. It is
not necessary to record both a;; and a;; since they are equal if a:; =
2;; . We hence omit all the entries below the main diagonal for each
matrix. For example, in Table 2 we omit all the entries to the left of
and below the main diagonal. A dash (—) is used to indicate the
omission, rather than the vanishing, of these entries.

However, we have been using the entries at the left of the table
in computing the entries in the next matrix and so we still have to
find the equivalent of these entries. Now a duplicate of the leading
term for each row is obtained by going along the row to the main
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diagonal and then taking the heading of that column, since a;; = a;; .
In this manner the subtracted product is obtained from the first and
last rows of each matrix. The entry from the last row is the entry at
the foot of the column, while the entry from the top row is obtained
by moving along the row which contains the element to the main
diagonal of the matrix and then taking the heading of that column.
Thus

Qiji=a:i; — by 4y,
and in Table 2

@y s = (.2000) — (.5000) (.6000) = —.1000.
Similarly,

2430 = (—.1000) — (.1000) (.1905) = —.1190.

The back solution is similar to that of method 2. The technique is
easily learned with a little practice. The solution of (1) is presented
in Table 3.

TABLE 3. METHOD OF SINGLE DIVISION—SYMMETRIC

General Ilustration
z, x, z, check z, z, Z, z, check
a,, 6, a, a, ag, a,, 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
Oy, Qg Ty a, [ — 11,0000 .3000 .4000 4000 | 2.5000
— = Gy Gy a, 1L — — 1.0000 .2000| .6000 | 2.6000
- = = G, a, ag, — e e 1.0000| .8000 | 3.0000
1 b, by by, by, by 1.0000 .4000 .5000 .6000 .2000 | 2.7000
Oppq Gagy Oyoy @y, . L . .8400 .1000 .1600 | .3200 | 1.4200
— Oy O, Qs y Ogsq — 7500 -1000 | .5000 | 1.2500
— = Gy, . Qoy s — — 6400 | .6800 | 1.3800
1 by by | by | P 1.0000 .1190 .1905| .3810 | 1.6905
83232 %asaz | %z | %esaz 7381 -.1190 | .4619 | 1.0810
- TR Bsy32 gy 12 — 8095 6190 | 1.1095
1 bisie | Pssaz | PBesae 1.0000 -.1612 | .6258 | 1.4546
Qugy2s| Dssirs| Desrzs .5903 6935 ; 1.2838
1 byians| Basazs 1.0000 | 1.1748 | 2.1748
1 Bisaae! Desiios 1.0000 8152 | 1.8152
1 bio1ssl ez 1.0000 0602 | 1.0602
1 by 224 g by oas 1.0000 -.9366 0634

The check column entry is not necessarily equal to the sum of
the entries in the row since some of these entries are not recorded, but
in such a case it is equal to the sum of the entries as far left as the
main diagonal plus those in the column to the top of the matrix. Thus
Gosn = Qsgx T Qgez + Quay + Qoo
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The method demands the same number of rows as method 2, but
there are fewer entries and computations. The back solutions are the
same.

Method Four. Abbreviated Method of Single Division

An alternative condensation of method, which can be used wheth-
er the equations are symmetric or not, is the abbreviated method of
single division which demands less recording than the method of
single division. The method consists in computing and recording the
entries for the first row and for the first column only of each new
matrix. These eniries are then used, along with the first rows and
columus of previous matrices, to compute entries for the first row and
for the first column of the next matrix. For we can write

Q352 = 8s5; — Gy by,
Cijaz = Qiji — Qajq Bz = Qi5 — Qy; biy — @y, b2, ete.

It is necessary to compute these values only as needed. A little practice
will enable one to use this method easily. Thus, in Table 4.

Q4223 = 1.000 — (.6000) (.6000) — (.1600) (.1905)

- (—.1190) (—.1612) = .5903 .

TABLE 4. ABBREVIATED METHOD OF SINGLE DIVISION

General IMustration

T % s x4 check x, x, 24 z, check
a,;, 4, 0Oy a, Qg gy 1.0000 .4000 .5000 .6000 2000 | 2.7000
Qs Gy Gy L Qg Gy 4000 1.0000 .3000 .4000 .4000 | 2.5000
Gy Gy Gy, a,, L2 Qyy 5000 .3000 1.0000 .2000 .6000 | 2.6000
G, % G L a,, Qoo 6000 .4000 2000 1.0000 .8000 | 3.0000
1 by, by b,, I b, b, 1.0000 .4000 .5000 .6000 .2000 | 2.7000
Qopy Q307 Gpy ; Qgy 4 besq 8400 .1000 .1600 3200 | 1.4200

Q337 — - bt — 000 — — — —
Be1 — - -_— — 1600 — — —_
1 by, b, . bozn 1.0000 .1190 .1905 | .3810 | 1.6905
23312 %312 G332 Q4312 7881 -.1190 4619 | 1.0810

