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In this paper, we consider a multiple-stage tandem production/inventory system producing a single product. Processing time at each
stage is assumed to have a general stationary processing time distribution. The cost of holding work-in-process (WIP) inventory is
di�erent at each stage. Therefore, decisions on when to release work to the system as well as when to transfer WIP from one stage to
another need to be made. We formulate this problem of release/production control as a Markov decision process. However, the
optimal policy is rather complex, making its implementation impracticable in practice. We therefore investigate the performance of
simple base stock policies. Our approach aggregates several stages into one and uses a simple approximation to compute `ap-
proximately optimal' base stock levels. We present the results of a simulation study that tests the performance of our approximation
in estimating the best base stock levels, and the performance of base stock policies as compared with the optimal policy.

1. Introduction

Recently, considerable attention has been devoted to
developing e�ective control mechanisms for production/
inventory systems. Driven in part by the success of Jap-
anese `pull production systems', researchers have focused
on the analysis of mechanisms that dictate when work
will be released to a production system, as well as the
conditions under which work can be transferred from one
stage to another in the production process.
Most research so far has focused on the performance

evaluation of speci®c policies. The performance of the
kanban control mechanism has been studied for tandem
make-to-order systems (see [1,2]), tandem make-to-stock
systems [3], as well as for assembly systems [4]. Chang and
Yih [5,6] develop a generic kanban system for dynamic
environments. Askin et al. [7] and Mitsawi and Askin [8]
address the problem of determining the number of kan-
bans in multi-item just-in-time systems and develop
e�ective production planning policies for a multi-item,
single-stage kanban system. Research on the performance
of the CONWIP release mechanism [9] has resulted in
approximations for the throughput of tandem systems
[10], and the variance of the output process [11]. Duenyas
and Hopp [12] and Duenyas [13] have also derived
approximations for the throughput of assembly systems
under the CONWIP release mechanism. Buzacott et al.
[14], Buzacott and Shanthikumar [15] and Lee and Zipkin
[16] have developed approximations for the performance
of base-stock policies and compare their approximations

with simulation for systems with two and three machines.
Rubio and Wein [17] extended the CONWIP system to
the make-to-stock case. Under their policy, a new unit of
product is released to the shop ¯oor whenever the total
WIP plus ®nished goods inventory (where backordered
demand represents negative inventory) falls below a
speci®ed base stock level. They show how the optimal
inventory level can be analytically computed, under
product-form assumptions. Uzsoy et al. [18] provide a
detailed survey of release control mechanisms in the
context of the semiconductor industry.
The performance of di�erent control rules has very

rarely been compared. Muckstadt and Tayur [2] and
Duenyas and Keblis [4] compare the performance of
kanban and CONWIP. The purpose of the comparisons
is to ®nd out which policy achieves a target throughput
level with the minimum possible WIP (equivalently,
which policy achieves a higher throughput for a given
WIP level). This objective implicitly assumes that WIP
costs are the same at each stage of production. However,
in a manufacturing system with many stages of produc-
tion, the cost of holding a unit of WIP is not likely to be
the same throughout the production process. This is
because value is added to the product at each stage of the
production process in the form of labor hours spent
processing the product, and materials used at the di�erent
stages. Even though the value added at any one individ-
ual machine may be small, the di�erence between the
value of a unit of WIP at the last stage of production and
at the ®rst stage of production is signi®cant in most
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manufacturing systems. In some cases, production of a
product requires work at several di�erent plants and a
signi®cant part of the value added is the transportation
costs of transferring the parts from one plant to another.
A modelling approach that penalizes holding inventory
more severely at each stage of production is required to
handle such situations. Clearly, it is not necessary to
compute the value added after each minor operation of
the production process. This would be unnecessarily
complex, especially in an environment with thousands of
operations, and computing the optimal parameters for
any policy for a system modelled in such detail is unlikely
to be tractable. Therefore, we consider an approach that
models several stages, each of which consists of multiple
operations with a distinct cost of inventory for each stage.
This cost can be taken to be the average cost of inventory
at that stage. This modelling approach enables us to ®nd
approximately optimal base stock levels for large systems
consisting of many machines very rapidly.
In a recent paper, Veatch and Wein [19] considered the

