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Abstract In this paper we consider a firm that employs heterogeneous workers to
meet demand for its product or service. Workers differ in their skills, speed, and/or
quality, and they randomly leave, or turn over. Each period the firm must decide
how many workers of each type to hire or fire in order to meet randomly changing
demand forecasts at minimal expense. When the number of workers of each type
can by continuously varied, the operational cost is jointly convex in the number
of workers of each type, hiring and firing costs are linear, and a random fraction
of workers of each type leave in each period, the optimal policy has a simple hire-
up-to/fire-down-to structure. However, under the more realistic assumption that the
number of workers of each type is discrete, the optimal policy is much more diffi-
cult to characterize, and depends on the particular notion of discrete convexity used
for the cost function. We explore several different notions of discrete convexity and
their impact on structural results for the optimal policy.
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1 Introduction

It is a great privilege to participate in this workshop and special volume in honor of
Arie Hordijk. He is a wonderful mathematician, with great insight and creativity,
and he has had a huge impact on the applied probability community. Especially for
the second author, Arie has been a role model, mentor, and friend.

We consider a firm that employs heterogeneous wokers to meet demand for its
product or service. Workers differ in their skills, speed, and/or quality, and they
randomly leave, or turn over. Each period the firm must decide how many workers
of each type to hire or fire in order to meet randomly changing demand forecasts at
minimal expense. When the number of workers of each type can be continuously
varied, the operational cost is jointly convex in the number of workers of each
type, hiring and firing costs are linear, and a random fraction of workers of each
type leave in each period, the optimal policy has a simple hire-up-to/fire-down-to
structure. However, under the more realistic assumption that the number of workers
of each type is discrete, the optimal policy is much more difficult to characterize,
and depends on the particular notion of discrete convexity used for the cost func-
tion. We explore several different notions of discrete convexity and their impact
on structural results for the optimal staffing policy.

We model our system as a discrete-time Markov decision process (MDP). Let
nt = (n1t , . . . , nmt ) be a non-negative m-dimensional vector that represents the
current (at time t) number of workers of each of m types before hiring decisions
are made. Let θt represent the current state of the environment. The environment
may affect the distribution of the demand during the period, the pool of available
employees from which we may hire, the probabilities that employees will leave, and
the costs we incur. At the beginning of the period, based on nt and θt , the firm must
decide how many workers of each type to hire (or fire). Let dt = (d1t , . . . , dmt )
represent our hiring (firing if dit < 0) decisions at time t , where dt is a function of
nt and θt though we suppress the dependence notationally. Let Nt+1 be the worker
vector at the end of the period (beginning of the next period), which is a random
function of nt + dt and θt . Using α as the one-period discount factor, our objective
is to minimize the total expected discounted cost,

Vt(nt , θt ) = min
dt≥−nt t

E

T∑

j=t

αjE
[
ct (Nj , dj ,θj ) + Ct(Nj + dj , θj )|nt , dt , θt

]

= min
dt≥−nt

[ct (nt , dt , θt ) + Ct(nt + dt , θt )

+ αE[Vt+1(Nt+1(nt + dt , θt ), θt+1)|nt , dt , θt ]],

where c represents our hiring and firing costs, and C represents our expected
operational costs under the optimal (or possibly heuristic) operational policy for
meeting demand during the period, including wages for workers. We will assume
linear hiring and firing costs, so

ct (nt , dt , θt ) =
∑

i

[hit (θt )d
+
i + fit (θt )d

−
i ]

for all nt , where hit (θt ) > 0 and fit (θt ) > 0, and d+
i = max{di, 0} and d−

i =
max{−di, 0} . Then, using the arguments of Dixit (1997), Eberly and van Mieghem
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(1997), Gans and Zhou (2002), and Schmidt and Nahmias (2003, preprint), we can
show the following, where ni = (n1, . . . , ni−1, ni+1, . . . , nm).

Theorem 1 Suppose ni and di , and hence yi = ni + di can take on continuous
values, i.e. n, d, y ∈ Rm

+, and Ct(y1, . . . , ym, θ) is jointly convex in y for all θ .
Also suppose that Nit (yit , θt ) = Rit (θt )yit , where Rit (θt ), i = 1, 2, . . . , m, are
independent random fractions with support on [0, 1]. Then the optimal policy has
the following hire-up-to/fire-down-to structure. For each i there exist two functions
Uit (ni , θ) ≤ Dit (ni , θ) , such that for a given starting state n = nt , for each i, if
ni < Uit (ni ) hire up to Uit (ni ) type i workers, i.e., hire Uit (ni )−ni type i workers,
if ni > Dit (ni ) fire down to Dit (ni ) workers, and otherwise do not hire or fire type
i workers.

Dixit (1997) and Eberly and van Mieghem (1997) study a dynamic investment
problem where the (continuous) decision in each period is how much to invest or
disinvest in each of multiple resources (labor and capital in the case of Dixit 1997),
and in which there is no turnover of the resources. They show the optimality of the
“Invest/Stay put/Disinvest (ISD)” policy, which invests up to a critical number, or
disinvests (fires) down to a critical number, or makes no changes. We will hence-
forth call the hire-up-to/fire-down-to policy of Theorem 1 the ISD policy. Gans and
Zhou (2002), and Schmidt and Nahmias (2003, preprint) consider staffing models
in which the resources are workers that may leave, and where the number of work-
ers can take on a continuous range of values. Their models also permit learning, or
shifts of workers from one type to another. For Gans and Zhou (2002), only type
1 workers may be hired and none may be fired, and they show the optimality of a
hire-up-to policy for type 1 workers. Schmidt and Nahmias (2003, preprint) show
the optimality of an ISD policy when there is only one type of worker, and in a
special case for two types of workers.

