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The properties of the error of the nuclear masses calculated from the transverse mass 
relations are analysed. The work assumes that the calculated errors of the nuclei whose 
masses are known experimentally behave as a sample selected randomly from a normal 
population having a zero mean and a standard deviation G. It is found that the errors 
of the calculated masses of nuclei far from the line of beta-stability behave as c 1 d 3/2 

where c 1 is a constant and d is the distance of the nucleus from the line of beta- 
stability. It is shown also that the errors related to the calculated mass differences 
behave as c2 d} where c 2 is another constant. 

I. Introduction 

A nuclear mass table with estimates of the errors of 
the calculated masses has been published [11. In 
what follows we shall mainly try to analyse the 
general behavior of these errors. The analysis will 
obviously not be based upon theoretical conside- 
rations, since we are far from having a solid base for 
a theory of nuclear interactions. Instead, we shall 
use here certain assumptions and statistical argu- 
ments in order to derive some rules and conclusions 
about the behavior of the calculated errors. 
There are two different methods of using the trans- 
verse mass relations for deriving a table of calculat- 
ed nuclear masses: 

A) The traditional method [2, 3] treats the trans- 
verse mass relations 

M(Z,N + I)+ M(Z-1,N)+ M(Z + I ,N-1)  

- M ( Z , N - 1 ) - M ( Z + I , N ) - M ( Z - 1 , N + I ) = O  (1) 

as a homogeneous partial difference equation whose 
general solution is 

M(Z, N) = F(Z) + G(N) + H(Z + N). (2)  

The values of the functions F, G and g on the right 
hand side of (2) are obtained from a fit to the 
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experimental masses. Later, these values are used in 
the process of calculating a nuclear mass table. The 
fit is obtained from the solution of one set of con- 
jugate equations. Due to this fact, we shall call this 
method the global method. 

B) In this method [1] the mass relations are applied 
directly to a subset of the experimental masses. 
Using different subsets of the experimental masses, 
one can have different calculated values for the mass 
of a nucleus. The mean of these values is taken to be 
the calculated mass of the nucleus, and the standard 
error of these values is taken as an estimate of the 
error related to the calculated mean. Since this 
method uses expression (1), which involves only the 
masses of the nuclei in the vicinity of the nucleus 
whose mass is calculated, we shall call it the local 
method. 
If  the transverse mass relations were accurate, then 
the results of the two methods would be the same 
(and the errors of the calculation would be zero). 
Since this is not the case, differences between the 
results obtained by the two method arise. These 
differences stem from the fact that in the global 
method all experimental masses influence the calcu- 
lation of each mass via the conjugate set of equa- 
tions. In the local method, on the other hand, the 
calculation of M(Zo, No) does not depend on the 
experimental mass of a nucleus M(Z, N) if the follow- 
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ing relation holds: ( Z -  Z0)(N - No) > 0. Other differ- 
ences between the two methods are related to tech- 
nical properties of the work, e.g., assigning different 
weights to the experimental masses. 
The side by side publication of the calculated masses 
1-4] using nine different methods enables one to 
compare the differences between them. It appears, in 
spite of what was written above, that the global and 
the local methods of applying the transverse mass 
relations yield very similar results. 

II. Analysis of  Errors in Predicted Masses 

We turn now to the analysis of the errors of the 
calculated masses obtained by the local method. To 
this end we shall describe here some details of the 
work. 
A special subset of experimental masses, from which 
a mass table can be easily calculated will be called a 
skeleton. A skeleton has the following properties: 

A) A skeleton consists of experimental masses of 
nuclei in the interval (Ao, A1). 
B) Two neighboring nuclei (A, Z) and (A, Z + 1) be- 
long to the skeleton for every A in the interval 
(Ao, A1). 
C) If A and ( A + I )  are in the interval (Ao, AI) and 
the nuclei (A,Z) and (A,Z+ 1) belong to the skele- 
ton, then the nucleus ( A + I , Z + I )  belongs to the 
skeleton, too. 

