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INTRODUCTION

Nowadays information technologies make fast
strides connected with the measurement and analysis of
the intrinsic noise in systems of diverse nature, which
are important not only for modern electronics but also
for numerous fields of science and technology, includ-
ing biophysics and fatigue tests of materials [1–10].
Considerable interest is devoted to a fine non-Gaussian
structure of the intrinsic noise [11–17]. The noise infor-
mation technologies are on the increase in electrochem-
istry as well [18–28].

In this work we will develop a theory for analyzing
non-Gaussian noise in the Laplace space [29]. We will
deal with measuring third-order operation spectra or,
which is the same, measuring the operation bispectra
[30–32]. We shall discuss random time series with both
continuous and discrete time. The theory of second-
order operation spectra was dealt with in [24, 33–35].
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correlation function of a random steady-state process
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either the electrical current or voltage fluctuations. In
equation (2), 
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The operation bispectra correspond to the substitu-
tion of the Laplace frequencies 
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 for the Fourier
frequencies 
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integration (summation) range changes as well: a one-
sided operation replaces a two-sided one. From (1) and
(2) we define the operation bispectra as follows:
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 is the Laplace image of the third-order
correlation function 
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defines K(p, q) for continuous time and equation

(5)

for discrete time. In (5), t1 = mt0 and t2 = nt0. Here and
in what follows, operation frequencies p and q are real
positive numbers. The quantity K(p, q) is symmetrical
with respect to frequencies p and q

K(p, q) = K(q, p) (6)
by definition. A third-order cumulant function
〈y(0)y(t1)y(t2)〉 can be found over the entire time plane
(t1, t2) when it is known in the first quadrant [36].
Therefore, a Laplace image of the cumulant function
K(p, q) with Laplace frequencies p and q uniquely
defines the initial cumulant function 〈y(0)y(t1)y(t2)〉.

RANDOM SERIES WITH CONTINUOUS TIME

The Laplace transform Y(p) of the initial random
process y(t)

(7)

is a random quantity. We will use it for constructing a
third-order cumulant

(8)

Here, p, q, and r are operation frequencies, and the
angle brackets imply the averaging over an ensemble of
realizations. We assume that the steady-state random
processes under discussion are ergodic. Therefore, an
averaging operation means the averaging either over an
ensemble of identical stochastic systems or over an
ensemble of long observation times concerning a single
stochastic system.

The integral in the right-hand part of (8) can be writ-
ten as the sum of three integrals

(9)
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We will first calculate J1:

After replacing the integration variables, then t4 = t2 – t1,
t5 = t3 – t1

therefore,

(11)

similarly, 

and the third-order cumulant we sought for is

(12)

We set all operation frequencies in (12) equal to
each other: q = r = p. This gives the algorithm

〈y0 〉 = 16K(p, p) = 16p〈Y3(p)〉 (13)

for calculating the operation bispectra at identical oper-
ation frequencies. Setting r = q in (12), then

〈Y(p)Y2(q)〉(p + 2q) = 2K(p, q) + K(q, q). (14)

By combining (13) and (14) we come to general algo-
rithm

〈y0ypyq〉 = 8[(p + 2q)〈Y(p)Y2(q)〉 – q〈Y3(q)〉] (15)

for calculating the operation bispectra that depend on
two independent Laplace frequencies p and q. As the
integrals with exponential functions rapidly converge,
the final realization interval for random process y(t) can
be considered as infinitely wide.
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OPERATION BISPECTRA 
FOR THE ERSHLER–RANDLES CIRCUIT

The Ershler–Randles circuit is a common electro-
chemical ac circuit [37, 38], which consists of faradaic
resistance R and double-layer capacitance C connected
in parallel. The complex conductance Gω and operation
admittance Gp of the Ershler–Randles circuit are
defined as follows:

Gω = R–1 + jωC, Gp = R–1 + pC. (16)

The potential response function HE(t) exponentially
depends on the time

HE(t) = C–1exp(–tR–1C–1). (17)
A faradaic processes is highly nonlinear and is char-

acterized by white noise. Therefore, the Langevin lin-
ear stochastic equation [17] for fluctuations of the equi-
librium electrode potential e(t)