Other research in capacity investment is based on the single-period multi-product
newsvendor model, and ignores issues of turnover. See Fine and Freund (1990),
Shumsky and Zhang (2003, preprint), van Mieghem and Rudi (2002), van Mieg-
hem (1998, 2002, preprint), Harrison and van Mieghem (1999), Netessine et al.
(2002), and the references therein.

The book of Bartholomew et al. (1991) gives an overview of the use of Markov
and deterministic models for managing human resources with learning and turn-
over. Pinker and Shumsky (2000) include experience-based learning, in which the
quality of the work depends on the amount of similar work servers have done before.
This tends to make flexibility look relatively less attractive because workers who
do many different things may not be as good at any particular one. Their model
includes a tenure model in which the retention rate depends on the stage of the
model, which in turn depends on the worker’s tenure. See also Misra et al. (2003,
preprint) for a learning model where the problem is to simultaneously determine
salesforce size and pricing of products sold. Bordoloi and Matsuo (2001) consider
a two-station tandem production model in which new workers work at stage 1,
then they learn to do stage 2 work, and then they are considered flexible and can do
both. Their model assumes flexible workers train stage 1 and stage 2 workers, and
that some workers may leave. They use control theory to determine the number of
new workers to hire.

Pinker and Larson (2003) consider both the strategic problem of hiring reg-
ular workers and contracting part-time workers at the beginning of the planning
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horizon along with the operational problem of scheduling part-time workers over
time depending on regular worker absenses and current workload. See also Berman
and Larson (1994) and Larson and Pinker (2000).

Another approach to staffing problems with heterogeneous workers is based on
queueing models, and much of this work has been in the call center context. Refer
to Mandelbaum (2003) for an excellent annotated research bibliography on call
centers, and see Gans et al. (2003), as well as Koole and Mandelbaum (2002) and
Pinedo et al. (2000), for an overview. Perry and Nilsson (1994) use simple queueing
approximations to study staffing for servers with heterogeneous skill sets. Koole
et al. (2003) consider staffing levels of generalists and specialists assuming overflow
routing and no losses. Using stochastic fluid models, Harrison and Zeevi (2003,
preprint) reduce the staffing problem to a multi-dimensional newsvendor problem.
Borst and Seri (1999) consider heuristics for the combined staffing and routing
problem for skill-based routing, using target delays and service levels in terms of
probability of delay exceeding a certain threshold. The skill matrix and number of
available servers are given. They obtain conditions characterizing the range of rea-
sonable server configurations, and propose two simple credit schemes for assigning
calls to servers.Armony and Maglaris (2003) also consider both staffing and routing
for a queueing model with a single class of customer, so server “skills” correspond
to “speeds” of serving the common customer type. They show that always routing
customers to the fastest available server is asymptotically optimal, and then show
how to determine staffing levels to minimize costs subject to the constraint that
steady-state waiting probabilities cannot exceed a pre-specified level.

We consider discrete-space models, in which the number of workers at any
time, and the number to be hired or fired, and the random number that leave, must
take integer values. This makes the problem much harder than in the continuous
case of Gans and Zhou (2002) and Schmidt and Nahmias (2003, preprint), and we
can obtain only partial results.

Theorem 1 follows from the following facts that for continuously valued n, y,
i.e., n, y ∈ Rm

+.

(1) If f (n) is jointly convex in n, then Ef (N(n)) is jointly convex in n where
Ni(ni) is an independent random fraction of ni .

(2) If f (n, y) is jointly convex in (n, y), then infy∈A f (n, y) is jointly convex in
n where A ⊂ Rm

+ is a convex set.

Property (1) says that continuous joint convexity is preserved under random
fractional transformations; we will call it a preservation property. Property (2) says
that continuous joint convexity propagates, after optimization, from one period to
the next; we will call it a propagation property.We will study various notions of dis-
crete convexity to see what structural results for the optimal policy can be obtained.
A key issue for any notion of discrete convexity is whether it has a preservation
and a propagation property. Of course, for a discrete model the random turnover
transformation cannot be a random fraction. The obvious discrete analogue is a
binomial model, Ni(ni) ∼ Binomial(ni, pi) for some, possibly random, pi , and
we will explore the implications of this model.

We first see what structural results we can obtain for our discrete-space model
without any convexity assumptions. We then study structural, preservation, and
propagation properties of componentwise convexity, supermodularity, multimod-
ularity, and directional convexity. Our work was inspired by the elegant work of
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Altman, Gaujal, and Hordijk (2000) on multimodularity. We initially hoped that we
would be able to develop a discrete analogue of Theorem 1 under the assumption of
multimodular costs, but we were able to obtain only partial results. Indeed, for none
of the notions of discrete convexity we considered were we able to do all three of:
(1) completely characterize the optimal policy for (2) random, binomial, turnover
for (3) a multistage problem. That is, with heterogeneous workers, no definition
of discrete convexity gave us all three of: full characterization, preservation, and
propagation.

We note here that if there were only one type of worker, or if the cost function
were separable (effectively reducing the problem to separate single-worker-type
problems), then a discrete analogue of Theorem 1 would hold. In particular, the
notion of convexity is well-defined and unproblematic, and there is no problem
with its propagation over stages or its preservation under binomial transformations
(see, e.g., Karlin (1968) or the proof of Lemma 10). However, we are interested in
situations where workers are flexible, i.e., some types may partially substitute for
others, so there will be interaction terms in any appropriate cost function.