G312 ™ - -—_ -.1190 — — —_
1 | Psaae | besaz 1.0000 —1612 | .6258 | 1.4646
G2z | Fseazs | Pedazs 5903 6935 | 1.2838
1 bysres | beeazs 1.0000 | 1.1748 | 2.1748
1 bsaize | besz2e 1.0000 8152 | 1.8152
1 bss 136 62,154 1.0000 0602 3 1.0602
1 By1ose 61.234 1.0000 ~9366 | .0634
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Method Five. Abbreviated Method of Single Division — Symmetric

If the matrix of the coefficients is symmetric we may combine
the advantages of the method of single division — symmetric and
those of the abbreviated method of single division into a new method
which we may call the abbreviated method of single division — sym-
metric. If we combine the omissions of the method of single division
— symmetric (the entries below the main diagonal) and those of
the abbreviated method of single division (the entries to the right of
the first column and below the first row), we find that we have
omissions everywhere except in the first row of each matrix (and of
course the last row of each matrix which is obtained by dividing the
entries of the first row of the matrix by the leading element). In this
way we need record but two rows in each matrix and the number of
rows and computations, if n is large, is cut down enormously.

It is necessary, however, to adjust our technique for determining
the products, as these products must be obtained from the entries of
the twin rows of each matrix. The method of using the diagonal to
locate the second entry can not now be used after the first matrix,
since most of the rows of the matrix do not now appear.

However,

Qijy = Qi; — @y by, = a5 — a5, by,

TABLE 5. ABBREVIATED METHOD OF SINGLE DIVISION—

SYMMETRIC

General Illustration
z, X3 I3 z, check Z Zy 3 £ check
1y Gy O3 G4 . Qg 1.0000 .4000 .5000 .6000 2000 | 2.7000
— Uy, Oy Ty a,, gy - 10000 .3000 .4000 4000 ¢ 2.5000
— Z e, e, a,, ey —  — 10000 .2000 | .6000 | 2.6000
— = e, e | o — — — 10000 | .8000 | 3.0000
by, by b,, by, b, 1.0000 4000 .5000 .6000 2000 , 2.7000
Gopy O Qyon Cs93 LR .8400 .1000 .1600 3200 _1.—4‘700
1 oy ba2a bsz.i bsz'l 1.0000 .1190 .1905 3810 | 1.6905
Qig92 By3.12 Lo T L L7381 -.1190 4619 | 1.0810
a1z LI bes.12 1.0000 -.1612 6258 | 1.4646
Cig123 | Psea2s | Pesazs .5903 .6935 | 1.2838
1 byaazs | DBesnes 1.0000 | 1.1748 | 2.1748
1 . Doy y4 1.0000 .8152 1.8152
1 byoase | Dezase 1.0000 ' 0602 | 1.0602
bsx.234 L J 1.0000 © ~.9366 ; .0634
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Qijar = Qi = G5, byy — @yj1 biay
=a;; — Q4 biz = Qg biz:x s

Qijaes = Qij — G5, by; — @iz Diza — @3'1e bisye, ete.,

and the a's in the products are found by taking the entry in the column
whose number is the second subseript (5), while the corresponding b’s
are found by taking the entry in the column whose number is the first

subscript (¢). Thus the “a” entries used to compute

Gse123 = Qs ™ Qo3 Bsy = Qpoy Dsay — Gusa2 Dasiaz

are obtained from the fourth column while the corresponding “b”
entries are obtained from the fifth column. Entries in these columns
can be easily ovtlined with the use of a ruler, straight-edge, or even

a pencil.
TABLE 6. ABBREVIATED DOOLITTLE SOLUTION
o General { Ilustration
x, oz, oz z, check | z z, z, x, i check.
a, 4, a, a, g, a,, 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
— e, a, a, oy Gy - 1.0000 .3000 .4000 | .4000 | 2.5000
— —~ a, a4, a,, ag, — - 10000 .2000 | .6000 | 2.6000
— — = e, a,, g, _— — — 10000 | .8000 | 3.0000
a, 4, 6@, a_ ag, ag 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
1 b, b, b, by, b, 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
Gypq Gogy By | OGs2q | @eas 8400 .1000 .1600 | .3200 | 1.4200
1 b, bg, by, by 1.0000 .1190 .1905 | .3810 | 1.6905
Gysys Gusye | Ossiz | Gesis 7381 ~.1190 | .4619 | 1.0810
1 besaz | Yssaz | Desaz 1.0000 -.1612 | .6258 | 1.4646
Cppas | Bsenes | Peazzs 5903 6935 | 1.2838
1 byeaas | Decass 1.0000 | 1.1748 | 2.1748
1 bysree | besaze 1.0000 8152 | 1.8152
1 bssse | Dezise 1.0000 0602 | 1.0602
1 bizse | Derase | 1.0000 -.9366 | .0634
If we lay a ruler to the right of column four and one to the left

of column three

Qa2 = (.2000) — (.5000) (.6000) — (.1000) (.1905) = —.1190.

The corresponding check column entry is

o3z = 2.6000 — (.5000) (2.7600) — (.1000) (1.6905) = 1.0810
=.7381 — .1190 + .4619 .
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The method demands but 4n — 2 rows, is very compact, and is easily
carried out when thoroughly understood. The back solution is similar
to that of earlier methods.