An example of a skeleton can be seen in Fig. 1. 
We define the length of the skeleton as the number 
of pairs of nuclei belonging to it. We define also the 
range of a skeleton as the set of nuclei belonging to 
it, together with the nuclei whose masses can be 
calculated from the masses of the nuclei in the skele- 
ton, using the transverse mass relations. 
We shall show that a nucleus (Zo, No) is in the range 
of the skeleton if, and only if, a nucleus (Z 0, N) and 
a nucleus (Z, No) belong to the skeleton. 
We use induction on the length of the skeleton. 
When the length is 1, there is nothing to prove. 
Assume that the statement holds for all skeletons 
whose length is K, and let us take a skeleton whose 
length is ( K + I ) .  Assume that the last pair is ob- 
tained by adding one neutron to the pair of nuclei 
having the highest value of A in a skeleton whose 
length is K. (The proof  is similar if one proton is 
added). Let us examine Fig. 1. Using the induction 
assumption, we can calculate the masses of the nu- 
clei denoted by x. We can apply the transverse mass 
relation and calculate the mass of the nucleus de- 
noted by 1. This process can be continued until the 
masses of all the nuclei denoted by numbers are 

Z 
Ai \ 

x x = x x  x i i Y Y  X X X X  X Y Y Y  
XX X XiX XX  I 
X X Y Y Y Y Y X X /  2 
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Y Y Y ;  X x x X  X • 2 1 5  4 
A ~  Y Y Y  X X X 5 

Y~XVl XX X X x x x is  x 
- x x ' x  x x 7  

= N  

Fig. 1. The skeleton consists of the nuclei denoted by Y. The 
length of the skeleton is (A1-Ao+I) .  The range of the skeleton 
consists of all the nuclei denoted by letters or digits 
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Fig. 2. A set of nuclei obtained from the skeleton of Fig. 1 after 
deleting one nucleus. Only nuclei denoted by x and w can be 
calculated, using the transverse mass relations 

calculated. Moreover, nothing else can be calculat- 
ed. 
We shall show now that the skeleton is a minimal 
set. (i.e. there is no proper subset of the skeleton 
having the same range). Here, too, we shall use 
induction on the length of the skeleton. The state- 
ment is correct for a skeleton of length 1. Assume 
that it is correct for a skeleton whose length is K. 
Let us take a skeleton whose length is (K + 1). If  the 
statement is incorrect, then we have a set S of nuclei 
which is obtained from a skeleton after deleting one 
nucleus form it (see Fig. 2). Let A = A  d be the num- 
ber of nucleons in the deleted nucleus. In S we 
generally have two subskeletons, having A < A  d and 
A>Ae, respectively. If Ad=Am, x or Ad=Ami n, then 
we have only one subskeleton but the following 
demonstrat ion is analogous. Using what was shown 
above, we can calculate the masses of the nuclei 
denoted by x in Fig. 2. We can also calculate the 
mass of the nucleus denoted by w, but no more. This 
is a contradiction to the assumption that S has the 
same range as the entire skeleton. 
We shall use these properties in our at tempt to 
make a prediction on the behavior of the errors of the 
calculated masses. 
A regular skeleton satisfies the following require- 
ments: 
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Fig. 3. A calculation of the mass of 
a nucleus (Z o, No), using the masses 
of nuclei in a regular skeleton and 
the transverse mass relations 

If  nuclei having A and (A+2)  nucleons belong to 
the skeleton, then these nuclei can be denoted thus: 
(A,Z); ( A , Z + I ) ;  ( A + 2 , Z + I ) ;  ( A + 2 , Z + 2 )  (see 
Fig. 3 for a description of a regular skeleton). 
The regular skeleton will be used to find an ex- 
pression for the errors of the calculated masses. To 
this end, let us look at the final table which we shall 
obtain. This table will satisfy the transverse mass 
relations. Let us define: 