2 Preliminary results for the discrete-space model

We start by developing a partial characterization of the optimal policy without
convexity assumptions. In this case, we need not worry about preservation or prop-
agation, so to ease the notational burden, we assume a single-period deterministic
model. That is, with the obvious simplifications of our earlier notation,

V (n) = min
d≥−n

[
∑

i

[hid
+
i + fid

−
i ] + C(n + d)

]
.

We first note that when each ni is sufficiently large or small, it is reasonable to
expect that there is a target value, y∗, such that it is optimal to hire/fire to the target.
That is, we are trying to characterize the “corners” of the space, where it will be
optimal to hire or fire for each worker type. Each corner can be characterized by
a subset of worker types, H, where workers types in H will be hired, and those
types in Hc will be fired. More precisely, let S = {1, 2, . . . , n} be the set of worker
types, let H ⊂ S be the set of worker types that potentially will be hired, and let

VH(n) := min
{y:yi≥ni ,i∈H,yi≤ni ,i∈Hc}

WH(y) −
[
∑

i∈H
hini −

∑

i∈Hc

fini

]
,

where

WH(y) :=
∑

i∈H
hiyi −

∑

i∈Hc

fiyi + C(y), y ∈ Zm
+,

is a function independent of n. We assume that for each corner characterized by
H, there exists at least one target (k ≥ 1) defined by y∗

(k)(H) := arg min{WH(y) :
y ∈ Zm

+}, where k indexes the targets in case of multiple targets. A sufficient
(and reasonable) condition for the existence of y∗

(k)(H) for all H is that C(y) has
a finite lower bound, and we will henceforth make this assumption. Note that if
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two minima y∗
(k)(H) and y∗

(l)(H) are such that y∗
(k)i(H) ≥ y∗

(l)i (H)i for all i ∈ H
and y∗

(k)i(H) ≤ y∗
(l)i (H)i for all i ∈ Hc, then we can ignore y∗

(l)(H), and we will
no longer consider y∗

(l)(H) a minimum. Let C(H) = ∪k{n: y∗
(k)i(H) ≥ ni for

i ∈ H and y∗
(k)i(H) ≤ ni for i ∈ Hc} be the “corner” defined by H and y∗

(k)(H),
k = 1, 2, . . . . It is not hard to show that maxk{y∗

(k),i(H)} ≤ mink{y∗
(k),i(H \ i)}

(see Lemma 2 below), so that “corners” for distinct H are non-overlapping. We
can partially characterize the optimal policy as follows. If it is possible to move to
y∗

(k)(H) by hiring workers of types in H and firing those of types in Hc, then it is
optimal to do so. The proof is straightforward and is omitted.

Lemma 1 The optimal policy for all n ∈ C(H) is to hire/fire to one of the target
values y∗

(k)(H), i.e., d∗ = y∗
(k)(H) − n.

So, for example, given a staffing level that minimizes costs if we only hire
workers, y∗

k (S), if we start with fewer workers of each type, ni ≤ y∗
(k)i(S), then it

is optimal to hire up to y∗
k (S).

Let Hi(ni ) := arg minni≥0 C(n)+hini and Fi(ni ) := arg minni≥0 C(n)−fini ,
where ni = (n1, . . . , ni−1, ni+1, . . . , nm). Also, if there are multiple minima, Hk

i

and Fk
i , we choose the largest for Hi and the smallest for Fi .

Lemma 2 maxk Hk
i (ni ) ≤ mink F k

i (ni ).

Proof Fix i and ni and suppose H := maxk Hk
i (ni ) > F := mink F k

i (ni ), and
let (ni , H) = (n1, . . . , ni−1, H, ni+1, . . . , nm) with (ni , F ) similarly defined. By
definition we have C(ni , H) + hH ≤ C(ni , F ) + hF and C(ni , F ) − f F ≤
C(ni , H) − f H , i.e., f (H − F) ≤ C(ni , H) − C(ni , F ) ≤ h(F − H). But this
with H > F gives us 0 < 0, a contradiction.

Note that a global optimum for H, y∗
(k)(H), must occur where the functions Hi ,

i ∈ H, and Fi , i ∈ Hc intersect, because we ignore y∗
(l)(H) if there exists y∗

(k)i(H)
such that y∗

(k)i(H) ≥ y∗
(l)i (H)i for all i ∈ H and y∗

(k)i(H) ≤ y∗
(l)i (H)i for all i ∈ Hc,

and we take the largest for Hi and the smallest for Fi in the case of multiple Hi

and Fi .
Now we can divide the space Zn

+ into a set of interior regions, I = ∪Ik , and
an exterior region, E , where n ∈ I if Hi(ni ) ≤ ni ≤ Fi(ni ) for all i, and n ∈ E
otherwise. Note that C(H)\{y∗

(k)(H)}k ⊂ E for all H. We let B ⊂ I be the set of
boundary points, so n ∈ B if for all i ∈ {1, . . . , m}, Hi(ni ) ≤ ni ≤ Fi(ni ), and
for some j ∈ {1, . . . , m}, nj = Hj(nj ) or nj = Fj (nj ). Since a global opti-
mum for H, y∗

(k)(H), must occur where the functions Hi , i ∈ H, and Fi , i ∈ Hc

intersect, we have y∗
(k)(H) ∈ B for all k and H. Let us further define contiguous

regions of I, Ik , as follows. First define the neighbors of a point n as all the points
that can be reached from n by hiring or firing at most one worker of each type,
(the hyper-cube with n at its center and with length 2 in each dimension), i.e.,
N(n) = {n +∑m

i=1 kiei , ki = −1, 0, 1, i = 1, . . . , m}, where ei is the vector with
1 for its ith component and 0 for all other components. Let Ik form a partition of I
such that if n ∈ Ik , r ∈ N(n), and r ∈ I then r ∈ Ik and if n ∈ Ik either Ik = {n}
or r ∈ Ik for some r ∈ N(n). Let Bk be the corresponding partition of B. See
Figure 1 for a two-dimensional example, where we illustrate continuous functions
F and H for simplicity. The boundaries, B1 and B2 are given by the heavy curves
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Fig. 1 Characterization of the optimal policy

surrounding I1 and I2, and in this example I2 can be ignored because it is a subset
of C(∅).

