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Abstract. In this paper we consider the pricing of point-to-point bandwidth
leasing contracts and options. The underlying asset of these contracts is a
point-to-point telecommunications connection. Due to the network structure
the network capacity prices depend nonlinearly on each other. A leasing
contract on a point-to-point connection can be seen as an option because the
seller of the connection selects the cheapest path between the points. There-
fore, a bandwidth option is a compound option.
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1. Introduction

Term bandwidth corresponds to the amount of data transferred on a given
transmission path within a specified block of time. Thus, bandwidth is a
synonym for telecommunications capacity, and it is measured in units of bits
per second (bps). For example, downloading a picture in one second requires
more bandwidth than downloading a text page in one second. Large sound
files, computer programs, and videos require even more bandwidth for
acceptable system performance.

Managed bandwidth services are connections between two or multiple
points on a certain capacity. The bandwidth seller and buyer define the start
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date and end date of the service contract as well as the quality of service.
Quality can be measured by permissible errored seconds, severely errored
seconds, and unavailable seconds over time [see Mayfield (2000)]. At the start
date the buyer buys the connection from the seller at the price specified in the
service contract, and after the end date the owner can sell the connection to
the next customer. Thus, the bandwidth service contracts are actually for-
wards [for forward contracts see e.g. Hull (1997)]. Capacity level, connec-
tion’s start and end points, and the quality of service specify the underlying
asset of the forward. The start and end dates define the maturity and duration
of the forward.

It is estimated that about $25 billion worth of telecommunications
capacity is bought and sold worldwide annually [see Ryan (2000)]. According
to Mayfield (2000) there are about 7500 market participants in US alone and
roughly double the number of that internationally. Fletcher and DiClemente
(2001) have grouped the bandwidth buyers into five categories: 1) large
existing carriers, 2) emerging telcos, 3) service providers, e.g. ISPs, 4) dot-
coms, which operate through the Internet, and 5) enterprise customers, which
need huge amounts of bandwidth in their everyday operations. In the
bandwidth market there are also capacity providers of several magnitudes.

The pricing of bandwidth contingent claims is similar to the pricing of
corresponding electricity instruments in the sense that both these commodi-
ties are held for consumption and they cannot be stored [see e.g. Kenyon and
Cheliotis (2001) for a discussion about the properties of bandwidth]. There-
fore, the bandwidth contracts cannot be hedged by using the underlying asset
like usual financial derivative instruments and arbitrage argument is possible
only between different bandwidth contracts. However, in the present paper
we do not use this kind of hedging argument because the bandwidth markets
are currently illiquid. In the bandwidth markets there is a new arbitrage
condition due to the structure of the network and to the market’s optimal
point-to-point routing selection. The buyer of a bandwidth is buying the
point-to-point connection independent of the routing. Thus, the seller can
provide an alternative routing in case the direct routing between the points
costs more at the delivery time. Therefore, the risk of the seller is in a way
bounded above and the seller’s optimal routing selection leads to the network
arbitrage condition, also called geographical arbitrage condition [see, e.g.,
Chiu and Crametz (1999, 2000) and Upton (2002)]. This condition implies
that at each time a point-to-point capacity market price has to be equal to the
minimum capacity price over all possible routings between these two points.
That is, the bandwidth market prices are obtained by using the cheapest paths
between the start and end points. This new arbitrage condition has to be
considered in the pricing of bandwidth contracts and, therefore, the pricing is
partly different from the pricing of corresponding electricity instruments.

The purpose of this paper is to calculate point-to-point forward (leasing
contracts) and option prices under the network arbitrage condition. Note that
in the bandwidth markets there are also other special characteristics [see e.g.
Kenyon and Cheliotis (2001), Crametz (1999, 2000), and Upton (2002)] but
here we focus on the network arbitrage condition. We firstly model the net-
work prices without the network arbitrage condition, i.e., the initial situation
is close to the electricity market. Therefore, we assume similar stochastic
processes for the fixed routing prices that are used in several electricity papers
[see e.g. Deng, Johnson, and Sogomonian (2001), Keppo and Résdnen (1999,
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2000), Manoliu and Tompaidis (2000), and Oren (2001)]. Because the
underlying bandwidth is non-storable, the forward prices are functions of the
bandwidth market price of risk. Thus, unlike in a storable commodity
derivative market the risk attitude of bandwidth market’s participants affects
the forward prices. We assume that all the bandwidth instrument prices are
given by the same general pricing function. This implies that the bandwidth
instruments are in equilibrium with each other and they are priced with re-
spect to the same market price of risk, i.e., with respect to the same utility
function. The risk pricing is important in bandwidth markets because the
bandwidth prices are highly volatile [see e.g. Mayfield (2000)], according to
Cass (2000) 20-40%. In the pricing function we model the network arbitrage
condition as a feature of the forward contracts. That is, the bandwidth for-
ward prices are solved by using the processes of fixed (straight) routing point-
to-point prices and the option nature of the cheapest path selection. Fixed
routing bandwidth prices are used in the pricing models because their process
parameters can be assumed to be constant and, therefore, they act as the risk
factors of the bandwidth market. Further, this way we can better understand
the effect of the network arbitrage condition on the bandwidth market prices.
Arte and Keppo (2003) illustrate parameter estimation for the present paper’s
forward model and show how the framework is used in practice. Due to the
cheapest path selection a bandwidth forward price is equal to the forward
price with fixed routing minus the option to change the point-to-point rout-
ing. This routing option is a kind of exchange option [for the pricing of
exchange options see e¢.g. Margrabe (1978)] and by using the pricing models
of exchange options we can derive analytical pricing formulas for bandwidth
forwards. Therefore, we can also derive analytical formulas for the nonlinear
dependencies between the market prices. According to the model, the network
arbitrage condition increases positive correlations between the capacity
market prices, and the probability distributions of the market prices have
short upper tails. This is natural since network routing smoothens the point-
to-point demands over the whole network and therefore prices move together
[for routing see, e.g., Gune and Keppo (2002)].

In addition to the cheapest path selection, some bandwidth service contracts
include also other option type characteristics for the parties of the contracts.
For instance, the seller can have a right to disconnect the service for a prede-
fined penalty payment. These rights can be modeled as bandwidth options and,
therefore, the understanding of option pricing is important in the bandwidth
markets even though there do not yet exist traded option contracts. Further,
this helps the application of real option theory in telecommunications markets
[see e.g. Alleman and Noam (1999)]. Bandwidth options can be modeled as
options on bandwidth forwards, because at maturity the forward price equals
the underlying connection price. This gives that the bandwidth options are a
kind of compound options [for compound options see Geske (1979) and Ru-
binstein (1992)] since the underlying bandwidth forward contracts can be seen
as exchange options. The option prices are described in terms of bivariate and
trivariate normal distributions because we have to integrate the forward price
function, which now includes cumulative normal distributions due to the
routing option, over the underlying point-to-point price distribution and also
over the alternative routing’s price distribution. This ends up with the pricing
equation that includes the trivariate and bivariate probability distributions.
Because the probability distribution of the underlying forward price has a short
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upper tail, the bandwidth call option is cheaper than the corresponding option
price implied by the Black-76 model [see Black (1976)] that is a usual com-
modity option pricing formula.