Mexp(Z , N )  = Mcalc ( Z  , N) - E(Z, N) (3) 

where E(Z, N) is the error of the calculated mass of 
the (Z, N) nucleus. We assume that E(Z, N) are ran- 
domly distributed, having a zero mean and a stan- 
dard deviation a T. 
The values of the masses of the nuclei have ob- 
viously a physical origin which is not random. It 
follows that the errors of the mass relations have a 
physical origin too. The randomness assumption 
should be taken as a working tool. It serves as a 
justification for the homogeneous relations, and it is 
based on the apparent  randomness of the errors of 
the transverse relations. It is obvious that a semiem- 
pirical approach to the nuclear mass prediction will 
always include a random error. If an inhomo- 
geneous term will be accepted and used in mass 
calculations, then we shall again be left with random 
errors. In what follows we shall try to analyse the 
influence of these random errors on the calculated 
masses. 
When we calculate the special mass table from the 
masses of the nuclei of a certain regular skeleton, we 
have for every calculated mass an expression which 
is a linear combination of the masses of the skele- 
ton. This linear combination is unique, since the 
skeleton is a minimal set. F rom the equivalence of 
the expressions (1) and (2) we see, after substituting 

expression (2) for each mass, that the coefficients 
defined in Fig. 3 are correct. This expression can 
easily be generalized for all the nuclei in the range 
of a regular skeleton. The calculated masses in this 
special table deviate from the masses of the final 
table, since in the skeleton of the special table we 
use the experimental masses, while the final table 
can be defined if we will substitute the calculated 
masses of the nuclei in the skeleton. 
Using the above assumption about  E(Z, N), we have 
an estimate for the standard deviation of the calcu- 
lated mass of the nucleus (Zo, No)' 

2 ~  2 Z (4) 
i 

where C i are the coefficients displayed in Fig. 3. 
Let us define the quantity d related to that nucleus: 

d=,=,~ , C~[(INo - NI + IZo - Z~I ) /,=1 ~ I c, l. 

In other words, d is the weighted mean distance (in 
the metric L,)  between the calculated nucleus and 
the nuclei in the skeleton having a non-zero coef- 
ficient. Substituting d in (4) and summing the right 
hand side, we find an approximate expression for a o 
for large d: 

ao - Td3/2//3. (S) 

Expression (5) was derived under the assumption 
that the errors of the transverse mass relations be- 
have as a sample taken from a normal distribution, 
having a zero mean and a standard deviation a T. 
We turn now to the case where the mean error is 
not zero. As a special case, let us assume that in the 
right-hand side of (1) we substitute the constant 
value v, and still continue to use the homogeneous 
relations. In other words, we want to investigate the 
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Fig. 4. Scheme of distances of nuclei from the line of beta-stabi- 
lity, as defined and used in the text 
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Fig. 5. A calculation of the mass  difference of two nuclei, using 
the mass  of nuclei in a regular skeleton and the transverse mass  
relations 

behavior of the errors of the calculated masses, when 
the homogeneous transverse mass relations have a 
systematic constant error. 
We look at the mass relations of nuclei whose d 
value varies from d o to d0+4  (see Fig. 4 for an 
illustration). Let us expand the error in powers of 

do: 

E(do)= ~ bkdko . (6) 
k 

We substitute this expression in the mass relation of 
the six nuclei and look at a certain value of k. We 
have 

b k [(d o + 4) k + 2(d o + 1) k -  2 (d o + 3) k - d~] = z. 
k 

We see that for every k, the coefficients of d~, d~-1 
and d~ -2 vanish identically. Since the right hand 
side is independent of d o, we conclude that bk=O for 
k>3 ,  and that 12b3=z. 
It follows that we can write 

E(d) = r d3/12 + P(d) (7) 

