Isobaric analog states of neutron-rich nuclei. Doppler shift as a measurement tool for resonance excitation functions

P. Boutachkov^{1,a}, G.V. Rogachev¹, V.Z. Goldberg², A. Aprahamian¹, F.D. Becchetti³, J.P. Bychowski⁴, Y. Chen³, G. Chubarian², P.A. DeYoung⁴, J.J. Kolata¹, L.O. Lamm¹, G.F. Peaslee⁴, M. Quinn¹, B.B. Skorodumov¹, and A. Wohr¹

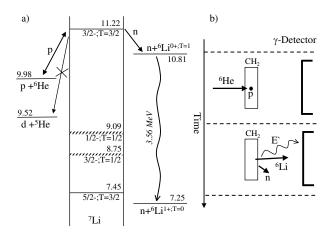
- ¹ Physics Department, University of Notre Dame, Notre Dame, IN 46556, USA
- ² Texas A&M University, College Station, TX 77843, USA
- ³ Physics Department, University of Michigan, Ann Arbor, MI 48109, USA
- ⁴ Physics Department, Hope College, Holland, MI 49422, USA

Received: 1 October 2004 /

Published online: 21 April 2005 – © Società Italiana di Fisica / Springer-Verlag 2005

Abstract. We present a new approach for the measurement of resonance excitation functions of neutron-rich nuclei using Doppler shift information. Preliminary data from the first application of the method is presented in the spectroscopy studies of ⁷He isobaric analog states in ⁷Li.

PACS. 25.60.-t Reactions induced by unstable nuclei – 25.40.Kv Charge-exchange reactions – 27.20.+n $6 \le A \le 19$


1 Introduction

Radioactive beams provide new opportunities for spectroscopy studies of drip line nuclei. Neutron-rich beams can populate high isospin states which are isobaric analogs of even more exotic neutron-rich systems [1]. We propose a method in which high isospin states are populated in resonance interaction of protons with neutron-rich beams. A γ -ray is then detected from the daughter nucleus created in a subsequent neutron decay. Information about the total and differential cross-sections of the created high isospin states can be extracted from the shape of the observed Doppler shifted γ -spectrum.

2 The method

The thick target inverse geometry technique [2] was successfully used to study proton-rich nuclei [3,4]. Recently it has been used in studies of exotic neutron-rich systems [5,6]. In the latter experiments, the differential cross-section for (p,p) and (p,n) reactions populating high isospin states was measured at backward angles. The method presented here is a further development of the idea to study exotic neutron-rich nuclei through their isobaric analog states populated in well understood simple reactions [1]. We describe the technique using spectroscopy of ⁷He isobaric analog states in ⁷Li as an example.

In ${}^{6}\text{He} + p$ scattering, one can populate states with isospin T = 3/2 in ${}^{7}\text{Li}$. These states are isobaric analogs of

Fig. 1. a) Decay scheme for T=3/2 resonances in $^7\mathrm{Li}$ and b) kinematic scheme of the experiment.

the levels in 7 He. The populated T=3/2 states have only two open isospin allowed channels: proton decay back to 6 He or neutron decay to T=1 states of 6 Li, see fig. 1a. As follows from the wave function of the populated T=3/2 states.

es,
$$\frac{1}{\sqrt{3}}\Psi(^{6}\mathrm{He})\Psi(p) + \sqrt{\frac{2}{3}}\Psi(^{6}\mathrm{Li}, T=1)\Psi(n), \qquad (1)$$

the neutron decay is dominant and the reduced decay widths for the open channels are related as $\gamma_n/\gamma_p = \sqrt{2}$. The T=1 state of ⁶Li populated via the (p,n) reaction can decay only by isospin forbidden channels. Therefore,

^a Conference presenter; e-mail: pboutach@nd.edu

the probability for γ transition is enhanced with respect to the particle decays. For the specific case of the first T=1 state in $^6\mathrm{Li}$, particle decay also violates the parity conservation law and therefore only γ decay is allowed. Thus, measuring the characteristic 3.56 MeV γ -ray from the decay of the first T=1 state in $^6\mathrm{Li}$ is a clear signature that a T=3/2 state in $^7\mathrm{Li}$ was populated. This chain of transmutations is typical for the isobaric analog states of neutron-rich nuclei close to the line of stability. What is special for the described example is the 100% probability for γ decay of the first T=1 state in $^6\mathrm{Li}$.