Bandwidth pricing is considered, e.g., in Kenyon and Cheliotis (2001)
that considers a jump-diffusion model for bandwidth spot prices. Present
paper uses only continuous uncertainties but can be extended, e.g., to the
jump processes by using transformation analysis [for the transformation
analysis see e.g. Duffie, Pan, and Singleton (2000)]. The possible drawback
of our continuous uncertainty assumption is a reduced accuracy. However,
the advantage is that we are able to obtain analytical pricing formulas that
are easily implemented to everyday industry practice [see Arte and Keppo
(2003)]. These analytical results enable the pricing and analyzing of huge
portfolios within a short time period and this is important in practice since
telcos’ portfolios may include thousands of different instruments. There are
several other papers that have considered bandwidth pricing. Rasmusson
(2002) presents a new design for bandwidth markets. Reiman and Sweldens
(2001) analyze the calculation of network arbitrage free bandwidth forward
prices. Upton (2002) studies methods for pricing and agent behavior in
bandwidth markets by using financial models and stochastic control. Gupta,
Kalyanaraman, and Zhang (2003) calculate bandwidth spot prices by using
a nonlinear pricing method. Courcoubetis, Kelly, Stamoulis, and Manolakis
(1998) analyze bandwidth allocation and pricing model, where each user is
assumed to select his/her willingness-to-pay so as to maximize his/her net
benefit, i.e., the difference of the utility induced to the user by the quality of
service (QoS) received minus his/her willingness-to-pay. In the present paper
we do not consider QoS and assume that the QoS is the same for all the
point-to-point connections. Keon and Anandalingam (2003) consider pric-
ing of multiple services with guaranteed QoS levels and a single telecom-
munications network. Courcoubetis, Kelly, Siris, and Weber (2000) study
simply usage-based charging schemes for bandwidth networks. Songhurst
and Kelly (1997) consider the issues of network interaction that are inherent
in appropriate usage-sensitive charging schemes. The stability and fairness
of rate control algorithms for communication networks are studied in Kelly,
Maulloo, and Tan (1998). Courcoubetis, Dimakis, and Reiman (2001)
analyze pricing in a best effort network and they also consider option
pricing. Our option pricing model can be seen as an extension to that since
we add the network arbitrage condition to their framework. MacKie-Mason
and Varian (1995a, 1995b) and Paschalidis and Tsitsiklis (2000) study
congestion dependent pricing. Odlyzko (2001) discusses Internet pricing and
the history of telecommunications. The financial option pricing theory un-
der continuous uncertainties is developed, e.g., in Black and Scholes (1973),
Merton (1973), and Black (1976), and the hedging of financial instruments is
considered in many papers [see e.g. Bertsimas, Kogan, and Lo (2001), Duffie
and Jackson (1990), Lioui and Poncet (1996), and Keppo and Peura (1999)].
General financial contingent claims pricing theory is derived in Harrison
and Kreps (1979), Harrison and Pliska (1981), Kreps (1981), and Cox and
Huang (1986). Utility function based financial asset pricing is considered,
e.g., in Davis (1998, 2001) and Cochrane (2002). Our pricing function for
bandwidth contracts can be viewed as an example of this kind of utility
approach.
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To sum up, the main objectives of our model are the following:

e Analytical pricing models for forwards and options under the network
arbitrage condition.
e Nonlinear dependencies of bandwidth prices due to the network structure.

The rest of the paper is divided as follows: Section 2 introduces the bandwidth
price models used in the paper. The stochastic processes for the capacity
prices are defined and the processes are then applied to the forward pricing
problem in Section 3. Section 4 uses the forward prices in the pricing of
bandwidth options. Section 5 illustrates the derived models with numerical
examples and finally Section 6 concludes.

2. Model

For simplicity, we consider a network of three point-to-point capacity prices.
All the point-to-point connections have the same capacity level and quality.
For example, the points are New York, Los Angeles, and Atlanta, and the
capacity is OC-3 (155.52 Mbps). The extension to more general networks is
discussed in Arte and Keppo (2003). Figure 1 illustrates the network structure.

The S-prices of Figure 1 are the bandwidth prices by using the capacity
between the points and without the network structure, i.e., the routing is
fixed. For instance, S is the bandwidth price between the up and left points
by using the direct routing between these two points. Price S; does not nec-
essary equal the market price between the up and left points because if we
have S, + S5 <. then the market uses the longer routing and, therefore, the
market price equals S, + S3. This cheapest path selection is called network
arbitrage condition [see e.g. Upton (2002)], i.e., it can be seen as the optimal
behavior of telecommunications companies.

Let us denote the market spot prices by Y;, Y», and Y3. Then we have

Y1 (1) = min[S) (¢), S2(¢) + S3(7)]
Y>(¢) = min[S»(¢), 81 (¢) + S3(¢)] for all € [0, 1]. (2.1
Y3(¢) = min[S5(¢), 81 (¢) + S2(¢)]

S
)

S3

Fig. 1. Network prices
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According to (2.1) spot prices are free of network arbitrage (Y, + Y3 > Y,
Y1 +Y32 Y, Y+ Y, 2 Y3). Currently, in the bandwidth commodity market
there does not exist pure spot prices and all the instruments in the market are
derivative instruments. Therefore, in practice the spot price refers to the
forward price (leasing contract price) with shortest maturity and duration. At
present, this means one-month forward price that starts after two months.
From now on, we assume that the spot prices can be approximated with the
forwards of shortest maturity and duration.

From (2.1) we see that even though Sy, S,, and S3 were independent
Yy, Y5, and Y3 would not be, because the market prices depend on the
point-to-point routings. Also from (2.1) we see that the probability dis-
tribution of future Y; is different from S; for all i€ {1,2,3}, because
Y;(¢) < Y>> S;(t) and, therefore, the upper tail of Y;’s probability

Je{1,2,33-{i}
distribution is shorter than the Sj’s corresponding tail. However, all the
uncertainties in the market spot prices are from the S-processes and,
therefore, these processes are the risk factors of the bandwidth market. If we
had more complex network structure then in equation (2.1) we would have
the minimum over all possible routings.

We consider a finite time horizon [0, 7]. In describing the probabilistic
structure of the market, we will refer to an underlying probability space
(Q, F, P). Here Q is a set, F is a og-algebra of subsets of Q, and P is a
probability measure on F. We assume that E[|S;(¢)|] < oo for all ¢ € [0, 1]
and i € {1,2,3} so that we can calculate the expected values and we de-
note the conditional expected value of the fixed routing price S; by
Si(t, T) = E[S;(T)|F;] for all +€[0,7] and T € [0,7]. We model these ex-
pected prices and the following assumption characterizes their stochastic
process.

Assumption 2.1 The process of the expected fixed routing price S;(t,T) is given
by the following Ito stochastic differential equation

dSi(1,T) = Si(t, T)o:dBi(t) forall € [0,7),i € {1,2,3}, (2.2)

where S;(t,T) = E[Si(T)|F],S:i(-,T) : [0,T] = Ry, T € [0,1],0; is bounded and
constant, and By(*) is a standard Brownian motion corresponding to the link i on
the probability space (Q, F, P) along with the standard filtration {F, : t € [0, 1]}.
We will denote by pij the correlation between the i’th and j'th Brownian
motions.

According to equation (2.2) the stochastic processes for the expected
fixed routmg prices follow geometric Brownian motion processes where
Si(1, T)* o? is the rate of change of the conditional variance of Si(z,7). The
boundedness of the volatility parameter o¢; guarantees the existence
and uniqueness of the solution to (2.2). The solution to (2.2) can be
written as

Si(T,T)=S8:(T) = Si(t,T) exp <_§G’ (T —1) + oy[Bi(T) — B,~(t)}>.