For our next result we must also assume (as is reasonable in practice) that there
is an upper bound on the number of workers of each type that can be hired. Let
Mi be the upper bound for type i, and let Zm

+,M = {n : 0 ≤ ni ≤ Mi, ni ∈ Z, i =
1, . . . , m}. Then it will never be optimal to hire/fire to a point n ∈ E .

Lemma 3 Suppose the domain of C is Zm
+,M . Then for n ∈ E it is optimal to

hire/fire to some point y ∈ I, and for n ∈ C(H) it is optimal to hire/fire to some
y∗

(k)(H).

Proof Choose any n ∈ E , and suppose ni < Hi(ni ), say. Then we have, by defini-
tion of Hi(ni ), that

C(y) + hi(yi − ni) < C(n),

where y = (n1, . . . , ni−1, Hi(ni ), ni+1, . . . , nm). If y /∈ B but y ∈ C(H) for some
H, we can minimize the cost by moving to y∗

(k)(H) ∈ B, from Lemma 1. Otherwise
we can repeat the argument to find y′ that equals y except for replacing nj with
Hj(nj ) or Fj (nj ) for some j , and so that the cost will be lower to move to y′ rather
than staying at n or y. Continuing to repeat the argument we will finally have a
point ŷ ∈ B such that the cost to hire/fire to ŷ will be less than the cost of staying at
n ∈ E . Note that we never return to a point previously visited because each move
strictly decreases the cost, and Zm

+,M is finite, so the process converges. The idea
is illustrated in Figure 1, where the cost of staying at point A ∈ E is greater than
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the cost of hiring type 1 workers to a point on H1 and then hiring type 2 workers
to a point on B1.

We need the upper bounds Mi when m > 2, because without them hiring an
infinite number of workers may be optimal, even with the assumption of finite target
values y∗(H). Suppose m = 3, H3(n1, n2) = 5 and F3(n1, n2) = 10 for all n1, n2,
H1(n2, n3) = 3n2 for all n3, and H2(n1, n3) = 3n1 for all n3, and we start at the
point (7, 7, 7). Then following the argument in the proof above we will continue
to decrease the cost as we move back and forth from (n1, 3n1, 7) to (3n2, n2, 7)
with ever higher values of n1 and n2.

We can extend the idea of Lemma 1 of having global “target values,” to a
notion of local target values. Suppose that only hiring is permitted, i.e., we restrict
ourselves to H = S. Then the optimal (hiring) policy can be characterized by
a partition of Zm

+,M into subregions R(i) defined by a sequence of target values,
y(i) ∈ Zm

+,M as follows. Let y(0) = y∗(S) := arg min{WS(y) : y ∈ Zm
+} (where, in

the case of mulitple values, one is chosen arbitrarily) and let R(0) = {n : n ≤ y(0)}.
Then let y(i) := arg min{WS(y) : y ∈ Zm

+\ ∪i−1
j=0 R(j)} and R(i) = {n : n ≤ y(i),

n ∈ Zm
+\∪i−1

j=0 R(j)}. This is because given n, the optimal policy depends on n only
through the constraint that y ≥ n. Thus, if y∗ is optimal for n, it is also optimal
for any m such that n ≤ m ≤ y. We say that the optimal policy has a “target-box”
structure.

Lemma 4 If only hiring is permitted, i.e., H = S, then the optimal policy has the
target-box structure defined above.

If firing is permitted as well, we obtain a set of partitions, R(i)

H and correspond-
ing targets y(i)

H for each H, such that the optimal policy starting in state n is to
hire/fire to y(i)

H∗ where y(i)

H∗ is such that WH∗(y(i)

H∗) = minH WH(y(i)

H ).
Lemmas 1 and 3 give us some structure on the optimal policy, but to refine it

we will need to make some sort of convexity assumptions.

3 Notions of discrete convexity

3.1 Component-wise convexity

The simplest notion of discrete convexity is component-wise convexity. A function
on the integers, C(n), is component-wise convex (cwcx) if it is convex in ni for all
ni . In this case we can further characterize the single-stage optimal policy: for points
in the exterior it is optimal to move to a point on the boundary, and for points in some
interior region Ik , it is optimal to do nothing or to move to a point on the boundary
of a different interior region. Let CH(y) = ∑

i∈H hiyi − ∑
i∈Hc fiyi + C(y), so

y∗(H) minimizes CH. Note that if C is cwcx, then so is CH. We have the following
corollary to Lemma 3.