optimal control of a two-stage make-to-stock system
where each stage consists of a single exponential machine.
They derived su�cient conditions under which it would
be optimal to hold no ®nished goods or WIP inventory.
They also used simulation to compare the performance of
base stock, kanban, and ®xed bu�er policies against the
optimal policy computed by using dynamic program-
ming. In their simulation experiments, the base-stock
policy performed very well except when the upstream
machine is slow. The base-stock policy that they analyze
releases a new job to the ®rst machine in the system im-
mediately whenever a ®nished good is demanded. As they
explain, this results in unnecessary stockpiling of WIP
when there are many backorders. To prevent this phe-
nomenon from occurring in this paper, we focus on a
base-stock policy with a limit on the WIP on the shop
¯oor. This is motivated by the observation that if a sys-
tem has enough WIP to keep the bottleneck starvation
probability low, the extra bene®ts of any additional WIP
will be marginal. Therefore, if there is already su�cient
WIP on the shop ¯oor, our policy (unlike those analyzed
in [16] or [19]) does not automatically release another unit

of WIP to the shop ¯oor every time a ®nished good is
demanded.
In this paper we provide a simple approximate analysis

of the base-stock policy for single product multiple stage
make-to-stock systems with a limit on the WIP on the
shop ¯oor. We also conduct a simulation study that
con®rms that Veatch and Wein's observations [19] on the
e�ectiveness of base-stock policies extend to systems
larger than the two-machine systems they considered.
Furthermore, we ®nd that our simple approximation
performs very well in estimating the parameters of the
best base-stock policy. The rest of this paper is organized
as follows. In Section 2 we formulate the optimal control
problem as a Markov decision process (MDP), and
present details of our proposed base-stock policy. In
Section 3 we present a simple approximation method for
computing the parameters of the optimal base stock
policy. In Section 4 we conduct a simulation study to test
how well the proposed base-stock policy works compared
with the optimal policy and to test the accuracy of the
approximation method developed in Section 3 to estimate
the parameters of the optimal base-stock policy. The
paper concludes in Section 5.

2. Problem formulation

We consider an N-stage tandem manufacturing system
that produces a single product as shown in Fig. 1. There
are mk machines in series in stage k, and the lth machine
in stage k has a mean processing time of tk;l (and pro-
cessing rate lk;l � 1=tk;l), and standard deviation of rk;l.
Each unit of inventory held in stage k for a unit of time
incurs a holding cost hk. Raw material is assumed to be
available at all times for the ®rst machine in stage 1, and
the cost of holding the raw material in front of machine 1
is set to be zero because no value has been added to the
material at that point [20]. When a unit's processing is
®nished at the last machine in stage N , it is transferred to
®nished goods inventory. Each unit of ®nished goods
inventory incurs a holding cost of hN�1 per unit time.
Demand is assumed to have a Poisson distribution with

Fig. 1. Tandem production/inventory system.
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rate lD per unit time. All un®lled demand is backordered
and the backordering cost is p per unit time. The objec-
tive is to meet the demand with the minimum expected
cost per unit time.
In the special case where each stage consists of a single

exponential machine, the optimal control problem can be
formulated as an MDP [19]. In this case, the state of the
system can be represented by an N-vector x. The kth
entry (k � 1; . . . ; n) of x represents the amount of WIP in
front of the machine at stage k, whereas xN is the di�er-
ence between the amount of ®nished goods inventory
(FGI) in the system and the quantity of backorders. (We
will refer to xN as `net FGI' and to x�N � maxf0; xNg as
`actual FGI'). We use uniformization and let K �PN

k� 1 lk � lD and ek denote a unit vector along the kth
axis. We can then write the MDP optimality equation as

g� V �x� � 1

K
c�x� � lDV �xÿ eN �
"
�l1 minfV �x�; V �x� e1�g

�
XN

k� 2
lk minfV �x�; V �x� ek ÿ ekÿ1�g

#
; �1�

where c�x� �PNÿ1
k� 1 hkxk � hN x�N ÿ p xÿN , xÿ � minf0; xg,

V �x� denotes the relative cost of being in state x and
following the optimal policy, and g denotes the average
cost per transition (where transitions occur with rate K)
so that gK gives the optimal average cost per unit time.
Although a similar formulation is possible for the case