The extension to time dependent and deterministic volatility is straightfor-

ward since we can set o7 to equal the average of volatility square over the
lifetime of the bandwidth contract under consideration. For instance, in the
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calculating of S;(T)’s distribution with time dependent volatility o;(¢,T) we
use ;= \/7 ftT o;(y, T)*dy. Because in Assumption 2.1 we model the ex-

pected values, the process of the fixed routing price S;(¢) can be e.g. geometric
Brownian motion or mean-reverting, and we can use, for instance, the elec-
tricity price models presented in Deng, Johnson, and Sogomonian (2001),
Keppo and Résédnen (1999, 2000), Manoliu and Tompaidis (2000), and Oren
(2001). Thus, equation (2.2) has already been used with a non-storable
underlying asset. Also note that there can be cycles in the expected fixed
routing prices. For instance, in our model we can have S;(0,1) = 100 and
S;(0,1.1) =1

The continuous-time process in (2.2) can also be seen as a limit of the
corresponding discrete-time process. Since prices are always positive let us
model log-expected prices and define

Dy (k) = log(Si(kz, T)) — log(Si((k — 1)L, T))
forall ke {1,...,m}, me{l,2...},

where m is the number of discrete time intervals on [0,7] and k is the
index for discrete times. This gives log(S(T)) = log(S;(0, 7))+ > i, D (k).
We assume that {Dl'”(k)} are mutually independent and identically dis-

tributed random variables with mean B, and standard deviation oi\/;

Then we get from the central limit theorem [see e.g. Billingsley (1995)]
lim Y (D"(k) — B.L) = 6:B,(7), ie.,

M0 k=1

Tim log(S}'(T)) = log(Si(0,T)) + BT + 6iBAT),
where according to (2.2) f; = —%o—f and therefore the limit of our discrete-
time model is given by (2.2). Thus, if we assume that in discrete-time the
differences of the log-expected prices are independent and identically dis-
tributed then if we speed up the arrivals of the discrete-time events we get our
approximation, Assumption 2.1.

Because there are three risk factors they cause at most three independent
sources of uncertainty in the market. That is, all the uncertainties in the
market prices are driven by the risk factors and the correlation structure
between the risk factors is free in our model. If the market capacity supply is
constant then the uncertainties in the S-prices are generated from the capacity
demand processes.

In order to get analytical formulas for bandwidth point-to-point con-
tracts, we will approximate the sum of two geometric Brownian motions with
a geometric Brownian motion. Thus, we make the following assumption on
the expected alternative routing prices and the same assumption is done in the
pricing of financial derivatives.

Assumption 2.2 The expected alternative routing prices are given by the
following Ito stochastic differential equations
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dX (t,T):dSQ(Z‘,T)+dS3(I,T):X1 (I,T) [wuadez(t)+w1,30'3dB3(t)]
dX,(1,T)=dS,(¢,T)+dS;(tT)=X»(t,T) [a)z’]o’ldB] (t)+w27303dB3(t)] (2.3)

dX3(l‘,T)=dS1 (l,T)—‘y—dSz(t,T) =X3(1,T) [0)3’10'1dB1 (t)+w37202d32(t)]

where Xi(t,T) =3 c123y-(n Se(t, T) and a)i.j:M.T; is constant for all

X:(¢,T
i,je{l1,2,3}.

In many practical situations, equation (2.3) is accurate enough and,
therefore, the same method is used, e.g., in the pricing of basket options [see
Gentle (1993)]. The correct processes of Xi(¢,T) = S(¢,T) + S5(¢, T),
X6, T)=81(t,T)+ S5, T), and X3(¢,T) = (¢, T) + S»(¢, T) are given by

dX\(t,T) =dS,(t,T) +dS5(t, T) = S»(t, T)02dB;(t) + S3(¢, T)o3dBs(t)
dXo(t,T) =dS\(¢t,T) +dSs(¢tT) = S\(t, T)o1dB1(t) + S3(¢, T)a3dB3(t)

dX3(l, T) =dS (t, T) + dSz(t, T) =95 (l, T)O'ldBl(f) + Sz([, T)ngBz(l)

and, therefore, combining this with equation (2.3) we get w; ; = f;g;;
to justify more the X-process of Assumption 2.2, Appendix 1 analyzes the
approximation error by using two first moments and compares equation (2.3)
with Monte Carlo Simulation. Note that equation (2.3) is for the expected
values o533y Sk(f, T) and not for 355y 1 Sk(0).-

We consider a market where telecommunications capacity and bandwidth
instruments are bought and sold continuously. Because of the new exchanges
(for instance Band-X and InterXion) and OTC-market this kind of interna-
tional market already exists, but the market is not liquid and is in an early
stage. Therefore, we assume the following general pricing function for
bandwidth instruments and it is not based on continuous time hedging.

. In order

Assumption 2.3 The price of T-maturity bandwidth contingent claim is given by

n(t,T) = exp(—r(T — 1))E[¢(T)|F;] forall t€[0,T], Tel0,1],
(2.4)

where r is a constant discount rate, ¢(T) is the payoff at time T, and the
expectation is with respect to probability measure P.

Assumption 2.3 implies that the agents in the market price the bandwidth
instruments by using the discounted expected payoff formula. The discount
rate and the probability measure in equation (2.4) may depend on the agent’s
utility function. However, for simplicity we assume that the probability
measure is equal to the objective measure P and the discount rate is constant.
Note that if the market was liquid, arbitrage free, and complete then the
discount rate in (2.4) would be the risk-free rate and the expectation would be
under the risk-neutral pricing measure Q [see e.g. Harrison and Kreps (1979),
Harrison and Pliska (1981), Kreps (1981), and Bjork (1998)]. However, since
in this paper we do not assume this kind of market we use directly
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Assumption 2.3. The payoff ¢(7) in equation (2.4) can be viewed as a money
metric utility and, therefore, Assumption 2.3 can also be seen as a utility
based pricing approach. For the general utility based pricing models see, e.g.,
Davis (1998, 2001) and Cochrane (2002) and for applications in telecom-
munications see, e.g., Stoenescu and Taneketzis (2002) and Courcoubetis,
Kelly, Siris, and Weber (2000).

In bandwidth markets there are leasing contracts traded between tele-
communications companies. As mentioned earlier, these leasing contracts can
be modeled as forward contracts since they oblige the buyer of the contract to
acquire the underlying bandwidth connection at a certain future date
(maturity) for a certain payment (forward price). Therefore, in this paper we
call these contracts as forwards. When the forward contract is agreed upon,
no payments are made. Instead, at maturity the seller of the contract receives
the forward price from the buyer. Thus, if the claim in Assumption 2.3 is a
forward contract then we get from equation (2.4) that the 7-maturity forward
price at time ¢ with instantaneous duration is given by

Yi(t,T) = E[Yi(T)|F] (2.5)

because, as mentioned above, in this case by definition of the forward con-
tract ¢(T) = Y:(T) — Yi(¢,T) and n(¢,7) = 0, where Y;(7) is the corresponding
bandwidth spot price at time 7. Note that according to Assumption 2.3 the
forward price with duration D can be calculated as follows

—r [P exp(=r(y — ) Yi(t, »)dy

W6 T D) = T+ D~ t)) —exp(—r(T = 1))’

(2.6)

where the contract’s start date is 7" and the end date is 7+ D.

3. Forward pricing

From now on we only consider the pricing of contracts on Y| and the con-
tract prices on Y, and Y3 can be derived in the same way. Unlike in other
commodity markets, the bandwidth forward contract includes optionality.
That is, the seller can provide either the direct routing or the alternative one.
According to Section 2, we assume that the expectation hypothesis for
bandwidth forward prices holds under P and, therefore, the forward prices
are equal to the expected spot prices:

Y1(¢, T) = E(min[S;(T), X1 (T)]|F;,) forall ¢t€]0,7], Te€[0,7], (3.1
)

where Y1(¢,7) is the T-maturity forward price at time ¢ and Xi(¢
SH(t) +83(2).