Method Six. Abbreviated Doolittle Method

The reader who is familiar with the Doolittle method (10) will
recognize considerable similarity with the last method. As a matter
of fact, the last method is essentially an abbreviated form of the
Doolittle method. However, before presenting the Abbreviated Doo-
little method, we make an adjustment in the ritual dealing with the
first matrix. It would be somewhat simpler, though it would take an
additional row, if the first row of the first matrix were repeated at the
end of the first n equations just before the first row of b’s is inserted.
This is done in Table 6 where the Abbreviated Doolittle method is
applied to the solution of equations (1) and (2).

The general remarks on method five apply here though the num-
ber of rows needed is now 4n — 1 for the forward and back solutions.

It is customary in the conventional Doolittle solution to make the
b’s the negatives of the b’s of the foregoing solution, but in the method
outlined here the negative signs are absorbed in the technique.

The development above shows how the Abbreviated Doolittle
method can be obtained as a special case of the method of single
division when the matrix of the coefficients is symmetric.

The Abbreviated Doolittle method was outlined essentially by
Waugh as early as 1935 (11), though he applied it to the solution of
those equations involving correlations. However the idea is immedi-
ately applicable fo the solution of symmetric equations in general, and,
inasmuch as the method does not appear to have attained the recog-
nition which it deserves, it is imperative that its advantages be pre-
sented in some detail.

1t is possible, of course, to record every step and so to extend
the Abbreviated Doolittle method to the conventional Doolittle method,
but that is hardly to be recommended as the Doolittle method takes
more space, more recording, and is not so accurate. The Abbreviated
Doolittle method demands but 4n — 1 rows, while the conventional

. n{n +1) .
Doolittle method demands 2+ 3+ 4 + ... + = - 1 addi-
. n*+ 9n — 4
tional rows or a total of — rows. For example, Kurtz (12)

needed 43 rows to present the six equations, the forward solution,
and the back solution of his six-variable problem, while with the Ab-
breviated Doolittle method, this information could be presented in 23
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rows. It is obvious, too, that the abbreviated method is desirable in
that it saves time used in recording, it eliminates errors which result
from excessive recording, and it is theoretically more accurate in that
it uses the approximation resulting from the combination of a number
of operations rather than the combination of the approximations re-
sulting from the operations. It should be emphasized, too, that the
elimination of the unnecessary entries in the forward solution makes
it easier to select the entries needed for the computation of the entries
in the later matrices. As a matter of fact, one could hardly expect to
arrive at a simpler technique than that outlined in the Abbreviated
Doolittle method.

The Abbreviated Doolittle method as presented here differs from
the conventional Doolittle method not only in the elimination of
numerous efftries but also in the fact that the division is made by the
leading element rather than by its negative. It is the opinion of the
author that the division by the leading element is desirable in that
(1) it makes possible the carrying on of the back solution in the
same form as the computation of the forward solution with a mini-
mum of effort and recording and (2) it preserves the relationship to
the method of single division of which the Abbreviated Doolittle
method is a special case.

It is advantageous, from a theoretical point of view, to know that
the Abbreviated Doolittle method is a special case of the method of
single division since the validity of the Abbreviated Doolittle method
(and of the conventional Doolittle method itself, since this is essential-
ly the Abbreviated Doolittle method with detailed steps recorded) fol-
lows at once from the validity of the method of single division. This
is a matter of some importance when it is noted that the writers on
the Doolittle method, from Doolittle himself (10) down to the present,
usually content themselves with a description of the details of the
solution rather than a justification of the method. A “proof” can be
outlined with a happy choice of notation, but it now appears that
validity of the Abbreviated Doolittle method can be demonstrated
with little effort since it is a special case of the method of single
division. The additional superfluous terms used in the conventional
Doolittle method complicate the proof as well as the calculation.

The Doolittle method has been widely recommended as the means
of solving normal equations when n is greater than three and the
matrix is symmetric (10), (12), (13), (14). It now appears, on
theoretical as well as practical grounds, that the Abbreviated Doo-
little method is to be preferred, — at least if a computing machine
capable of performing a — be operations efficiently is available.
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Method Seven. Method of Multiplication and Subtraction

A method which does not involve division at all in the forward
solution has lately come into prominence. For example, Rider has
used it in his recent text (15, p. 36) and Wren has recently described
it (4). If we multiply the first equation of (1) by —a,. and the second
by a,, and add, we get

(o2 Oyy — Q32 0 ) Tz + (Ggz Gry — Bz B3) Xz + (A42 @y — Ay Q) T,

=gy Qyy — Gy Uy,
and if we let A;;, = a;; a,, — a,; 0,y , this appears as
Apr 1 Ty + Agg1 Ty + A1 Ty=Ag, .
TABLE 7. METHOD OF MULTIPLICATION AND SUBTRACTION