We conclude that the propagat ion of the errors of 
the calculated masses is much faster in the case 
where a constant systematic error exists in the ho- 
mogeneous transverse mass relations, than in the 
case where only random errors occur in the re- 
lations. 
The mean deviation of the experimental masses of 
nuclei having N, Z > 14 is about 14 keV. A T-test of 
the deviations yields the value T=0.1,  which in- 
dicates that this mean is not significantly different 
from zero. However, if one uses a mass table derived 
from the homogeneous transverse mass relations, 
and if he wants to be cautious and assume that 
those 14 keV are systematic, then he can use ex- 
pressions (5) and (7) to see how far can he depart 
from the line of beta-stability and still not being 
affected by the assumed constant systematic error of 
the relations. Using the actual values it is found that 
for d <  11 the random errors are greater than the 
systematic errors which will emerge from a constant 
error of 14 keV. 
We shall try now to find expressions for mass differ- 
ences. Since we assume that there is no bias in the 
calculated masses, it is natural to take the difference 
between the two calculated masses as the value of 
the mass difference. The situation is not as simple 
when we look for an expression for the errors re- 
lated to the calculated mass differences. If  the calcu- 
lations of the masses of the two nuclei were inde- 
pendent, then we would obtain the following ex- 
pression for the error related to the calculated value: 

We shall show that this is not the case, and that we 
can predict a much smaller value for the error of the 
mass difference. 
When we look at Fig. 5, we see how the mass differ- 
ence between two nuclei (Zo, No), (Z o + 1, No) can be 
expressed as a linear combination of masses of nu- 
clei belonging to a regular skeleton. (In fact, it can 
be shown that for every skeleton, the respective coef- 
ficients will be 1, 0 or ( - 1 ) .  Moreover, the coef- 
ficients are zero for nuclei in the skeleton having 
Z < Z  o or A>(Zo+No+I)  in one case, and Z > ( Z  o 
+ 1) or A < ( Z 0 + N  0) in another case.) 
We see from Fig. 5 that in the case of a regular 
skeleton, when we substitute the corresponding 
quantities in (4), we have an estimate for the error of 
the calculated mass difference of two nuclei (Z o, No), 
(Zo+  1, No) or (Zo, No), (Zo, No+ 1): 

~N = az ~ 1/2 o~" d 1/2 ~ 1#d ~o/d (8) 

where P(d) is a second degree polynomial, where a o is defined in (5). 
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Table 1. A statistical T-Test of the differences of the errors of two neighboring mass relations along the isospin T 
direction in the (Z, N) plane. It is seen that there is no significant difference between this quantity and zero 

111 

Mass relation Region Mean S.D. T Degrees Signifi- 
statistic of freedom cance 

Transverse A > 28 - 22.2 305.6 - 1.18 260 0.24 
80 > A _> 28 - 35.0 371.2 - 0.72 57 0.48 

160>A > 80 - 32.7 293.0 - 1.26 126 0.21 
A> 160 - 5.0 270.6 0.16 75 0.87 

Longitudinal A>28 + 3.4 283.6 0.24 372 0.81 
80_>A>28 + 19.7 341.4 0.57 96 0.57 

160>A>80 - 3.6 286.8 -0.16 161 0.81 
A> 160 - 0.4 219.5 -0.02 113 0.99 

In  a similar way we can find the following ex- 
pressions for the errors related to the calculated 
mass differences of  the following pairs of  nuclei 
(Zo, No), (Z o -  1 ,No+ 1) and (Zo, No), ( Z o + 2 , N o  +2). 

ap ~ ] /2  ~rN-~ 2 a T - d 1/2 ~-] /~ao /d  (9) 

a~ ~-- 2a~_~ ]//8aN~--4ar dl/2 = 4 . ] f 3 .  ao/d. (10) 