Equation (3.1) implies that the forward contracts are a kind of combined
options where the forward price is equal to the minimum value of an asset
and a portfolio. Note that (3.1) is independent of the stochastic processes of S;
and X;. Further, because the spot prices [equation (2.1)] are free of network
arbitrage, according to (3.1) also the forward prices satisfy the no-arbitrage
condition. Equation (3.1) can also be written in the following way

Yi(t,T) = E(S1(T)|F) — E(max[0,8,(T) — X,(T)]|F) (3.2)
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Thus, the market forward price is equal to the price with fixed routing minus
the option to change the point-to-point routing. This option is due to the
network arbitrage condition and it is a kind of exchange option [for the
pricing of exchange options see e.g. Margrabe (1978)].

By allowing T vary from ¢ to t we get the whole bandwidth forward curve
Yi(¢,-) : [t,7] — R, at time ¢. Using the pricing formula for exchange options
and the martingale measure for X; we get the following proposition.

Proposition 3.1 The forward price is given by

Y1(¢,T)=8(¢,T)—H(t, T,8,X;) forall t€[0,7], Te€][0,z], (3.3)
where the exchange option
H(t,T,8, X)) = Si(t, )N (z,) — X1 (t, T)N (z, VT - t), (3.4)

and

In ()S(l,((i?)) +16*(T—1)
ovVT—t

_ 2 2 2 2 2
o= \/‘71 T 07,05+ 7 303 +2w1A2w1A3P2,30203 —20 (w1,2P1‘202 +601,3P1‘303)

Zy =

and N(°) is the cumulative standard normal distribution.

Proof. From equation (3.2) we get

H(t,T,8, X)) = E(XI(T) max [Sl(T) - 1,0] IE>

Xi(T)
(S {18 )
= X,(t, T)E< (max [)S% — 1,0} |F,>, (3.5)

where S|(t,T) = E[S|(T)|F}], Xi(¢t,T) = E[X;(T)|F], E2'(-) in the last line of
(3.5) is the expectation with respect to the martingale measure Q; for the
numeraire process X;(-,7) [see e.g. Geman (1989) and Bjork (1998, chapter
19)], and the Radon-Nikodym derivative is given by

o\ X(T,7T)

—_— = Fr.

P~ x(n,1) T
Equation (3.5) implies that H(¢,T,S;,X1) is equal to X;(z,7) numbers of Black-
ST with zero discount rate and unit

Scholes type T-maturity call options on BT
S] I,T)

Xl((t_’T) is a martingale under the martingale mea-

sure Q. Therefore, it has zero expected change and the process is given by
[see e.g. Bjork (1998, chapter 19)]

S (l, T) _ S (l‘, T)
d{Xl (¢, T)} X6, 7)

strike price. The process of

[O’ldél(l) — 0)1_26de2($) — 0)113(73(133 (t)], (36)
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where B, ,32, and B3 are Brownian motions under 0. Note that the correlation
structure between the Q;-Brownian motions is the same as the correlation
structure between the P-Brownian motions of Assumption 2.1. Using equa-
tions (3.5) and (3.6) and Black-Scholes formula we get (3.3) and (3.4). O

As, e.g., in Davis (1998) we end up Black-Scholes type pricing
equation even though we started with the general pricing function of
Assumption 2.3. Note that the change of measure in the proof of Prop-
osition 3.1 is just an efficient technique to calculate the expectation of
Assumption 2.3.

By using equations (3.3) and (3.4) the forward price can also be written as
follows

Y, T) = S, (6, T)(1 — N(z)) + X (t, T)N (z, VT = t)

= $1(t, T)N(—z,) + X\ (¢, T)N(z, VT - z), (3.7)
In (Xl <:‘T)) —1a% (1) In (Sl O;”) —L6?(T-1)
where —z, = % and z, —o/T —t = XI(;)T

Thus, equation (3.7) is just the expected marker price because if S{(7) <
X1(7) then the market selects the S;-price and direct routing and, otherwise,
the price X7 and the longer routing are used.

Because Yi(#,7) is a nonlinear function of S-prices, the instantaneous
correlations between the forward prices (Y-prices) are not constant and the
correlations depend on time and the S-prices. That is, from equation (3.7) and
It6’s lemma we get

_6Y(t,Sl7X1) aY(l,Sl,Xl) 8Y(I,Sl,X1)

dv (4, T) = B dt + 950, T) dsi(4,T) + X, (. T) dx,(¢,T)
182)7(1,517)(1) 2 182Y(t,Sl,X1) 2
s (1, 1)) = — 2 (axy (8, T
S osy ET S S @ )

2
OVESLX) e (0 T)asi (1, ), (3.8)

o8 Tox, (1, T)

where Y(¢,5,X) is the forward price given by the right-hand side of
equation (3.7) and it is a function of time and direct and alternative routing
prices.

Because the partial derivatives in (3.8) are not constant, the parameters of
the forward price dynamics are neither constant even though the S-process
parameters are constant. That is, the drift and diffusion terms of Y; are
changing all the time. According to equation (3.1) the forward prices
(Y-prices) are martingale under P. Therefore, the drift term in (3.8) is zero
and we get by using (2.2), (2.3), and (3.7)

dan (l, T) = Vl’l(l‘, T)dB](l) + vljz(t, T)de(t) + V1’3(l‘, T)ng(l), (39)

where
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Vl,l(t7 T) = N(*Z,)Sl (t, T)O'l
ya(t,T) = N(z, VT - t)Sz(t, T)os
vis(t,T) = N(z, PN t)S3(t, T)os.

According to equation (3.9) the forward price uncertainty is equal to the
probability of direct routing multiplied by the direct routing’s uncertainty plus
the probability of alternative routing multiplied by the alternative routing’s
uncertainty. Thus, we have 0 < v;,;(¢,T) < Si(¢,T)o; for all i € {1,2,3}. Fur-
ther, equation (3.9) implies the facts that are already mentioned earlier: the
market forward prices are martingales and the correlation structure of the
forward prices is not constant even though the correlation between S-prices is
constant (see Assumption 2.1). Note that even if S}, S5, and S; were inde-
pendent, i.e., even if the Brownian motions were independent the forward
prices would depend on each other because of the routing options. In order to
see this, let us use equation (3.9) and assume momentarily that the S-processes
are independent. Then the instantaneous covariance between Y;(z,7) and
Y>(¢,T) is given by

cov[Yi, Yol = via (¢, T)va (6, T) + via(t, T)vao (¢, T) + vis(t, T)va3(t, T) > 0,
(3.10)
where the process of Y,(¢,T) follows
dYo(t,T) = v21(¢, T)dB,(t) + vo2(t, T)dB>(t) + v23(¢, T)dBs(¢)

and according to (3.9) all the diffusion terms of Y(¢,T) are positive. Because these
terms are positive and because the correlations between the Brownian motions
were assumed to be zero, we get (3.10). That is, the instantaneous covariance
between Y (¢,T) and Y,(¢,7) is positive and if there are no routing options then
the partial derivatives in equations (3.8) and (3.9) are zero and we get
cov[Y}, Y»] = 0. Thus, the network arbitrage creates positive correlation between
capacity prices. This is natural since network routing smoothens the point-to-
point demands over the whole network and therefore prices move together. From
now on we again assume the general correlation structure between the S-prices.

4. Option pricing

In addition to the routing options described in section 2 and 3 some band-
width service contracts include also other option type characteristics. For
instance, the seller can have a right to disconnect the service for a predefined
penalty payment. These rights can be modeled as bandwidth options and,
therefore, the understanding of option pricing is important in the bandwidth
markets even though there do not exist traded option contracts.