where each stage has multiple machines in series, the
dynamic programming formulation quickly su�ers from
the curse-of-dimensionality as the number of machines
per stage or the number of stages is increased. Further-
more, even for very few stages or machines per stage, the
optimal solution has a rather complex structure that
makes its implementation very di�cult in practice. We
therefore focus on simpler base-stock policies.
Our proposed base-stock policy requires only the

speci®cation of N � 1 nonnegative target inventory (base
stock) levels T1 through TN�1, for implementation. Tk
denotes the target sum of inventory in stages k through
N � 1. Similarly, TN�1 denotes the target ®nished goods
inventory level. For example, if x�N�1 < TN�1, this implies
that the ®nished goods inventory level is below target and
more ®nished goods inventory is needed. Therefore, the
machines in stage N will keep producing until the ®nished
goods inventory reaches the target level. Similarly, ifPN

j� k xj � x�N�1 < Tk this implies that the total inventory
downstream from stage k (including stage k) is not su�-
cient and machines in stage k ÿ 1 will keep producing
until the level of inventory downstream reaches the target
level. Finally, if

PN
j� 1 xj � x�N�1 < T1, this implies that the

total amount of inventory in the system is less than the
target level and that a new unit of raw material inventory

can be released to stage 1. This also implies that the
maximum level of inventory in the system is T1. (We note
that this de®nition of base-stock target levels is slightly
di�erent from those in [19] or [14]. Their conditions are of
the form

PN
j� k xj � xN�1 < Tk. Our conditions on the

level of actual inventory in the system provide a way to
limit the total amount of inventory on the shop ¯oor.)
We note that the speci®c case of the above-described

base-stock policy, where Tk � T 8 k � 1; . . . ;N � 1, cor-
responds to the make-to-stock version of the CONWIP
policy. This policy keeps the total actual inventory in the
system constant at all times by releasing a new unit of raw
material to the shop ¯oor whenever the total WIP plus
actual ®nished goods inventory in the system falls below
T . This job is then pushed through the system. Rubio and
Wein [17] propose a version of this policy where the total
WIP plus net FGI is kept constant and show that the
performance of this policy is easily analyzable under
product-form assumptions.
Clearly, to implement the base-stock policy we describe

above, the `optimal' target inventory levels need to be
computed. For large systems with many machines per
stage, computing the optimal target levels become very
di�cult. We therefore next present a simple approxima-
tion for computing `approximately optimal' target levels.
We then test the performance of the approximation as well
as the adequacy of using the proposed base-stock policy.

3. Approximating the base-stock levels

In this section we describe how we approximate the `op-
timal' target inventory levels. We ®rst describe the ap-
proximation for a one-stage system and then show how it
can be generalized to the N-stage case.

3.1. Single-stage case

To compute the optimal target inventory levels, we need
to be able to compute the cost for any particular choice of
target levels. For example, in a single-stage system, in
order to set T �1 and T �2 , the optimal target levels, we need
to be able to compute average WIP, FGI and backorder
cost per unit time for any choice of target levels T1 and T2.
Our approach estimates this cost by approximating each
stage by a single equivalent machine.
Consider a single stage system with m1 machines.

Clearly, as long as the last machine has WIP to process,
FGI can be produced at the rate of the last machine l1;m1

.
Therefore, as long as the ®nished goods inventory is be-
low T2, the last machine in the system will be converting
WIP into FGI if it is not starved of WIP. We approxi-
mate the rate with which the rest of the machines in the
system provide WIP to the last machine by replacing the
rest of the machines in the system by a single machine.
That is, we replace machines �1; 1� through �1;m1 ÿ 1� by
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a single machine. We then have a simpler two-machine
system to analyze. The ®rst machine in this simpler sys-
tem replaces all machines except the last one in the
original system, and the second machine is the same as
the last machine in the original system. We let l̂1 denote
the output rate from the ®rst machine to the second
machine in this simpler system, and l̂2 denote the output
rate from the second machine to ®nished goods inven-
tory. In our approximation, these rates are functions of
the inventory levels at the two machines. Let i denote the
net ®nished goods inventory at a given point in time, and
j denote the amount of inventory in front of the second
machine in this simpli®ed system. Clearly, because the
second machine is exactly equivalent to the last machine
in the original system, we have

l̂2�i; j� � l1;m1
for j > 0 and i < T2;