General Illustration
® z, T, z, check |z, z, T, xz, check
e, a, a, a, ay, ag, 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
0, G 8, G, a,, g, .4000 1.0000 .3000 .4000 | .4000 | 2.5000
G, 6, @, G, a,, gy 5000 .3000 1.0000 .2000 | .6000 | 2.6000
4, %, a, a, a,, a,, .6000 .4000 .2000 1.0000 | .8000 | 3.0000
Agpy Aggy Apy | Ay | Ags 8400 .1000 .1600 | .3200 | 1.4200
Agyy Aggy A, | Ay | Ag, 1000 .7500 -.1000 | .5000 | 1.2500
Aggr Ager Ay | Agy | Ages .1600 —.1000 .6400 | .6800 | 1.3800
Agsre Agss | Agzne | Agase 6200 -1000 | .3880 | .9080
Agers Agers | Agprs | Agens -1000 .5120 | .5200 | .9320
Agsny ' Agerns| Ageras | 30744 | .36120: .66864
1 Bigyzs! Basas 1.0000 | 1.1749 | 2.1749
1 Bysaze | Besaze 1.0000 .8153 | 1.8153
1 s2.a34 | Bezas 1.0000 0601 : 1.0601
1 1234 | Baisas | 1.0000 ~9366 . .0634

A similar elimination involving the first and third equations gives

and similarly

Apan o+ Apa s X + A 2, = Asaa,

AoesTa + Ag s s + Ay 2, =A.5.

The four equations in four unknowns have thus been reduced, by
multiplication and subtraction, to three eguations in three nnknowns.
The process can be repeated with the resulting

with

A2 T+ Asye T, = Assaz,

A34.12 xS + A44J‘.’ xi = AS{.}’.‘ *
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Aij.u = Aim Apy— Aizs Az;‘.: .

Again
Agiros T = Asenag s
with
Aij‘ns Z:Ai;‘.u Aggr — Aigaz Agjaz .
So
Asiazs
X, = = Bsi123 »
44123
_ 1
Ty = A [Ass.u - A«s.u Bm.ns] N ete.
33.12

The forward solution is simpler and the back solution slightly
more involved than methods previously presented. The back solution
involves a division for each entry though there are no divisions in the
forward solution. The solution demands L——;gl YOWS.

The chief advantage of the method is the ab — c¢d technique which
is used in getting the items in each successive matrix. Starting with
a given term in a matrix, multiply by the upper left entry of the
matrix and subtract the product of the entries at the top of the
matrix column and the one at the left of the matrix row. The illus-
tration is given in Table 7.

Meirhod Eight. Method of Multiplication and Subtraction—Symmetric

If the matrix of the coefficients is symmetric, it is possible to
leave the entries below the diagonal as blanks and to proceed some-
what as in method three (15, pp. 37-38). Any item in a matrix is now
multiplied by the leading item in the matrix, and from this product
is subtracted the product of the item heading the column with the
item heading the column which is obtained by going to the left until
the main diagonal is reached. The details of the numerical solution
for equations (1) and (2) are given in Table 8.

Thus
A, ;= (.2000) (1.0000) — (.5000) (.6000) = —.1000

and
Ay, = (—.1000) (.8400) — (.1000) (.1600) = —.1000.

Method Nine. Abbreviated Method of Multiplication
and Subtraction

It is not necessary to record the entries except those in the first
row and in the first column of each matrix. Each value A;;--- is then
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TABLE 8. METHOD OF MULTIPLICATION AND SUBTRACTION—
SYMMETRIC
General Illustration
x, =z, z; =, check x, z, £, =z, | | check
G, G G G, a,, G4, 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
e a,, gy — 1.0000 .3000 .4000 | .4000 | 2.5000
- = a, a, Oy s —  — 1.0000 .2000 | .6000 | 2.6000
—_— - — a,, a,, Gg, —_ —_ — 1.0000 .8000 | 3.0000
Ay Ags Apy | Ana | Aea 8400 .1000 .1600 | .3200 | 1.4200
— Ay Ags | Ayy | Aga — 7500 -1000 | .5000 | 1.2500
—_— - AL, Ay, A, —_ —  .6400 6800 | 1.3800
Aggrr Agsns | Agyga | Aggis .6200 -.1000 .3880. 9080
— A | Agan | Agene — 5120 | .5200 ! .9320
Ao | Aginzs | Agenzs 30744 | .36120 | .66864
1 R 1.0000 [1.1749 | 2.1749
1 By 1z | Besiae 1.0000 8153 | 1.8153
1 Bepise | Besnse 1.0000 0601 | 1.0601
1 By ss | Bepas, | 1.0000 -.9366 | .0634
TABLE 9. ABBREVIATED METHOD OF MULTIPLICATION
AND SUBTRACTION
General Illustration
z, x, x4 z, check x, x, x4 z, check
e, o, 6, a, a,, g, 1.0000 .4000 .5000 .6000 | .2000 | 2.7000
Gy Gy Gy G, ag, ag, 4.000 1.0000 .3000 .4000 | .4000 | 2.5000
a, ¢, ag o a gy 5000 .3000 1.0000 .2000 | .6000 | 2.6000
a, o, a, a, a,, a,, .6000 .4000 .2000 1.0000 | .8000 | 3.0000
Apy Agy Apy | Apy | Agea 8400 .1000 .1600 | .3200 | 1.4200
Agga — — — — 1000 — — — —
Apey — — — — 1600 — — — —
Agsar Aggae | Apsan | Aesaz 6200 -.1000 | .3880 | .9080
Agire — _— —_— -.1000 _— — J—
Avos | Asanns | Aenizs 30744 36120 | .66864
1 By, 103 | Besqos 1.0000 |1.1749 | 2.1749
1 Bys12s | Besana 1.0000 8153 | 1.8153
1 Biysas | Bgansa 1.0000 .0601 | 1.0601
1 By, 3, B, 23, | 1.0000 ' —.9366 .0634
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obtained by multiplying by the leading term and subtracting the ap-
propriate product in each matrix. Thus