Bandwidth options are modeled as options on forwards. Therefore, a
European bandwidth call option’s payoff on the T-maturity forward at the
option’s expiration date T¢ € [0, 7] is max[Y;(7.,T) — K, 0], where K is the
strike price. Because Y, can be viewed as an exchange option, the call is a kind
of compound option on S; and, in the pricing of bandwidth options we utilize
the pricing theory of compound options [see Geske (1979) and Rubinstein
(1992)]. In the same way, bandwidth put options are compound put options
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and the terminal payoff is max[K — Y;(7.,T),0]. We concentrate on the
European bandwidth call option pricing because the corresponding put op-
tion price can be solved by using the following put-call parity

C(ta TmSlevi) 7P(t7 TC7S17X17K) = [Yl (t7 T) 7K] exp(ir(TC - t))v (41)

where C(t, Tc, S1,X1,K) and P(¢t, T., S, X1, K) are the bandwidth call and put
prices at time ¢ € [0, 7¢] and 0 < 7 < T, < T < 7. At the options’ expiration date
T, the left hand side of (4.1) is Y(7.,T) — K. Using Assumption 2.3 we get

EY\(T,, T) — K|Fexp(—r(T. — t)) = [V (£, T) — K] exp(—r(T; — 1)).

This is the same as the right hand side of (4.1) and, therefore, equation (4.1)
holds. Thus, this put-call parity is got from Assumption 2.3.

In the same way, according to Assumption 2.3 before expiration date T
the bandwidth call option price has to be given by the discounted expected
payoft:

C(t,T.,81,X,K) =exp(—r(T, — t))E{max (Sl(TC, T)N(—zr,)

+X1(TC,T)N<ZTC - a\/TT'TZ) —K, 0) F,} (4.2)

Equation (4.2) is solved in two steps. Firstly, we calculate the conditional
option price on the value of X (7., T) and, secondly, we integrate the condi-
tional option price over the X;’s probability distribution. The first step, i.e., the
calculation of the conditional call option price means integrating the option’s
payoff over the S;’s probability distribution and because the underlying for-
ward price formula includes cumulative normal distributions, this conditional
option price is described in terms of bivariate normal distributions. This gives
the fact that the final option price formula includes trivariate normal distri-
butions because we have to consider also the X’s distribution.

The derivation of European bandwidth call option formula is presented in
Appendix 2. The result of the first step, i.e., the conditional call price is given
in the following lemma.

Lemma 4.1 The conditional call option price is given by
C(t, T, $1,X1,K) |y, 1.1y = exp(=r(T. = ))[S1 (¢, T) (N (g:(x))
— M(q/(x), 2, p,.))
+ XM(%(X) —o/T.—t,z,— T —1, pq7z>

—KN(q,(x) — o /T, - t)} (4.3)

S[(t,T) 12
In ) o1 (Te—1)
where ¢,(x) = <95(a]> njtl ,0s(x) solves
1 Os(x
QS(x)N<— T T [In( S)E )> + %X (T — T,) )
1

+xN<a = [m (Qsix)) — (T — TC)D ~ K,
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S1LDY 1 2
In (=) +46? (T—1) . . .
z = % s M(qy,z, pqﬁz) is the area under a standard bivariate normal

distribution function covering the region from —o to ¢, and —oo to z,, and the
two random variables have correlation p, .= H%ﬂs» and pg=
1
a

Sy
and -

(61 — 1201202 — W13 p1~3a3) is the instantaneous correlation between S

Proof. See Appendix 2. Q.E.D.
The first term after the discount factor

Sl(t’ T)(N(qt(x)) _M(qt(x)’ztqu.z)) = E[Sl(t’ T)]{YI(TW T) 2 K}
HX(T) = SUTHX(Te, T) = x],
where I is the indicator function, i.e.

Hx=8(T)} = {(1) ii i gigg

Thus, I{Y\ (T, T) > K}H{X\(T) > S;(T)} = 1 if the bandwidth option expires
in the money and if at the expiration of the forward contract X1(7) = S1(7). In
this case the bandwidth market price at time 7 is S;(7). The second term

xM(q,(x) — o1/T. — 1,20 — oV/T — ¢, pq,z) is x multiplied by the probability
that the bandwidth option expires in the money and that at the expiration of
the forward contract X;(7) < Sy(7). In this case at time 7" the bandwidth
market price is X,(7). The last term KN (¢,(x) — o1+/T. — f) is K multiplied by
the probability that the bandwidth option expires in the money. Thus,
equation (4.3) is the discounted expected value of the bandwidth call option
given that X (7., T) = x. Note that if x < K then always Y(7.,T) £ K and,
therefore, the call option expires worthless.

The conditional option price, equation (4.3), is similar to the compound
option pricing formula in Geske (1979) and Rubinstein (1992). However, we
have to consider also the uncertainties in the alternative routing price X; and,
therefore, we integrate the conditional option price over the X;’s probability
distribution. In order to get analytical option pricing formula in this inte-
gration we assume that the upper boundaries of the cumulative normal dis-
tributions in (4.3) are independent of X;(7,,T)’s outcome. The derivation of
the option pricing formula is presented in Appendix 2 and the result is given
by the following proposition.

Proposition 4.1 Bandwidth call option price is given by
Clt,TerS1,X1,K) =exp(—r(T.=0) [$1(6.T) (M (i) wi=0x v/ Te=1,p,.)
{0t 2 o T g pgns)
+ X1 (1, T)G(qt(xq) — 0 \/ﬁ, z—oVT —t,w, Pyzs Pgw> Pz,w)
—KM(q,(xq) —o\/T. — t,w; — ox\/T. — 1, pqw)} , (4.4)



Pricing of point-to-point bandwidth contracts 205

DY 12
_ Xi(LT)N(w) _ln( X )+30X(Tc*f) :
where x, = W,Wt R, S ,G(Qt,ZnWta Pgz Pgws Pz,w) is

the area under a standard trivariate normal distribution function covering the
region from —oo to q, —o° to z,, and —eo to wy and the three random variables

. ati _ L=t _ . _ JT—t
have correlations p, . = \/7=ps;, Pgw = Psx> and p.,, = \/F=px,

1
0x0]

Psx = [601,2[)1720'10'2 +601.,3/)1.30'163]

is the correlation between S| and X,
1 2
Py = [01 (6012)01,202 + CUL3P1,3(73) - GX}
ox0

is the correlation between X; and )57]1

oy = \/wizag + a)%ﬁa% + 201,01 305 30203

is the volatility of X, and

o= \/6% + Gg( — 20 (w1’2p1_20'2 + (1)1’3[)1’30'3)
is the volatility of%.
Proof. See Appendix 2. O

Equation (4.4) is the discounted expected value of the bandwidth call
option. The first term after the discount factor

Si(¢,T) (M(q,(xq),w, —ox T, —t, pq’w)
- G((]t(xq)72r,wz —0xV Tc ) pq,z7 pq,wv pz,vv))

= ESi (6, NIH{N(T., T) = KH{Xi(T) = $1(T)}|F]
is now the expected value of S| (¢, T)I{Y\(T,,T) > K} {X\(T) > Si(T)}. Thus,
(T, T) > K}H{X,(T) > 8i(T)} = 1 if the bandwidth option expires in the

money and if at the expiration of the forward contract X;(7) = S(7). The
second term

Xl (t’ T)G(%(xq) — 01V Tc - tazt —oVT — t; Whpq,zqu,vaz,w)
= E[Si(t, ){Y\(Te, T) 2 K}{X1(T) < $i1(T)}|F]

and I{Y,(T.,T) > K}H{X;(T) < 8|(T)} = 1 if the option expires in the money
and if at the expiration of the forward contract X;(7) < S;(T). The last term
KM (q,(xy) — o1v/Tc — t,w; — ox/Tc — 1,p,.) is again K multiplied by the
probability that the bandwidth option expires in the money.