Corollary 1 If C is a component-wise convex function on Zm
+,M, then for n ∈ Ik it

is optimal to do nothing or to hire/fire to a point y ∈ B\Bk , for n ∈ E it is optimal
to hire/fire to some point y ∈ B, and for n ∈ C(H) it is optimal to hire/fire to y∗(H).
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Proof Now choose any k and n ∈ Ik (note that Bk ⊂ I). From the last lemma, it
will not be optimal to move to a point y ∈ E , so first choose some point y ∈ Ik ,
say y ≥ n. (The argument for other y ∈ Ik is similar). Then, letting (ni , y) =
(n1, . . . , ni, yi+1, . . . , ym), the cost to move from n to y will be

� := C(y) − C(n) +
m∑

i=1

hi(yi − ni)

= C(y) − C(n1, y) + h1(y1 − n1) + C(n1, y) − C(n2, y) + h2(y2 − n2)

+ · · · + C(nm−1, y) − C(n) + hm(ym − nm) =:
m∑

i=1

�i ≥ 0.

The last inequality follows because, for all i, Hi((ni , y)i) ≤ ni ≤ yi , so �i ≥ 0
from the convexity of C in direction i. Therefore, from any point in Ik , it is not
optimal to move to another point in Ik . Now choose some point y ∈ I\Ik , say
y ≥ n. (Again the argument for other y ∈ I\Ik is similar). Let y′ be a point such
that y ≥ y′≥ n and y′ ∈ Bk . An argument similar to the one above shows that from
n it will cost less to move to y′ than to move to y. The rest of the result follows
from Lemma 3.

We can extend Lemma 4, using the idea of the proof of Corollary 1, to further
characterize the structure of the optimal hiring policy, when firing is not permitted
for any worker type.

Lemma 5 If only hiring is permitted, i.e., H = S, and C is component-wise con-
vex, then the optimal policy has the target-box structure of Lemma 4 for n such that
ni < Hi(ni ) for at least one i. For all other n, the optimal policy is to do nothing.

We now consider whether component-wise convexity propagates and is pre-
served under binomial transformations.

We say that a family of random vectors {N(n) = (N1(n), . . . , Nn(n)), n ∈
Zm} is stochastically component-wise convex, {N(n), n ∈ Zm} ∈ SCWCX, if
Ef (N(n)) is cwcx for any cwcx function f . We say that it is stochastically cwcx
in the sample path sense, {N(n), n ∈ Zm} ∈ SCWCX(sp), if for any n ∈ Zm, for
any i = 1, . . . , m, and for any cwcx function f we can construct N1, N2, N3, N4,
on a common probability space such that

N1 =st N(n), N2 =st N(n + ei ), N3 =st N(n + ei ), N4 =st N(n + 2ei ),

and such that, with probability 1,

f (N1) − f (N2) ≥ f (N3) − f (N4).

Of course {N(n), n ∈ Zm} ∈ SCWCX(sp) 
⇒ {N(n), n ∈ Zm} ∈ SCWCX.
Let Bi(n), i = 1, . . . , m be binomially distributed random variables with

parameters ni and pi for some pi , and let B(n) = (B1(n), . . . , Bn(n)).
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Lemma 6 {B(n), n ∈ Zm} ∈ SCWCX(sp).

Proof Fix i. Given n ∈ Zm, first generate N1 =st B(n). With probability p2
i let

N2 = N3 = N1 + ei and N4 = N1 + 2ei ,
with probability (1 − pi)

2 let N2 = N3 = N4 = N1,
with probability pi(1 − pi) let N2 = N1, and N3 = N4 = N1 + ei ,
and with probability pi(1 − pi) let N3 = N1, and N2 = N4 = N1 + ei . The

result follows.

Note that the lemma also holds for random, not necessarily independent pi’s.
The following example shows that component-wise convexity is not propagated in
the dynamic programming recursion, and a local minimum need not be a global
minimum.

Example 1 Consider the cwcx function: f (n1, n2) = 2 −n1 −n2 +n1n2, n ∈ Z2
+.

There are local minima at (0,2) and (2,0) of value 0, and a local minimum at (1,1)
of value 1. Also g(n1) = minn2 f (n1, n2) takes on the values 0, 1, and 0 for n1 = 0,
1, and 2 respectively, so is not convex. Thus the structure of Corollary 1 holds only
for a single stage problem with random turnover.

We will next consider a class of discrete functions that has the preservation and
propagation properties, and allows us to further characterize the optimal policy,
though it still does not guarantee that an ISD policy is optimal.

3.2 Supermodularity

We say that C is supermodular (submodular) if C(n + ei ) − C(n) is increasing
(decreasing) in ni , for all i. A supermodular cost function indicates that workers
of different training levels are substitutes, i.e., the advantage of additional workers
of one type is decreasing in the number of workers of other types (so the cost
is increasing). This may the case, for example, when workers with more training
may be able to replace workers with less training. Alternatively, worker types may
be complements, e.g., when they work together, in which case a submodular cost
function is appropriate.

Lemma 7 If C is supermodular (submodular) then Hi(ni ) and Fi(ni ) are decreas-
ing (increasing).

Proof We show the result for supermodular functions; the submodular case is sim-
ilar. Pick some point ni for some i, and let

ni = Hi(ni ) := arg min
ni

(C(n) + hini).

Then C(n + kei) − C(n) ≥ 0 for all k > 0, and from supermodularity, C(n +
kei + ej ) − C(n + ej ) ≥ 0, so Hi(n + ej ) ≤ Hi(n).