Expression (5) was compared  with the values of  the 
errors, as obtained in the actual calculation [1]. We 
note that  this compar i son  is done even though  the 
skeletons in [-1] were irregular and expression (5) is 
an asymptot ic  limit of  a better expression. 
The quant i ty  d~ defined above for the i 'th nucleus, is 
a function of  Z~, N~ and of  the specific skeleton. We 
represent the set of  quantities d~, which varies from 
skeleton to skeleton with the quant i ty  D~ which is 
the distance of  the i 'th nucleus from the line of  beta- 
stability. This value can be taken as a fair repre- 
sentat ion of  the mean  of  all the d~. 
Using the actual values of  the errors and the quan-  
tity D~, we tried to fit the two parameters  c~ and fl in 
the following expression: 

ai=c~D ~. (11) 

The values obtained from the fit are: 

c~ = 4 2 + 2 . 5  KeV 

/~= 1.55 +0.05. 

We see that the value of  fl is in accordance  with 
expression (5). The value of  e is lower than expected. 
The root  mean  square of  the error of  the calculated 
masses of  the nuclei whose masses are k n o w n  exper- 
imentally was 168 KeV. Thus, the value of  e should 

be 168/]/3_-__ 100 KeV. We relate this discrepancy to 
the various approximat ions  done during the deri- 
vat ion of  expression (5) and in its adap ta t ion  to the 
actual data. 

F r o m  the above analysis we can derive some con- 
clusions about  the pat tern of  the calculated errors. 
We saw that the calculated errors of  the masses of  
nuclei far from the line of  beta-stability behave as 
d a/2, while the errors of  mass differences behave as 
d 1/2. Thus, if a calculated mass of  a nucleus whose 
locat ion is far from the line of  beta-stability, has a 
typical error + E ,  it is reasonable that  its neighbors 
will have a positive error, too. F r o m  here we find 
that  the greater the distance from the line of  beta- 
stability, the larger will be the "islands" of  error of  
the same sign. 
We conclude this work with a few lines about  the 
possible systematic error of  the mass relations, when 
tested far from the line of  beta stability. A serious 
answer to this problem will be found either when we 
have a well-established theory of nuclear interac- 
tions or  when these masses are measured experimen- 
tally. At present, we are far f rom both  solutions. In 
what  follows, we describe a test f rom which we find 
that  at least we have no indicat ion of  a systematic 
error in mass relations, when applied to nuclei far 
from the line of  beta-stability. 
We want  to find an indication concerning the varia- 
t ion of  the errors of  the mass relations, when we 
depart  from the line of  beta stability. To this end, 
we define two curvilinear coordinates  (e, z), where eo 
is a smooth  curve along the line of  beta-stability, 
and is perpendicular  to z. Let us define -c = 0 for the 
line e along the line of  beta stability, and look at the 
formal expansion of  the error of  the mass relations 
in terms of  e, -c, and retain the linear terms only:  

R(~, z)= Ro + a~ + t z. (12) 

We know from the data  that R 0 and a have no 
significant difference from zero. On  the other hand, 
we know the errors only near the origin of  the z 
coordinate.  To  find some informat ion about  t, we 
return to the T direction, which produces a small 
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angle 0 with respect to z, and thus cos(0) is not far 
from unity. We define: 

V(N, Z) = R(N,  Z)  - R ( N  - 1, Z + 1). 

A statistical t-test was performed in order to find if 
the quantity V ( N , Z )  is significantly different from 
zero. It has been found (see Table 1) that there is no 
significant difference between the quantity V ( N , Z )  
and zero. This was found for both the transverse 
and longitudinal relations, and also when applied 
separately to regions of low, medium and high A. 
This T-test shows that if the existence of an in- 
homogeneous term will be established, then it will 
not take a simple form, since it is statistically re- 
asonable that its linear expansion in terms of A and 
r will have coefficients not far from zero. 
From this we derive that when we calculate masses 
of nuclei far from the line of beta stability, using the 
transverse mass relations and the experimental mas- 
ses as an extrapolative base, we have no statistical 
confirmation of systematic errors, but of random er- 

rors only. The behavior of the random errors was 
described above. 
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