A= 0@ Qi G,

Aii.u = (aij ay; — Gy a’li)A22.1 - A"j.l Aiz.l ,

and
Aijaes= [(aij a1, — Qin @) Ay — Agsi Aiea] Az — Asjae Az .

The process of computation is easily carried out with a modern com-
puting machine. The details of the solution are given in Table 9.
Thus

Aa. = [(:2000) (1.0000) — (.5000) (.6000)] .8400

— (.1000) (.1600) == —.1000
and

A2 = {[(1.0000) (1.0000) — (.6000) (.6000) ] .8400
— (.1600) (.1600) } (.6200) — (.1000) (.1000) = .30744.

The method demands the same number of rows as method seven but
fewer entries are used.

Method Ten. Abbreviated Method of Multiplication and
Subtraction — Symmetric

In case the matrix is symmetric it is only necessary to record the
first row of each matrix since the columnar entries duplicate the row
entries. The values of the first rows of each matrix are determined
from the matrices above. The multipliers are obtained by taking the
products of the terms in the ©’th and ;’th columns. These columns may
be outlined with the use of a straight-edge, though care must be taken
not to cover up the first entry in the row, for this is needed for multi-
plication. For example, if A, - is desired, then the entries, with the
exception of the leading items, are all in column 8 and column 4. The
solution is given in Table 10 with the omission of the first row in the
second matrix, the insertion of which is discussed later.

Thus
Ao, = [{.2000) (1.0000) — (.5000) {(.6000)] (.8400)

- (.1000) (.1600) == —.1000
and

A“‘m_f {[(1.0000) (1.0000) — (.6000)2] (.8400) — (.1600)2}
X (.6200) — (—.1000)2=.30744 .
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TABLE 10. ABBREVIATED METHOD OF MULTIPLICATION
AND SUBTRACTION—SYMMETRIC

17

General Ilustration
x, z, = x, check | =z, x, z, z, check
a, 8, a; a, a;, ag, | 1.0000 .4000 .5000 .6000 2000 | 2.7000
— Gy, Gy G, a, Gg, — 10000 .3000 .4000 .4000 | 2.5000
— = Gy Gy [ L — — 1.0000 .2000 .6000 | 2.6000
_ = — a,, ag, a,, — — — 1.0000 .8000 | 3.0000
a, 6, a; a, a, a,, 1.0000 .4000 .5000 .6000 2000 | 2.7000
Ay Apy Ao, Ag, . Ay .8400 .1000 .1600 3200 | 1.4200
2522 Az | Agsqe | Aegaa 6200 -.1000 .3880 .9080
cazs | Ascrzs | Aearzs 30744 | 36120 | .66864
1 By, 123 | Begass 1.0000 | 1.1749 | 2.1749
1 By 120 | Besaae 1.0000 8153 | 1.8153
1 s2.13¢ | Be2.13¢ 1.0000 i .0601 | 1.0601
1 [ Bgyoze | Bgyoge | 1.0000 1 -.9366 0534

This method has not, to my knowledge, been presented before. It
follows logically from the method of multiplication and subtraction
just as the Abbreviated Doolittle method follows from the method of
single division. This method is very compact and demands but 3n — 1
rows of which n are demanded for the statement of the problem and
n for the statement of the solution. The technique of the method is
easily learned. The forward solution is more compact than the Ab-
breviated Doolittle method while the back solution is somewhat longer
owing to the fact that a final division must be made. However, there
are no divisions (though there are multiplications) in the forward
solution, and the actual solution, aside from the n rows needed to
express the problem and the n rows stating the result, takes about
half as much space as the Abbreviated Doolittle solution.