We can show that for our model, supermodularity is propagated in the mul-
tistage problem when only hiring is permitted, so the optimal policy has the tar-
get-box structure of Lemma 4, and when we have only m = 2 worker types. Let
Ĉ(y1, y2) = C(y1, y2) + h1y1 + h2y2. We want to show that Vt is supermodular
given that C and Vt+1 are supermodular, where Vt(n) = miny≥n{Ĉ(y) − h1n1 −
h2n2 +Vt+1(y)} = miny≥n{Ĉ(y)+Vt+1(y)}−h1n1 −h2n2. First note that it is easy
to show that Ĉ + Vt+1 is supermodular given that C and Vt+1 are supermodular.
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Lemma 8 If f (y) : = Ĉ(y) + Vt+1(y) is supermodular, then

g(n) := min
y≥n

f (y)

is supermodular.

Proof We need to show that for four points, ni , i = 1, 2, 3, 4, such that n2 =
n1 + k1e1, n3 = n1 + k2e2, n4 = n1 + k1e1 + k2e2, we have f (y1) + f (y4) ≥
f (y2) + f (y3), where yi = arg miny≥ni

f (y). We consider the following cases:
(1) y1 ≥ n4: In this case, because of the target-box structure of the optimal pol-

icy (Lemma 4), we must have that ni , i = 1, 2, 3, 4, are all in the same subregion,
and have the same target: y1 = y2 = y3 = y4, so f (y1) + f (y4) ≥ f (y2) + f (y3)
trivially.

(2) y1 ≥ n3 but y1 is not greater than or equal to n4: then y1 = y3, so f (y1) =
f (y3), and f (y4) ≥ f (y3) and f (y4) ≥ f (y2), so f (y1)+f (y4) ≥ f (y2)+f (y3).

(3) y1 ≥ n2 but y1 is not greater than or equal to n4: same argument as case (2).
(4) n1 ≤ y1 ≤ n4: Let ŷ2 = (y41, y12) and let ŷ3 = (y11, y42), where yi =

(yi1, yi2), i = 1, 4. Then f (y1) + f (y4) ≥ f (ŷ2) + f (ŷ3), and f (ŷi ) ≥ f (yi ),
i = 2, 3.

Furthermore, supermodularity is preserved under state transformation due to
binomial turnover. We say that a family of random vectors {N(n) = (N1(n),
. . . , Nn(n)), n ∈ Zm} is stochastically supermodular, {N(n), n ∈ Zm} ∈ SSM , if
Ef (N(n)) is supermodular for any supermodular function f . We say that it is sto-
chastically supermodular in the sample path sense, {N(n), n ∈ Zm} ∈ SSM(sp),
if for any n ∈ Zm, for any i = 1, . . . , m , and for any supermodular function f
we can construct N1, N2, N3, N4, on a common probability space such that

N1 =st N(n), N2 =st N(n + ei ), N3 =st N(n + ej ), N
2
4 =st N(n + ei+ej ),

and such that, with probability 1,

f (N1) − f (N2) ≥ f (N3) − f (N4).

Of course {N(n), n ∈ Zm} ∈ SSM(sp) 
⇒ {N(n), n ∈ Zm} ∈ SSM . The proof
of the following is similar to that of Lemma 6.

Lemma 9 {B(n), n ∈ Zm} ∈ SSM(sp).

While supermodularity provides a refinement of the policy structure close to
that of “hire-up-to/fire-down-to,” further refinement can be achieved if additional
convexity properties are satisfied.

3.3 Directional convexity

We say that C is directionally convex (dcx) if C is cwcx and supermodular, and
from our earlier results, we can get some structure on the optimal policy, though not
a simple ISD structure. Assuming we have only m = 2 types of workers and only
hiring is permitted, from Lemmas 5 and 7, we can construct the optimal policy with
the following algorithm. It successively characterizes target-boxes and unknown
boxes. Here each box is characterized by two points, x and y, such that n is in the
box if x(i) < n ≤ y(i), and the optimal policy for such n is to hire-up-to y(i).
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1. Set i = 0 and let the first unknown box be U(0) = Z2
+,M, and let u(0)

1a = u
(0)
2a = 0,

u
(0)
1b = u

(0)
2b = M , so U(0) = {(n1, n2) : u

(0)
1a ≤ n1 ≤ u

(0)
1b , u

(0)
2a ≤ n2 ≤ u

(0)
2b }.

2. For n1 = u
(i)
1a , . . . , u

(i)
1b find H

(i)
2 (n1) = arg min

n2=u
(i)
2a ,... ,u

(i)
2b

Ĉ(n1, n2).

3. Find y
(i)
1 = arg min

n1=u
(i)
1a ,... ,u

(i)
1b

Ĉ(n1, H
(i)
2 (n1)), and let y

(i)
2 = H

(i)
2 (y

(i)
1 ). Thus,

y(i) is the global minimum for U(i), and the optimal policy for u(i)
a ≤ n ≤ y(i) is

to hire-up-to y(i) (this is a target-box) and the optimal policy for y(i) ≤ n ≤ u(i)
b

is to do nothing.
4. Let u

(i+1)
1a = u

(i)
1a , u

(i+1)
1b = y

(i)
1 , u

(i+1)
2a = y

(i)
2 + 1, u

(i+1)
2b = u

(i)
2b , U(i+1) =

{(n1, n2) : u
(i+1)
1a ≤ n1 ≤ u

(i+1)
1b , u

(i+1)
2a ≤ n2 ≤ u

(i+1)
2b }.

5. Set i to i + 1 and repeat 2–4 until U(i) = ∅.

4′. Let u
(i+1′)
1a = y

(i)
1a + 1, u

(i+1′)
1b = u

(i)
1b , u

(i+1′)
2a = u

(i)
2a , u

(i+1′)
2b = y

(i)
2 , U(i+1′) =

{(n1, n2) : u
(i+1′)
1a ≤ n1 ≤ u

(i+1′)
1b , u

(i+1′)
2a ≤ n2 ≤ u

(i+1′)
2b }.