(18)

contains the current i(t) possessing characteristics of
nonlinear white noise. As a result, the third-order corre-
lation function 〈e(0)e(t1)e(t2)〉 that corresponds to e(t) is
proportional to the integral of the product of three
response functions [30, 39]

(19)

Based on (19), for a Fourier bispectrum with equal
frequencies and a Laplace bispectrum with equal oper-
ation frequencies, we obtain expressions

(20)

(21)

which are correct to a proportionality coefficient. Worth
noting is different functional dependence of relevant
bispectra on the Fourier frequency ω and the Laplace
frequency p. Interestingly, equation (21) is the first
example of modeling the third-order operation spectra.
Calculations based on (19) suggest that, in the case of
the Ershler–Randles circuit, the bispectra determined in
the imaginary axis of the Laplace plane (Fourier
bispectra) and the bispectra determined in the real axis
of the Laplace plane (operation bispectra) are interre-
lated through the simple formula

(22)

Using operation admittance Gp and common admit-
tance Gω the latter may be rewritten as
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We see that both the left- and right-hand parts of (23)
equal some constant, which characterizes the noise
properties of the Ershler–Randles circuit.

RANDOM SERIES WITH DISCRETE TIME

A similar analysis can be carried out for a random
process with discrete time. However, here the Laplace
image Y(p) of the initial random process y(t) is the
result of applying the Laplace discrete transform:

(24)

where t = mt0. The modified form of (12) is

(25)

where σ = p + q + r. The equation

(26)

is a discrete analog of (13). Finally, the equation

(27)

is a discrete analog of (15). The detailed procedure of
deriving (25) for operation bispectra corresponding to a
random process with discrete time is given in Appendix.

CONCLUSIONS

The advantages of using the Laplace space for
studying a fine non-Gaussian structure of random time
series are:

(i) a clear statistical meaning of the third-order oper-
ation spectra (bispectra) and the possibility of their
modeling, in particular, in the case of operation bispec-
tra with equal Laplace frequencies;

(ii) an exponentially small systematic error in eval-
uating the operation bispectra. As a result, the tradi-
tional problem of spectra windows affecting the results
of spectral analysis of a random time series loses its
edge;

(iii) a high performance in the computer processing,
caused by the possibility of using one-dimensional
mass data when calculating operation bispectra with
equal Laplace frequencies; and

(iv) a new source of useful information on the fine
non-Gaussian structure of a fluctuation state of the sys-
tem under study.
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APPENDIX

The starting point in the calculation of operation
bispectra is the equation

(A.1)

Using the discrete Laplace transform, it coverts a ran-
dom time series y(t) (t = mt0, where m is an integer) to
a random quantity Y(p). Using (A.1), we will form a
third-order cumulant 〈Y(p)Y(q)Y(r)〉, where the angle
brackets denote the averaging over an ensemble of real-
izations of random process y(t), while p, q, and r are
positive Laplace frequencies. For 〈Y(p)Y(q)Y(r)〉 we
obtain the triple series

(A.2)

Here, t2 = nt0 and t3 = kt0 (n and k are integers). The
summation in the right-hand part of (A.2) is done over
points of a discrete three-dimensional space (m, n, k) via
diagonal lines that form the same angle with all three
coordinate axes. For example, the summation over points
in a diagonal line passing through the point (0, n, k) on the
plane m = 0 gives a〈y(0)y(t2)y(t3)〉exp(–qt2 – rt3), where
a = t0/[1 – exp(–σt0)] and σ = p + q + r. The sum over
all diagonal lines passing through the coordinate plane
m = 0 is

(A.3)

and similar summation over all diagonal lines passing
through coordinate plane n = 0 gives

(A.4)
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m 0=

∞

∑

while for the coordinate plane k = 0 we obtain

(A.5)

Note that the diagonal line passing the origin was
accounted for thrice; the diagonal lines passing through
the points in the coordinate axes (other than the origin)
were accounted for twice. Upon introducing a relevant
correction, we obtain

(A.6)

for the correlator. In the last (third) summand we intro-
duce the summation, which starts with m = 0. Then
(A.6) becomes

(A.7)

Using (5), on the basis of (A.3)–(A.5) and (A.7), we
obtain the sought-for expression

(8)

As seen, it coincides with (25).