For those who use the method only ocecasionally it may be better
to repeat the first row at the beginning of the second matrix (see
Table 10) as we did in the Abbreviated Doolittle solution. The ritual
can then be more easily remembered for it is necessary only to locate
columns ¢ and 7, to multiply a;; by the leading element of the first
row of the second part of the solution, to subtract the product of the
entries in the ©"th and j’th columns in the row, to multiply the result
by the leading element in the next row, to subtract the product of the
elements of the 'th and j’th columns in this row, etc. The space devot-
ed to the solution is then divided into three equal parts of » rows, (1)
the statement of the problem, (2) the details of the forward solution,
and (3) the statement of the results. For brevity we shall refer to this
method as the “compact” method.
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THE SOLUTION OF RELATED EQUATIONS

There are some additional points which should be made in connec-
tion with the solution of equations by the methods herein described.
It should be noted first that the forward solution of such equations as

Qy Ty + Gpy X + Oy s =0y,
1 Ty + oz Tz + Ogp T3 == Ga, (6)
Qs 2y + Gs Tz + Qg3 T3 = Bss
and
@,z + 0y 2,—=0a,,
(7)
Ay Ty + Qoo T, =y,
are presented in each of the methods of solving (1). It is neces-
sary only to cover up the fourth column and complete the back solu-

tion. For example, from the forward portion of the Abbreviated Doo-
little method (Table 6), we have:

T3 = bss12, Zs = .6258 ,
Zo = Dbpy — bsza bssaz (= bsass) xzi 3065,
n= bs1 — by bssaz — b2y bsaas z, = —.2355.
Similarly, from the forward solution of Table 10, we have
Tz = A = Bssaz, z, = .62568,
33.12
1
T2 ='Z——[A52.1 — Agz1 Bssazd (= Bsaas) z,= .3065,
22.1
1
Zy =T[aﬁx — @5y Bysay — Gy Bigis] - z, = —.2355.
The solution is verified by substituting in the equations. Thus
z, + .4z, + .5z, = 20000 z, = —.2355
Az, + x4+ .832,=.40004 when z,=— .3065}.
b5z, + .82, + 2z, =.60000 .= 6258

The reader is referred to Kurtz (12) for a more general discus-
sion dealing with the solution of related equations.
THE SOLUTION OF GROUPS OF EQUATIONS

It is sometimes desired to solve groups of equations in which the
variables have the same coefficients, but the constants are different.
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Thus the values of @s;, @s2, @x, @5, in (2) might be: (a) 2, 4, .6,
.8; (b) 4, .5,.6,.7, and (c) .8, .6, 4, .2,

It is possible, in any of the solutions indicated above, to insert
additional columns and to carry along the solutions simultaneously.
The check column should show the sum of the entries in the row. This
method is advised in case a few groups of equations are involved. The
solution which uses the Abbreviated Doolittle method is given in
Table 11.

The results are obtained by the more accurate “Compact” method
in Table 12.

The Solution of Groups of Equations — Fisher Method

In case the number of groups is large, however, it is better to
use a more general method. If each group contains n equations in n
unknowns, a special colurhn can be reserved for the coefficients of
@y:1,3 , ONe for the coefficients of a...,; , ete. These coefficients are either
1 or 0 and constitute a unit diagonal matrix. Thus equations (1) can
be written symbolically as

x, Z, Ts Ty sy as, Osq sy
Ay (1 73Y sy @y 1 0 0 0
0’12 a'zz a!i a’(? O 1 0 0 (8)
Lo [N Ay Qs 0 0 1 0
Gy, Aoy @3, Qoy 0 0 0 1

and the solution can be worked out in terms of as,, @s», @s3, Gsi, DY
the methods just described. It is necessary only to insert any desired
values of as; to obtain the solution.

It appears that this method was first outlined by R. A. Fisher
(16, p. 150). If can be combined with any of the methods described
above. The author has shown how it can be combined with the con-
ventional Doolittle solution (17). In Tables 13 and 14 are presented
the Abbreviated Doolittle solution and the “Compact” solution of
equations (2) for any as; . The check column, a,; is as usual the sum
of the entries in the completed row.
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TABLE 13. ABBREVIATED DOOLITTLE-FISHER METHOD

check
£2Y Z, Z3 x, a5 Gsp Q53 Qs Qg

1.0000 .4000 5000 .6000 1 ¢ 0 0 8.5000
_— 1.0000 3000 .4000 0 1 0 0 3.1000
—_— — 1.0000 .2000 0 0 1 0 3.0000
— e —_ 1.0000 0 0 0 1 3.2000
1.0000 4000 .5000 .6000 1.0000 ¢ 0 0 3.5000
1.0000 .4000 .5000 .6000 1.0000 ¢ 0 0 3.5000
8400 .1000 .1600 -.4000 1.0000 0 0 1.7000

1.0000 1190 1905 -4762 11805 0 0 2.0238

7381 -.1190 —-.4524 ~1190 1.0000 O 1.0476

1.0000 -.1612 -6129 -1612 13548 ¢ 1.4193

5903 -.5966 -.2097 .1612 1.0000 9451

1.0000 -1.0107 -~.3552 .2731 1.6941 1.6011

1.0000 -7758 -2185 1.3988 .2731 16774

1.0000 -1913 1.2842 -2185 -.3552 1.5192

1.0000 2.0708 -.1913 -7759 -1.0109 1.0930

TABLE 14. COMPACT-FISHER METHOD
check
zl z’ za z‘ asl a5z a53 a-’b‘ aﬁ)