5′. Set i to i + 1′ and repeat 2, 3, and 4′ until U(i) = ∅.

Consider the following example of a dcx function.

Ĉ(n) = 15 + 0.9n1 + 1.3n2 − min{13, 2n1 + 3n2}.

The optimal policy is shown below, where we give the values of Ĉ for 0 ≤ ni ≤ 7,
with the values of n1 given along the bottom, and the values of n2 along the
left side. Target values are indicated with bold script, and lines indicate target-
boxes. Thus, the target-boxes are U(0) = {n : 0 ≤ n1 ≤ 2, 0 ≤ n2 ≤ 3},
U(1) = {n : 0 ≤ n1 ≤ 2, n2 = 4}, U(1′) = {n : 3 ≤ n1 ≤ 5, 0 ≤ n2 ≤ 1}, and
U(2′) = {n : 6 ≤ n1 ≤ 7, n2 = 0}. Above the target-boxes it is optimal to do
nothing.

7 11.1 12.0 12.9 13.8 14.7 15.6 16.5 17.4
6 9.8 10.7 11.6 12.5 13.4 14.3 15.2 16.1
5 8.5 9.4 10.3 11.2 12.1 13.0 13.9 14.8
4 8.2 8.1 9.0 9.9 10.8 11.7 12.6 13.5
3 9.9 8.8 7.7 8.6 9.5 10.4 11.3 12.2
2 11.6 10.5 9.4 8.3 8.2 9.1 10.0 10.9
1 13.3 12.2 11.1 10.0 8.9 7.8 8.7 9.6
0 15.0 13.9 12.8 11.7 10.6 9.5 8.4 8.3

0 1 2 3 4 5 6 7

Let us compare the optimal policy for this example with what it would be if
we were permitted to hire fractional workers. In that case, the global minimum is
at (0, 4.33), so, if we start with no workers, the optimal policy is to hire no type 1
workers and 4.33 type 2 workers (vs. hiring 2 type 1 workers and 3 type 2 workers
in the discrete case). If we start with 0 type 1 workers and 4 type 2 workers, then
in the continous case the optimal policy is to hire no type 1 workers and 0.33 type
2 workers (vs. hiring 1 type 1 worker and 0 type 2 workers in the discrete case).

Though directional convexity is preserved under binomial turnover from Lem-
mas 6 and 9, it is not propagated. Indeed, the cwcx function of Example 1 is also
supermodular, and hence is dcx, and it does not satisfy the propagation property.
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3.4 Multimodularity

Multimodularity strengthens the notion of directional convexity, because multi-
modular functions are cwcx and supermodular. We will see that it gives us a full
characterization of the optimal policy as an ISD policy for deterministic costs, and
it satisfies the propagation property. Unfortunately, it does not satisfy the binomial
preservation property.

We suppose there are m = 2 types of workers. A function f (n) for n ∈ Z2

is multimodular if the following three inequalities hold, where the first two cor-
respond to a type of midpoint convexity, and the third is supermodularity. For all
n, m ∈ Zm,

f (n+2e1) + f (n + e2) ≥ f (n + e1) + f (n + e1 + e2) (1)

f (n+2e2) + f (n + e1) ≥ f (n + e2) + f (n + e1 + e2) (2)

f (n) + f (n + e1 + e2) ≥ f (n + e1) + f (n + e2) . (3)

See Hajek (1985) and Altman et al. (2000).
A local optimum is a global optimum for multimodular functions where a local

optimum is defined as follows. We say n∗ is a local multimodular optimum if,
f (n∗) ≤ f (n∗ +ei ); f (n∗) ≤ f (n∗ −ei ), i = 1, 2, and f (n∗) ≤ f (n∗ +e1 −e2).
If f is multimodular and n∗ is a local optimum, then it is a global optimum, i.e.,
f (n∗) ≤ f (m) for all m ∈ Z2. Note that the condition for local optimum is
stronger than that claimed in Altman et al. (2000). The requirement of the stronger
condition was recently shown by Murota (2004).

For multimodular functions, even in higher dimensions than two, the optimal
policy has the ISD structure. This can be shown from Theorem 1 and the fact
that the piecewise affine interpolation of a multimodular function is jointly convex
(Altman et al. 2000). See also Narongwanich et al. (2003, preprint).

Theorem 2 If C is multimodular then the optimal policy has the following hire-
up-to/fire-down-to structure. For each i there exist two functions Ui(xi ) ≤ Di(xi ),
such that for a given starting state x, for each i, if xi < Ui(xi ) hire up to Ui(xi ) type
i workers, i.e., hire Ui(xi )–xi type i workers, if xi > Di(xi ) fire down to Di(xi )
workers, and otherwise do not hire or fire type i workers.

Moreover, multimodular functions propagate under the dynamic programming
recursion. That is, when f is multimodular, so is g where g(n) = minm f (m, n)
(Narongwanich et al. 2003).