REFERENCES
1. Proc. of SPIE Conf. Noise as a Tool for Studying Mate-

rials, Weissman, M.B., Israeloff, N.E., and Kogan, Sh.,
Eds., Santa Fe: SPIE, 2003, vol. 5112.

2. Van Kampen, N.G., Fluct. Noise Lett., 2001, vol. 1, p.1.
3. Bezrukov, S.M., Proc. 2nd Int. AIP Conf. Unsolved

Problems of Noise and Fluctuations, Adelaide, June 12–
15, 1999, Abbott, D. and Kish, L., Eds., New York: AIP,
2000, p. 3.

4. Kogan, Sh., Electronic Noise and Fluctuations in Solids,
Cambridge: Cambridge University Press, 1996.

5. Weissman, M.B., Rev. Mod. Phys., 1988, vol. 60, p. 537.
6. Gonzalez, N., Proc. 17th Conf. on Noise and Fluctua-

tions, Prague, August 18–22, 2003, Sikula, J., Ed., Brno:
CNRL, 2003, p. 607.

7. Iannaccone, G., Proc. 17th Conf. on Noise and Fluctua-
tions, Prague, August 18–22, 2003, Sikula, J., Ed., Brno:
CNRL, 2003, p. 614.

8. Sukhorukov, E.V., Pilgram, S., Jordan, A.N., and Butt-
iker, M., Proc. 17th Conf. on Noise and Fluctuations,
Prague, August 18–22, 2003, Sikula, J., Ed., Brno:
CNRL, 2003, p. 45.

k 0=( )∑
=  a t0 t0 pt– qt2–( )exp y 0( )y t( )y t2( )〈 〉 .

n 0=

∞

∑
m 0=

∞

∑

Y p( )Y q( )Y r( )〈 〉 m 0=( ) n 0=( )∑+∑=

+ k = 0( ) 2at0
2 y3 0( )〈 〉– at0 t0 pt–( )exp{

m 1=

∞

∑–∑
+ qt–( ) rt–( ) } y2 0( )y t( )〈 〉exp+exp

Y p( )Y q( )Y r( )〈 〉 m 0=( ) n 0=( )∑+∑=

+ k 0=( ) at0 t0 pt–( )exp{
m 0=

∞

∑–∑
+ qt–( ) rt–( ) } y2 0( )y t( )〈 〉 at0

2 y3 0( )〈 〉 .+exp+exp

Y p( )Y q( )Y r( )〈 〉
=  K p q,( ) K p r,( ) K q r,( )+ +[ ]t0/ 1 σt0–( )exp–[ ].



RUSSIAN JOURNAL OF ELECTROCHEMISTRY      Vol. 40      No. 6      2004

THEORY OF LAPLACE ANALYSIS 661

9. Baranov, V.M., Kapralov, E.Yu., and Kapralov, Yu.A.,
Zavod. Lab., Diagnost. Mater., 2003, vol. 69, p. 36.

10. Muravin, G., Inspection, Diagnostics, and Monitoring of
Construction Materials and Structures by the Acoustic
Emission Method, London: Minerva, 2000.

11. Yakimov, A.V., Belyakov, A.V., Perov, M.Yu., and Van-
damme, L.K.J., Proc. of SPIE Conf. Noise and Informa-
tion in Nanoelectronics: Sensors and Standards,
Kish, L.B., Green, F., Iannaccone, G., and Vig, J.R.,
Eds., Santa Fe: SPIE, 2003, vol. 5115, p. 40.

12. Smulko, J.M., Kish, L.B., and Schmera, G., Proc. of
SPIE Conf. Noise and Information in Nanoelectronics:
Sensors and Standards, Kish, L.B., Green, F., Iannac-
cone, G., and Vig, J.R., Eds., Santa Fe: SPIE, 2003,
vol. 5115, p. 92.