The selection of ¢s variable according to xqzzv()a(t‘:i%
t—O0Xx ¢

approximation and this way the upper boundaries of the integrals in equation
(4.4) are independent of X(7,,T)’s outcome. This selection implies that

is an

% EULX (T, T) > KYE) = EL (T, DX (T, T) > KYIF),
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i.e., xq is the constant corresponding to X(7,,7T) in the sense of the above
equation. Appendix 3 illustrates the error from x4 by comparing our ana-
lytical option pricing formula with Monte Carlo simulation with 200,000
outcomes. According to the results, the higher the volatility of X; and the
smaller the X(z,7)/S,(¢,T) ratio the higher the approximation error, and the
error is zero if X is deterministic.

In the deriving of the option pricing formula (4.4) we have made two
approximations: the process of X (¢, T) = Sy(¢, T) + S3(¢, T) was assumed to
follow a geometric Brownian motion [equation (2.3)] and the normal inte-
grals” upper boundary ¢, was assumed to be deterministic [equation (4.4)].
Both these approximations are due to the stochastic alternative routing price
X and in the case of deterministic X; equation (4.3) gives the correct call
option price.

5. Example

In this section we illustrate our pricing models with numerical examples.
Firstly, we analyze bandwidth forward price as a function of the S;’s volatility
a1. Secondly, we study how the volatility affects bandwidth call option price
and compare our option pricing model with Black-76 formula, which is a
traditional commodity option pricing method.

Let us assume the following parameter values. Current time ¢ = 0, forward
maturity 7 = 2 years, bandwidth call option maturity 7. = 1 year, option
strike price K=2.8, and, for simplicity, discount rate r=0. Price
S$1(0,1) = 51(0,2) = 2.8, S»(0,1) = S»(0,2) = 1, S5(0,1) = S5(0,2) = 2,6, = 0.2,
and o,, o3 = 0. That is, the expected direct routing prices are 2.8, 1, and 2,
and they satisfy the network arbitrage condition. For simplicity, we assume
that S, and S; are constant and, therefore, X(¢) = 3 for all z. The annual
volatility of S; is 20%. Because X; is constant we do not have to use the
approximation of equations (2.3) and (4.4). Therefore, Proposition 3.1 and
Proposition 4.1 give the correct forward and call option prices. Using the
above parameter values and the bandwidth forward and call pricing functions
we get 2.564 for the forward price and 0.0275 for the call price.

Figure 2 illustrates the bandwidth forward price as a function of volatility
a;. Figure 2 indicates that the volatility affects the forward price and the
function is decreasing. The volatility widens the probability distribution of
future direct routing price S;. However, due to the existence of the alternative
routing the future market prices Y; are bounded above and, therefore, the
volatility mainly lengthens the lower tail of Y;’s probability distribution. This
implies that the expected future spot price and the forward price decrease
when the volatility increases. Thus, the bandwidth forward pricing is different
than in other commodity markets. For instance, if the underlying asset is a
storable commodity then the forward prices are given by the cost-of-carry
model and the volatility does not affect the commodity forward prices [see e.g.
Hull (1997)].

Next we analyze how the volatility affects the bandwidth call option pri-
ces. Figure 3 illustrates the situation. The solid line is the call option price
based on our model and the broken line is the corresponding option price
given by the Black-76 formula, which does not consider the upper boundary
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Fig. 2. Bandwidth forward price S|(# = 0,7 = 2) as a function of annual volatility o,

of the underlying forward price. The increased volatility has two effects on
bandwidth call price. Firstly, it widens the probability distribution of future
spot prices. This increases the option price. Secondly, according to Figure 2
the increased volatility lowers the forward price and, therefore, the volatility
also lowers the call option price. This is a natural option character as the
underlying asset decreases also the call option value decreases. Thus, the total
effect of volatility can be positive or negative. As can be seen from Figure 3,
with the given parameters our call option price is first increasing and then
decreasing function of the volatility. With low volatility values the first effect
is greater, but with higher than 5% volatility the second effect starts to lower
the option price. This is because the S;-probability distribution is bounded
above and, therefore, increasing volatility does not any more lengthen the
upper probability tail. With the Black-76 model the first effect is greater all
the time, because the model does not consider the alternative routing, i.e., the
probability distribution is not bounded above. According to figures 2 and 3,
the error term of Black-76 is significant in the situations where the second
effect is strong, i.e., in the situations where there is a high probability that the
alternative routing is used.

call price
0.25 -

02 R
0.15 1
0.1 4 e

0.05 4

0 T T T T 1
0 10 20 30 40 50
volatility, %

Fig. 3. Bandwidth call option price C(t =0,7. = 1,8, = 2.8,X; = 3,K = 2.8) as a function of
annual volatility o, (solid line) and the corresponding call option price by using Black-76 model
(broken line)
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6. Conclusions

In this paper we have modeled point-to-point bandwidth contracts under the
network arbitrage condition. In order to understand the effects from this
condition we used the fixed routing bandwidth prices as the underlying assets
for these contracts. Due to the network arbitrage condition bandwidth for-
wards include routing exchange options and, therefore, they are nonlinear
instruments of the fixed routing prices. According to our bandwidth forward
model, the network arbitrage creates positive correlation between forward
prices and shortens the upper tails of bandwidth market price distributions.
The more the upper tails are truncated the greater the correlation between the
market prices. In the numerical examples, we have illustrated that the
underlying bandwidth volatility affects the forward prices and the bandwidth
forward prices are decreasing functions of the underlying volatility.

Because a bandwidth forward contract can be viewed as an exchange
option, a bandwidth option is a kind of compound option. The analytical
option price approximation is described in terms of bivariate and trivariate
normal distributions and the approximation error is zero if the alternative
routing price is deterministic. Because the forward price is a decreasing
function of the underlying volatility and because the network arbitrage
condition shortens the upper tail of the bandwidth price distribution, a
bandwidth call option can be a decreasing function of the volatility. In the
numerical examples, we have illustrated the difference between our option
pricing model and a traditional commodity option pricing formula. The
difference of these approaches is significant in the situations when there is a
high probability that the underlying point-to-point routing is changed.

Appendix 1: Geometric Brownian motion approximation for alternative routing

In this appendix we analyze the geometric Brownian motion approximation
for alternative routing price X;. First, the approximation error’s two first
moments are calculated. Second, we will compare the geometric Brownian
motion assumption with Monte Carlo Simulation with 20,000 outcomes.
The geometric Brownian motion assumption for X; can be written as

Xi(T) = [S5(¢, T) + Sa(t, T)] exp (%af((T — 1)+ ox VT — tZX> . (ALD)

where Sy(¢, T) = E[S>(T)|F], X1(¢,T) = E[S2(T) + S5(T)|F], Zx is a standard
normal variable,

_ I
ox = \/wmaz + w7303 + 20, ,013p30,03,

_ SZ(tv T) and w1 1 = S3(t7 T)
TS T)+8(1,T) TS T) + S50, T)

The distribution of (Al.1) is a lognormal with mean S,(z,7) + S5(¢,7) and
variance

[S5(2, T) + S5(¢, T)) [exp (a3 (T — 1)) — 1]. (A1.2)

w12
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The true distribution of Sy(7T) + S3(7) is

SH(T) + S5(T) = Sa(s, T)exp(—%az( t)+ VT Zz)
+85(,T) exp(iag(T 1) +o3vVT — tZg), (AL1.3)

where Z, and Z; are standard normal variables correspondingly to S, and S3,
and equation (A1.3) is not a lognormal distribution. The mean of (A1.3) is
again S»(¢,7) + S3(¢,T) and the variance

Sa(t, T) [exp(a3(T — 1)) — 1] + 85(¢, T) [exp(a3(T — 1)) — 1]
+28,(t, T)S3(1, T) [exp(py30203(T — 1)) — 1]. (A1.4)

Comparing the variance equations (A1.2) and (A1.4) we see that the variances
are different almost every time and can be equal only momentarily.