Suppose that a thick proton target $((CH_2)_n)$ is used to stop the ⁶He beam. Interaction of ⁶He with protons can take place at any energy from the maximum (beam energy) to zero populating T = 1/2 and T = 3/2 resonances in ⁷Li. When a T=3/2 resonance is populated, it will decay with highest probability to neutron and $^{6}\text{Li}(0^{+},$ T=1) state (see fig. 1). Velocity of ⁶Li will depend on the velocity of ⁷Li and the angle at which the neutron was emitted. The excited ⁶Li nucleus decays by γ emission before it loses any energy in the target (the width of 0^+ , T=1 resonance is 8 eV) and information on the velocity of ⁶Li is preserved in the Doppler shift of the γ -ray. Therefore a γ -detector placed at a fixed angle will observe a Doppler shifted and broadened peak. The shift comes mainly from the velocity of ⁷Li while the broadening will depend on the angular distribution of the emitted neutron. The magnitude of the peak will depend on the reaction yield. Therefore by using a detector at fixed angle with known absolute efficiency, one can extract information about the total and the differential cross-sections as a function of energy and angle in one run without changing the experimental conditions. In addition, the measurement is insensitive to the energy resolution of the beam.

3 Isobaric analog states of ⁷He

The method described above was first applied to the study of ⁷He isobaric analog states. Figure 2 shows part of the spectrum from HPGe Clover detector placed at 0° with respect to the beam velocity. The continuous curve corresponds to the population of the isobaric analog of the ⁷He ground state in ⁷Li. The curve was obtained by folding the cross-section from a two channel R-matrix calculation and all kinematic effects, see sect. 2. There is no arbitrary normalization in the above calculation. The resonance parameters used for the g.s. were taken from ref. [6]. The contribution of the direct charge-exchange process was estimated with the code TWAVE [7] and was found to be negligible. Based on this calculation, one can see that the first peak in the spectrum is related to the g.s. and that there is a clear excess of counts at higher γ -ray energies which corresponds to $^6\text{Li}(0^+, T=1)$ nuclei with higher velocity (higher excitation energies of ⁷Li).

In the spectroscopic studs of ⁷He an interesting finding was made by M. Meister *et al.* [8]. Evidence was obtained for a very low-lying $1/2^-$ state (spin-orbit partner of the ground state) with essentially single-particle (⁶He(g.s.) + n) structure. An attempt to find the analog

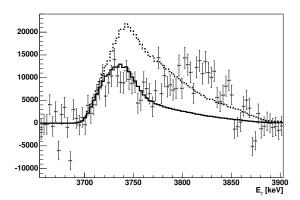


Fig. 2. Final spectrum of the Doppler shifted 3.56 MeV γ -rays obtained by subtraction of the carbon contribution form the CH₂ target, a linear Compton background and dividing by the absolute detector efficiency. Solid line shows the contribution of the known g.s. resonance T=3/2, $J=3/2^-$ in ⁷Li. Dotted line was obtained by taking into account the narrow low-lying $1/2^-$ state proposed in [8].

of this resonance in $^7\mathrm{Li}$ ($T=3/2\ 1/2^-$) revealed no narrow resonances in this region [6]. The results obtained in ref. [6] are confirmed by the data presented here. The isobaric analog of a low-lying narrow $1/2^-$ resonance in $^7\mathrm{He}$ is not observed. The expected shape of the γ spectrum in case of population of a resonance with parameters from ref. [8] is shown with a dotted line in fig. 2. It is clearly seen from the figure the magnitude and the shape of the data is not reproduced. The present results and these of [6] are completely independent since different techniques were used to measure different quantities. Therefore, the existence of the state with parameters proposed in [8] can be reliably excluded.

4 Conclusion

We propose a new method for spectroscopic studies of neutron-rich nuclei close to the border of stability. As an example, the $^7\mathrm{He}$ isobaric analog states of $^7\mathrm{Li}$ were studied. The measured γ -ray spectra show clear evidence that isobaric analog states of $^7\mathrm{He}$ were excited. The existence of a narrow low-lying $1/2^-$ state in $^7\mathrm{He}$ is ruled out. We present evidence for higher-lying resonances in $^7\mathrm{He}$. We believe that the presented technique will be very useful in the future for studies of nuclei at the drip line.

References

- 1. V.Z. Goldberg, in *ENAM98: Exotic Nuclei and Atomic Masses*, AIP Conf. Proc. **455**, 319 (1998).
- 2. K.P. Artemov et al., Sov. J. Nucl. Phys. **52**, 408 (1990).
- 3. L. Axelsson et al., Phys. Rev. C 54, R1511 (1996).
- 4. V.Z. Goldberg et al., JETP Lett. 67, 1013 (1998).
- 5. G.V. Rogachev et al., Phys. Rev. C 67, 041603 (2003).
- 6. G.V. Rogachev et al., Phys. Rev. Lett. 92, 232502 (2004).
- 7. S. Barua, private communication.
- 8. M. Meister et al., Phys. Rev. Lett. 88, 102501 (2002).