1.0000 4000 5000 .6000 1 0 0 0 . 8.5000
-_— 1.0000 3000 .4000 0 1 0 0 3.1000
—_ — 1.0000 2000 0 0 1 0 8.0000
_ ——— -— 1.0000 0 0 0 1 3.2000
1.0000 4000 .5000 .6000 1.0000 ¢ 0 0 3.5000
8400 1000 .1600 -.4000 1.0000 0 0 1.7000

6200 -.1000 -3800 -.1000 .8400 O .8800
30744 -3108 -.1092 .0840 .5208 49224

1.0000 ~1.0109 -.3552 2732 1.6940 1.6011

1.0000 -7759 -.2186 1.3989 .2732 1.6776

1.0000 -1913 1.2842 -2186 -.3552 1.5191

1.0000 20710 -.1913 -7759 -1.0109 1.0929

We have then
x, = 2.0710a;, — .1913a;, — .7759a.; — 1.0109a;,
2 = - -.1913a;, + 1.2842a,, — .2186a,;, — .3552¢,
x, = —.T759a;, — 2186a;, + 1.3989a,; + .2732a,, ()
z, = —1.0109a;, — .35524a., + .2732a,, + 1.6940a,, .
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The values of a;; are then inserted to obtain values of z; . For example,
when a;, = .2, 4;,, = .4, a;; = .6, 4, = .8, we have

z,=—.9366, 2,=.0601, z,=.8153, z,=1.1749
and these results agree with those of Tables 11 and 12.

The Inverse of a Matriz

The solutions just above give 2 method for finding the inverse of
a matrix since they provide the matrix A-* in

AA =1,

The method above can be used whether A is a square matrix, or not.
In case A is a square symmetric matrix it is possible to shorten the
Fisher solution appreciably by omitting the eolumns on the right. The
matrix A-* is symmetric, and this fact can be used to eliminate many
of the entries. Furthermore, the intermediate equations take the
form, in the “Compact” method,

Q11T + Uy + Ay Ty + Ay By Y,y
Apen @+ Ay s+ A 2, =C 4 + 0,3 ¥,

Ass1a s + Apnn 3&5013 Y1+ Cau¥+ 0y Ay Ys

(10)
Apazs 2,=Co 4 + Cou 92 + Css ¥

+ ayy A Aszaz Ve -

It is possible to find formal expressions for the C’s in terms of
the A’s, but the method outlined below avoids this. If the equations
(10) are solved for z,, z,, %, %,, we get

2, =Dyt + Dy ¥+ Dsyys + Dy Y
2, =Dy ¥ + Do Y2 + Dy Y5 + Dz ¥
Zs=Dys ¥ + Das ¥, + Dy ys + Ds Ve
=Dyt + Do ¥ + D3y ¥s + Dus s,

(11)

where the D’s form the symmetric matrix D = A-* with D;; = Dj;.
Now from the last equation of (10)

D..= O Aszy Assye
“E
44128

so that, by solving for D,; in the third, second, and first equations of
(10), we get
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1

Dy= Ao [—Aau1 D]
1

Dy= y [ 4521 Des — Ay Do)
22.1
1

Dg= Y [—@21 Dy — @3, Dy — a, D]

1

We next fill in the values Dy,, D.,, Ds,, since D;; = D;; and note
1

Dy= A [a Aoy — Ao Ds,]
53.12
1

Dy zr [—As1 Dy — Ay Dy}
22.1

Dy, = "‘i— [(—au D, — a3y Dy — Ay Dsl]

1
W‘ith D13 -::'DB‘I y Di.—_ D21 .

Similarly,
1
Azea

D..= [a,, — Aoy Doy — Asua D2l

D, (= D,;) =’£— [0 Do, — Ay D,; — a,, Dy}

1

1

TABLE 15(a). THE INVERSE OF A SQUARE SYMMETRIC MATRIX.
COMPACT METHOD

D, = [1—eyD,,—ay, Dy, —a, D} .

1.0000 4000 | .5000 | .6000
— 1.0000 | .3000 | .4000
- — ]1.0000 | .2000
- - — | 1.0000
(1.0000)
1.0000 4000 | .5000 | .6000 | 2.0710| -1913 | -.7759 | -1.0109
(1.0000)
8400 | .1000 | .1600 | ~-.1913| 1.2842 | ~2186 -.3552
(.8400) .
6200 | -1000 | -.7759 | -.2186 | 1.3989 | .2732
| (.5208)
| .30744] -1.0109 | -.3552 | .2732 | 1.6940
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An illnstration is given in Table 15(a) where the compact method
is used.

The first four columns are characteristic of the forward solution of
the compact method. In addition, in the diagonal of the second matrix,
I have inserted in parentheses the values, 1, @y;, @y Asy, G Az
X Ag1. . 1t follows at once that

5208 _ 1

w= oy = 169405 Doy = —5- [~ (—.1000) (1.6340) ] = .2732
1
D5y = —s— [.8400 — (—.1000) (.2782)] , ete.