Next we compare our Xj-process approximation with the results from
Monte Carlo Simulation. Let us assume the following parameter values:
S>(0,1) =1, §5(0,1) =2, 0, = 0.2, 03 = 0.2, and p, 3 = 0. That is, the expected
bandwidth prices are 1 and 2, the annual volatilities are 20%, and the
S-processes are independent of each other. Using equation (Al.1) our vola-
tility estimate for X;(z,1) is 14.9071% and, therefore, based on our geometric
Brownian motion assumption the variance of X;(1) is 0.2022. Using equation
(A1.4) the true variance of X(1) is 0.2041, so the error is 0.9%. Monte Carlo
Simulation with 20,000 outcomes yields 0.2142 for the variance of X;(1) and
the difference with the true variance is 4.9675%. Thus, with these parameter
values and simulation outcomes our analytical approximation is closer to the
true variance. Therefore, we should expect that our analytical model is also
more accurate in the pricing of bandwidth contracts than the Monte Carlo
Simulation with 20,000 outcomes.

Appendix 2: Bandwidth call option price

In this appendix we derive analytical pricing formula for European band-
width call options in terms of integrals of the bivariate and trivariate normal
distributions. This is possible because we have assumed that

1

Sl(TC,T) Sl(l‘ T)exp(—zol —t +O'1\/ Zs> (A21)
1

Xi(T.,,T) =X (¢, T)exp (—EO'X )+ oxV T — ZX> (A2.2)

and under the martingale measure of X
S(T.,T) Si(¢,T) 1,
= —0o (T, — T. —tZ A2.
(1,1~ xS\ 7 e eV iz, (A2.3)

where



210 J. Keppo

_ 2 2 2 2
Oy = \/(1)1720'2 + W7 303 + 2(1)172(1)1_3p2,30'20'3,

_ 2 2 2 2 2
0—\/0'1 +a)1’20'2+601’30'3 —2w172p1720162—2w173p1730163+2w172w1,3p2_’30203,

Z, Zs, and Zx are standard normal variables and the correlation between S,
and 57‘1 is ps, the correlation between X; and ;%11 is px, and the correlation
between S; and X is psx-

According to Assumption 2.3 the European bandwidth call option price is

C(t,T.,5,X1,K) = exp(—r(T. — 1))

1 2
E|\C( T, T, 8i(t, T) exp( —301(Te = 1) + V/T. — 10125 )

1
X1, T exp <—§0§((Tc 4T szX) J<) |E] (A2.4)

where C(¢,T.,S1,X1,K) is T.-maturity bandwidth call option price at time ¢
and K is the strike price.

First, we calculate the conditional option price on the value of X(7,,T).
From equation (3.10) we get that the price of the underlying forward price

z,fa\/ﬁ
Y1 (¢,T)=S,(¢,T)— / [S1(t,T)exp(—%J(Tc—t)—o\/Tc—ts)—X1(t,T)]f(S)dS
=S1(t,7)=S1(¢t,T)N (z,)+X1(t, T)N(z;—aV T —t), (A2.5)

where f is the density of the standard normal distribution, i.e., f(u) =

Sy (1)
X (6.7)

oV T—t

)—laz(T—t)
\/Lz—nexp(—%uz), the alternative routing is used if —Zs < -

In (340 1162 (7—1)
=z;—oVT — ¢, and z :%

The conditional option price is
C(t, 1., S1,x, K)'X](Z,T):x = exp(—r(T. — 1))
B (max[$i(T., T) = $1(T, TIN (1) + 3N (21, = oy/T = T.) = K, 0| )
(A2.6)

If K > x then S(T.,T)N(-z1)+xN(z,— oy/T — I.) <K for all
Si(T.,T) € R; and the call option expires worthless. Now we assume that
K < x and then at time T, the call option C(7.,T.,S,x,K)=0 if
0s > Si(T.,T) where 0 solves

Hg(x)N< O_\/Tlch[ln(QS)Ex)) +;GZ(TTC)])

+xN (a\/Ti__f [m (Qsix)) - %az(T - Tc)} ) —K. (A2.7)

That is, when S|(7.T) < 6s(x) then S|(7.,7)—S1(T,T)N(zr)+
xN(z7, — /T = T;) < K and, therefore, C(T;, T, S1,X1,K) = 0.
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According to (A2.1) and (A2.7) the option is in the money if

L () e
5= oVI.—t

ST 1,
ln( Bs())+2 (T, — t)'
O']\/Tc—l‘

From equations (A2.6) the conditional option price can be written as
follows

C(t, Te, S1, X1, K) |y (7. 1)= = exp(—r(Te — 1))

. /oo [Sl (¢, T)exp <;af(Tc 1)+ amu)

—0o0

=g —o1/T. - 1, (A2.8)

where ¢,(x) =

_ (Sl (¢, T)exp (—%af(Tc —)+oaT. — tu)N(zTL,)

f(u)du (A2.9)

— 3N (zr, - m/?@) K

and using (A2.7) and (A2.8) we get

C(t, Te, $1, X1, K) |y, (1. )= = exp(—r(Tc — 1))

qi(x)—01v/T—t :
Si(¢, T) exp (—EU%(TC —t)—a\/T.— tu)

—00

(stemen( n- 0o
—xN(zT—a\/ﬁ> K]f w. (A2.10)

Integrating the first component in (A2.10) gives

qi(x)—o1VT.~t

Sy (¢, T) exp (—%of(Tc —t)—o/T. — tu)f(u)du

qi(x)—o1VT.—t
Si1(t,T) 1, / 1,
= ——= c—t — c— U — = di
N exp( 201(2 ) exp| —o1\/T. — tu Su” ) du
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1(17 T) @:i(x)—o1 VT~ | 5
:ﬁ / exp(—E(u—i—a]\/TC—t) )du =81(t, T)N(q,(x)).
(A2.11)
The second component of (A2.10),
@:i(x)—o1 VT~ 1
/ S1(¢,T)exp (—EO'%(TC —t)—o1\/ T, —tu)N(zTC)f(u)du

s 1 >
= o / exp(z(qumm) >N(ZTC)du
=81, T)M (:(x),21,04.) (A2.12)
n(%ﬁi"f))) Hot(T—1) In (M) +Ho(T—1) .
where g,(x) = P ) Zs ZJ—\/T—_t7M(%2an72) is the

area under a standard bivariate normal distribution function covering the
region from —eo to ¢; and —e to z; and the two random variables have

correlation p,_ = \/%=lp;.
The third component in (A2.10) gives
qi(x)—o1 VT —1
x / N(zn —oT— Tc)f(u)du
= xM(q,(x) — oI, —tz—oVT —t, pq_z) (A2.13)
and the fourth integral
q:(x)—a1 VT ~t
/ Kf (u)du = KN(qt(x) —ov I — t). (A2.14)