13. Yakimov, A.V., Belyakov, A.V., Moryasin, A.V.,
Perov, M.Yu., and Vandamme, L.K.J., Proc. 17th Conf.
on Noise and Fluctuations, Prague, August 18–22, 2003,
Sikula, J., Ed., Brno: CNRL, 2003, p.71.

14. Grafov, B.M., Proc. of SPIE Conf. Noise and Informa-
tion in Nanoelectronics: Sensors and Standards,
Kish, L.B., Green, F., Iannaccone, G., and Vig, J.R.,
Eds., Santa Fe: SPIE, 2003, vol. 5115, p. 16.

15. Grafov, B.M., Elektrokhimiya, 2003, vol. 39, p. 469.
16. Grafov, B.M., Proc. 17th Conf. on Noise and Fluctua-

tions, Prague, August 18–22, 2003, Sikula, J., Ed., Brno:
CNRL, 2003, p. 41.

17. Grafov, B.M., Elektrokhimiya, 2003, vol. 39, p. 1116.
18. Wharton, J.A., Corros. Sci., 2003, vol. 45, p. 97.
19. Smulko, J., Darowicki, K., and Zelinski, A., Electro-

chim. Acta, 2002, vol. 47, p. 1297.
20. Parkhutik, V.P. and Timashev, S.F., Elektrokhimiya,

2000, vol. 36, p. 1378.
21. Suntsov, A.E., Grafov, B.M., and Kuznetsov, A.M., Ele-

ktrokhimiya, 1999, vol. 35, p. 892.
22. Sirotinskii, Yu.V., Arutyunov, S.L., Grafov, B.M., and

Suntsov, A.E., Elektrokhimiya, 1999, vol. 35, p. 661.

23. Grafov, B.M., Kuznetsov, A.M., and Suntsov, A.E.,
J. Electroanal. Chem., 1998, vol. 450, p. 55.

24. Grafov, B.M., Elektrokhimiya, 1998, vol. 34, p. 1278.
25. Dawson, J.L., Proc. 1st Int. Symp. Electrochemical

Noise Measurement for Corrosion Applications,
Kearns, J.R., Scully, J.R., Roberge, P.R., Reichert, D.L.,
and Dawson, J.L., Eds., Montreal: ASTM, 1996, p. 3.

26. Kolbasov, G.Ya., Elektrokhimiya, 1993, vol. 29, p. 106.
27. Gabrielli, C., Huet, F., and Keddam, M., Electrochim.

Acta, 1986, vol. 31, p. 1025.
28. Tyagai, V.A., Elektrokhimiya, 1971, vol. 7, p. 69.
29. Dyke, P.P.G., An Introduction to Laplace Transforms

and Fourier Series, Heidelberg: Springer, 2000.
30. Malakhov, A.I., Kumulyantnyi analiz sluchainykh

negaussovskikh protsessov i ikh preobrazovanii (A
Cumulant Analysis of Random Non-Gaussian Prosesses
and Their Transforms), Moscow: Sovetskoe Radio,
1978.

31. Brillinger, D.R., Time Series: Data Analysis and Theory,
New York: Holt, Rinehart, and Winston, 1975.

32. Brillinger, D.R., Ann. Math. Stat., 1965, vol. 36, p. 1351.
33. Grafova, I.B. and Grafov, B.M., Elektrokhimiya, 2003,

vol. 39, p. 143.
34. Grafov, B.M. and Grafova, I.B., J. Electroanal. Chem.,

2001, vol. 502, p. 47.
35. Stratonovich, R.L., Izbrannye voprosy teorii fluktuatsii v

radiotekhnike (Some Fluctuation Theory Problems in
Radio Engineering), Moscow: Sovetskoe Radio, 1961,
part 1.

36. Naidu, P.S., Modern Spectrum Analysis of Time Series,
Boca Raton: CRC, 1996, pp. 17, 33, 219.

37. Randles, J.E.B., Disc. Faraday Soc., 1947, vol. 1, p. 11.
38. Ershler, B.V., Disc. Faraday Soc., 1947, vol. 1, p. 269.
39. Tikhonov, V.I. and Tolkachev, A.A., Izv. Akad. Nauk

SSSR, Otd. Tekh. Nauk, 1956, no. 12, p. 40.