We say that a family of random vectors {N(n) = (N1(n), . . . , Nn(n)), n ∈ Zm}
is stochastically multimodular, {N(n), n ∈ Zm} ∈ SMM, if Ef (N(n)) is multi-
modular for any multimodular function f . We say that it is stochastically multi-
modular in the sample path sense, {N(n), n ∈ Z2} ∈ SMM(sp), if for any n ∈ Z2

and for j = 1, 2, 3 [corresponding to inequalities (1)–(3)] and for any multimodu-
lar function f we can construct N

j

1 , N
j

2 , N
j

3 , N
j

4 , on a common probability space
such that

N1
1 = stN(n + e2), N

1
2 =st N(n + e1),

N1
3 = stN(n + e1 + e2), N

1
4 =st N(n + 2e1),

N2
1 = stN(n + e1), N

2
2 =st N(n + e2),
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N2
3 = stN(n + e1 + e2), N

2
4 =st N(n + 2e2),

N2
1 = stN(n), N2

2 =st N(n + e1),

N2
3 = stN(n + e2), N

2
4 =st N(n + e1 + e2),

and such that, for j = 1, 2, 3, with probability 1,

f (N
j

1 ) + f (N
j

4 ) ≥ f (N
j

2 ) + f (N
j

3 ).

Of course {N(n), n ∈ Z2} ∈ SMM(sp) 
⇒ {N(n), n ∈ Z2} ∈ SMM.
We will show below that multimodularity is not preserved in general for bino-

mial transformations, but first we show that a special case of a binomial random
variable does indeed preserve multimodularity, in the strong, sample path, sense.

Let Bi(n), i = 1, 2 be independent binomially distributed random variables
with parameters ni and pi for some pi , and let B(n) = (B1(n), B2(n)).

Lemma 10 If p1 = p2 =: p, {B(n), n ∈ Z2} ∈ SMM(sp).

Proof We show the result for the first inequality, N1
i ; the arguments for the other

two are similar. Given n ∈ Z2, first generate N1
0 =st B(n). With probability p2 let

N1
1 = N1

0 + e2, N
1
2 = N1

0 + e1, N
1
3 = N1

0 + e1 + e2, N
1
4 = N1

0 + 2e1,

with probability (1 − p)2 let N1
1 = N1

2 = N1
3 = N1

4 = N1
0 ,

with probability p(1 − p) let N1
1 = N1

2 = N1
0 , N1

3 = N1
4 = N1

0 + e1,
and with probability p(1 − p) let N1

1 = N1
3 = N1

0 + e2, N
1
2 = N1

4 = N1
0 + e2.

Then N1
1 , N1

2 , N1
3 , N1

4 have the appropriate marginal distributions, and inequal-
ity (1)–(3) holds for f multimodular.

Of course the same proof shows that even for p a random variable, {B(n), n ∈
Z2} ∈ SMM(sp) (by conditioning on p). The following result shows that the
assumption of identical departure rates for different worker types cannot be relaxed
for stochastic multimodularity to be preserved.

Proposition 1 {B(n), n ∈ Z2} /∈ SMM in general.

Proof For {B(n), n ∈ Z2} ∈ SMM we need, from inequality (1),

�1 := Ef (B(n + e2)) + Ef (B(n + 2e1))

− [Ef (B(n + e1)) + Ef (B(n + e1 + e2))] ≥ 0.

We have

�1 = p2Ef (B(n) + e2) + (1 − p2)Ef (B(n)) + p2
1Ef (B(n) + 2e1)

+2p1(1 − p1)Ef (B(n) + e1) + (1 − p1)
2Ef (B(n))

−[p1Ef (B(n) + e1) + (1 − p1)Ef (B(n)) + p1p2Ef (B(n) + e1 + e2)

+p1(1 − p2)Ef (B(n) + e1) + p2(1 − p1)Ef (B(n) + e2)

+(1 − p1)(1 − p2)Ef (B(n))]

= p1{(p1 − p2) [Ef (B(n) + 2e1) − 2Ef (B(n) + e1) + Ef (B(n))]

+p2[Ef (B(n) + e2) + Ef (B(n) + 2e1) − Ef (B(n) + e1)

−Ef (B(n) + e1 + e2)]}
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The second term is positive from inequality (1), and if p1 ≥ p2 the first term is
positive because multimodular functions are componentwise convex. On the other
hand, if we compute �2 for inequality (2), we will need p2 ≥ p1 for the corre-
sponding first term to be positive. Thus, we can construct an example so that one
of them is negative for appropriately chosen f , p1, and p2. For example, consider
f (n, m) = n2 + m2 + 2mn, which is a multimodular function. Then �1 ≥ 0 iff
p1 ≥ p2, but �2 ≥ 0 iff p1 ≤ p2.

We mention here another stochastic model that preserves multimodularity. In
this case, all of the workers of a given type leave with some (possibly random) prob-
ability. This is basically the stochastic assumption for the model of Narongwanich
et al. (2003, preprint) in which (all of the) capacity of a given type can become
obsolete. The proof is similar to that of Lemma 10.

Lemma 11 Suppose Ni(n) = ni with some, possibly random, probability pi and
0 with probability 1 − pi , where the Ni’s are not necessarily independent. Then
{N(n), n ∈ Z2} ∈ SMM(sp).

Summarizing our strongest results for multimdodular cost functions, we have
the following

Theorem 3 Suppose that for our original, multistage model, Ct(y1, y2, θ) is mul-
timodular in y for all θ . Also suppose that Nit (yit , θt ), i = 1, 2, are independent
binomial random variables with parameters yit and θt (for all i), or Nit (yit , θt ),
i = 1, 2 are all-or-nothing random variables as defined in Lemma 11 with param-
eters yit and θit . Then the optimal policy is an ISD policy.

Theorem 4 Suppose that for a single-stage model, C(y1, y2, θ) is multimodular
in y for all θ . Also suppose that Nit (yit , θt ) are independent binomial random
variables with parameters yit and θit . Then the optimal policy is an ISD policy.
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