The method is not at all difficult to apply once the formulas above
are thoroughly understood. The type of operation is similar to that
used in the usual back solution.

An alternative method is provided in Table 15(b) where the first
two matrices agree with those of Table 15(a). As before, D,, =

.5208

o7y = 16940 and Dy = 6200[ (—.1000) (1.6940)] = .2732.

The value D;, = .2732 is then inserted andThe value of D,, found,
essentially, by taking products of terms in the same columns. The

TABLE 15(b). THE INVERSE OF A SQUARE SYMMETRIC MATRIX.
COMPACT METHOD

1.0000 4000 -5000 .6000
— 1.0000 3000 .4000
— — 1.0000 .2000
_ — — 1.0000

(1.0000)
1.0000 4000 5000 .6000
(1.0000)
8400 .1000 .1600
(.8400)

6200 | -.1000
(.5208)
30744

206710 | —1913 | -7759 |-1.0109

-1913 | 1.2842 | -2186 | -.3552

7759 | -.2185 | 1.3989 2732

-1.0109 | -.3552 2732 | 1.6940
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general idea is to get the higher vertical terms in each column and,
as soon as one is available, write it in the proper row so that the next
element can be found. When all the elements in a given row are found,
move on to the next row, etc. This, too, is a simple technique once it
is thoroughly understood.

A similar scheme can be worked out for the Abbreviated Doolittle
method. In this case the intermediate equations have the form

x1+bn$3+bnz;+bﬂx‘= 1

Yi

1

1
Ty + b1 2y + b1 2e=Enyy ¥ —— Y2
Qo1

(12)
Zo+ bz =E; 59, + Eg 2 +

Ys

3.12

1
z.=FE, ¥, +E,.y2+E3,y3+———y,

44.123

so that

1
Dy= s D= —beis D= Ds,

a’“.u’ —

D=~ (bgi Dy + bu.Dy) =Dy,
Dy=~(by Do+ b, Dz + b D) = _Dz-}
1

3.12

Dy = —byz.12 D, etc.

The numerical illustration is given in Table 16, where the two

1 1 1
alternative solutions are shown. The values —1— y —

a’ll 0’22.1 ’ a33.12 ! a44.123
inserted above @, , @ss1 , Gasaz, Gesnzs - The first solution on the right
is similar to the solution in Table 15 (a) while the second solution at
the bottom is similar in method to the solution of Table 15(b).

This version of the method for finding the inverse of a square
symmetric matrix has been given, essentially, by Waugh (11) who
made improvements on the technique previously worked out by Horst
(18) (18). Waugh used the Abbreviated Doolittle method and ap-
plied it to the correlation matrix and showed how to compute the large
number of statistical quantities which can be computed from the in-
verse of the correlation matrix. Dunlap (20, pp. 119-123) has pre-
sented a similar method which he attributes to Cureton.

are
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TABLE 16. THE INVERSE OF A SQUARE SYMMETRIC MATRIX—
ABBREVIATED DOOLITTLE METHOD

1.0000 | 4000 | .5000 | .6000
— | 10000 | 3000 | .2000
— — | 10000 | 2000
— — — | 1.0000
10000 | 4000 | .5000 | .6000
(1.0000)
1.0000 | 4000 | .5060 | .6000 | 2.0710 | -.1913 | ~.7759 | -1.0108
8400 | 1000 | .1600
(1.1905)
1.0000 | 1190 | .1905 | -1913| 1.2842 | —2185 | —.3552
7381 | -.1190
(1.3548)
1.0000 | -1612 | -.7759| —2185 | 1.3988 | .2731
(1.6941) o
5903 | -1.0109 | —.3552 | .2781 | 1.6941
20710 | -1913 | -.7759 | -1.0109
_1913 | 12842 | -2185 | -.3552
~7759 | -2185 | 13988 | 2731 |
210109 | -3552 | 3731 | 16941 |

Other methods of finding the inverse of a matrix have been pub-
lished recently (9) (21). These combine one of the methods outlined
at the beginning of the paper with a scheme, which seems to be due to
Aitken (9), which carries out the back solution by “forward” means.

Solution of Non-Symmetric Equations by Symmetric Methods

Aitken has shown (9) that it is possible to reduce non-symmetric
equations to equivalent symmetric equations. If the equations are
represented by Az == B, then by premultiplying by A’ we have the
equivalent =~

A'Ar=AB,
with A'A a symmetric matrix. ~

Conclusion

Various known methods of solving equations have been presented
in such a fashion as to bring out their relations with other methods.
By gradual steps the method of single division leads to an abbreviated
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version of the Doolittle method while, by corresponding steps, the
method of multiplication and subtraction leads to a new compact meth-
od. These methods are applied to such problems as the solution of
groups of equations and the evaluation of the inverse of a matrix.
The evaluation of determinants, of multiple correlation coefficients,
of regression coefficients, of linear forms, etc., will be discussed in
later papers.

The bibliography attached, while extensive, does not pretend to be
complete. Some of the references themselves provide extensive bibli-
ography and, in this way, it is possible to contact, from the references
below, much of the work done in this field.
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