Combining (A2.10)—(A2.14) we get that the conditional bandwidth call
option price is given by

C(t, Te, $1,X0,K) |, (1. 7)=x
=exp(—r(T.— 1) [S1(t,T) - (N(qi(x)) =M (q:(x),20,0,.))
+xM (q;(x) —o\/T, —t,z,— VT — t,ptLZ) —KN (qt(x) -0 \/ﬁ)} .
(A2.15)

Next we calculate the affect of the X;-distribution. Using (A2.2) and (A2.15)
we get
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o0

C(taTwSl aXl 7K) :exp(_r(TC _t)) / [Sl (t’ T) (N(Qt(x)) _M(qt(x)vztqu,z))

—00

1
+X1(t,T)exp<—§a§((TC—t)+ Tc—to—Xy>

M(qt(X) —oVTe—t,z —am,pq.z) —KN<qz(X) -V T —t)]f(y)dy
(A2.16)

Because if K > X, (T, T) the call option expires worthless we get from (A2.2)
that the option is in the money if

In (2E0) ~ o3 (T, 1)

—Zy < =W — T, —t, A2.17
% o JT Wy — oxy/ ( )
Xi(t, T 1
In X T) ~o%(T. — 1)
K 2
where w; =
Gx\/TC—l

The x variable in ¢(x) is approximated as follows
S X (1 T) exp (o (T — ) = VT~ Toxy) f(9)dy
JUTEE £ () dy

Xq:

(A2.18)

That is, x4 is the expected X-price given that the option expires in the money.
Note that if X is deterministic then we have x, = X;(¢,7). Using (A2.11) we
get

Xi(t, T)N (w,)

= . A2.19
Ya N(w, —oxvV 1. — t) ( )
Now we have
w—ox/T—t
C(t;TCasl ;Xl ,K):exp(fr(cht)) / [Sl (t7T) (N(qt)fM(qhztqu;))
+X,(t,T)exp (—%a}(Tc—t)—\/Tc—taXy>
.M(qt—al VT.—t,z,—aVT—t, qu) —KN(q,—m 2V Tc—t)}f(y)dy,
(A2.20)

where g = gi(xq).
Integrating the first component of (A2.20) gives

WI_UX\/W
Sl (ta T) (N(qt) 7M(qt7zla pq,z))f(y)dy
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=8 (t7T) (M(qtawt*GX V chtypq,w> *G<CImZt,Wz*O'X V chtquﬁzapq,\wpz,w))a
(A2.21)

where G(q,,zt7 Wi — 0x VT — 1,042 Pgws pzﬁw) is the area under a standard
trivariate normal distribution function covering the region from —eo to ¢, —c
to z, and —oe to w; —oyx/1I, —t and the three random variables have

correlations Pqz =/ %PS» Pgw = Psx> and Pzw =/ ?:,tﬂx
The second component of (A2.20) gives
( ) wy—ax\/T.—t
X\ (¢, T 1 )
\/2—7'6 exp<_§()—X(Tc_I)) ' / M(qt_o_l V T.—tz;—ov T_tqu,z)

|
-exp (— VT.— taxy—zyz) dy

—00

( ) wi—ax\/T.—t
X\ (¢, T —
= \/E / M(qt_o-l V Tc—l‘,Zt—O' T_tqu,z)

1 2
~exp(—§<y+ \/Tc—toX) )dy
:X1 (taT)G(ql‘_O-l Vv Tc_tvzt_o-v T_tawl‘apq,mpq,wapz,w)'

(A2.22)
The third component in (A2.20),
wi—ax/Te—t
KN(‘]: —ovI. — t)f(y)dy (A2.23)

:KM(qt_o-lvTc_tuwt_aX\/ Tc_tqu,w)'

Combining (A2.20)—(A2.23) we get that the bandwidth call option price is
given by

C(t,T., 81, X1,K) = exp(—r(T. — 1)) [sl (t,7) (M(q,, wi— ox /T —1, pqvw)
—G<qt, Wi = 0x/Te = 1,0y s Py p))
+ X0, T)G(qt — 0T =tz = oNT — £, W1, Py Py pz,w)
—KM (g = o1V Te = t,w = o/ Te = 1., |- (A2.24)

Appendix 3: Comparing analytical option pricing formula with Monte Carlo
simulation

The aim of this appendix is to compare analytical bandwidth call option
prices with Monte Carlo simulation and this way to demonstrate the
performance of the analytical approximation. The Monte Carlo simulation
uses 200,000 random samples. The generous amount of random samples is
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Figure Al. Analytical bandwidth call option price C(t=0,7.,=1,T=2,8 =238,
ap =0.25,X, = 3.5,K = 3) as a function of annual volatility ox (solid line) and the corresponding
call option price by using Monte Carlo simulation (broken line)

call price
0,25 -

0,2 4
0,15 4
0,1 4

0,05 4

0 T T T T T T T T T T T T T T ]
1 2 3 4
X1/81

Figure A2. Analytical bandwidth call option price C(t=0,7.=1,T =2,8, =2.8,5; =0.25,
ox = 0.25,K = 3) as a function of the ratio X,(z,7)/S,(¢,T) (solid line) and the corresponding call
option price by using Monte Carlo simulation (broken line)

crucial to ensure correct evaluation of rare events and we can assume that the
simulation is close to the correct option price.

The call options are priced in different situations, which are selected in
such a way that the possible shortcomings can be pointed out. The following
variables affect the error term of the analytical approximation

e volatilities o and ox

e ratios between direct routing price S,(z,7), alternative routing price X1(z,7),
and strike price K

e option maturity 7. and the underlying forward maturity 7.

There are a few remarks to be made at this point. First, it is indeed the ratios
of S1(¢,T), X1(¢,T), and K that are of importance. Second, the processes being
simulated are S,(¢,7) and X(z,7) [as opposed to S(¢,T), S»(¢,T), and S3(¢,7)]
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Figure A3. Analytical bandwidth call option price C(t = 0,7, = 1,8, = 2.8,0; = 0.25,X; = 3.5,
gx = 0.25,K = 3) as a function of the underlying forward contract’s maturity 7 (solid line) and
the corresponding call option price by using Monte Carlo simulation (broken line)

and that error hereof is not considered [for the error from X; process
assumption see Appendix 1].

Some introductory understanding of the bandwidth call option formula
must also be given. The inaccuracy in the pricing formula is partly due to the
replacement of the call price’s conditional expectation on X (7., T) by the
constant x4. The error should cancel out when X;(7) is deterministic. Fur-
thermore, the error should be smaller the greater the X;(z,7)/S:(¢,T) ratio,
because then the probability distribution of Yi(z,7) is close to Si(z,7)’s dis-
tribution. Thus, if X7(z,7) is high the bandwidth options are close to regular
Black-Scholes options on S;(z,7).

In Figure Al the difference between analytical pricing formula and the
Monte Carlo simulation is illustrated as a function of X7’s volatility. Note
that the difference is zero if the volatility is equal to zero and in this case the
uncertainty in the option price is from S;.

Figure A2 shows the impact from the ratio of Si(z,7) and X;(z,7). The
difference between the analytical formula and the simulation decreases as a
function of X(z,7)/S,(z,T). Combining figures Al and A2 we see that the
ratio impact is stronger the higher the X;’s volatility and with zero volatility
the impact is zero.

Figure A3 illustrates how the option maturity affects the difference be-
tween the analytical and simulation option prices. According to the figure the
error increases with the difference in maturities. This implies that
the approximation xq works better for T close to T. Using Figure Al we
realize that the maturity effect is stronger the higher the X;’s volatility and
with zero volatility the effect is zero.
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