0 otherwise.

n
�2�

Equation (2) states the obvious fact that the last machine
in the original system will produce parts unless (1) it is
starved or (2) the FGI level is equal to the target level. To
derive a similar expression for the output rate of the ®rst
machine in the simpli®ed system, we ®rst note that in the
original system, when the level of net ®nished goods
inventory is negative (i.e., there are backorders) the sys-
tem behaves like a closed queueing network with T1 jobs.
In this case, whenever the last machine ®nishes another
job, a new job is released to the ®rst machine. What we
would like to approximate is the rate with which WIP
arrives at the last machine in the original system. Clearly,
this depends on the number of jobs at the ®rst m1 ÿ 1
machines. For example, if these machines have no WIP at
all, the arrival rate of jobs to the last machine is zero. As
the amount of WIP in the ®rst m1 ÿ 1 machines increases,
the arrival rate of WIP at the last machine will approach
the rate of the slowest machine among the ®rst m1 ÿ 1
machines. We also note that owing to the base-stock
policy being used, when the net ®nished goods inventory
(actual ®nished goods ) backorders) is i, and the number
of jobs at the last machine is j, the number of jobs in the
remainder of the system (i.e., at the ®rst m1 ÿ 1 machines)
is T1 ÿ i� ÿ j. Combining these observations that the
original system behaves like a closed queueing network
(at least when i < 0) and that the arrival rate of jobs to
the last machine is a function of the number of jobs in the
®rst m1 ÿ 1 machines, our simpli®ed system replaces the
®rst m1 ÿ 1 machines with a single machine with rate

l̂1�i; j� � T H�T1 ÿ i� ÿ j�; �3�
where T H�T1 ÿ i� ÿ j� is the throughput of the closed
queueing network consisting of the ®rst m1 ÿ 1 machines
with T1 ÿ i� ÿ j jobs. We note that when the processing
times are assumed to have exponential distributions, this
throughput can be computed exactly, using mean value
analysis. When the processing times are nonexponential,
we use an approximation due to Shanthikumar and

Gocmen [21] for approximating the throughput of a
closed queueing network with nonexponential machines.
Once we have replaced the original system with a

simpler two-station system with rates l̂1�i; j� and l̂2�i; j�,
we make a further approximation by approximating the
processing time distributions at these two stations by an
exponential distribution. This simpli®es the analysis and,
as we show in the next section, the computational results
indicate that for highly or moderately variable systems
(e.g., processing times with exponential, Erlang-2 or even
Erlang-4 distributions), the approximations work very
well. For less variable systems, the approach outlined
below will tend to overestimate the optimal threshold
levels. Hence, in that case, the results can be used as a
starting point for a more detailed simulation study.
We let p�i; j� denote the long-run probability of the

simpli®ed two-station system having i units of ®nished
goods inventory, and j units of WIP at the second station.
Then these probabilities can be easily computed by
solving the following system of state equations:

p�i; j��lD � l̂2�i; j� � l̂1�i; j��
� p�i� 1; j��lD� � p�iÿ 1; j� 1�l̂2�iÿ 1; j�1�
� p�i; jÿ 1�l̂1�i; jÿ 1�: �4�

Once the solution to (4) is obtained, the cost of using
target inventory levels T1 and T2 can be easily computed
as

C�T1; T2� �
X

�i� T2;i��j� T1�
p�i; j��h2i� ÿ piÿ � h1j�: �5�

Although (4) represents a system of in®nite number of
equations (because i can take any integer value below T2),
in practice an approximate solution can easily be ob-
tained by assuming the demand rate falls to zero when the
level of ®nished goods inventory falls below a su�ciently
low value. We note that (4) represents a very sparse sys-
tem of equations, and for a given value of T1, T2, a so-
lution can be obtained very quickly. In fact, an exhaustive
search for the best threshold values takes just a couple of
seconds on a Pentium PC.

3.2. Multiple stages

In the case when there is more than one stage, our
approach is very similar. In an N-stage problem we re-
place all the machines in the last stage except the last
by a single machine. Similarly, all machines in stage
k �k � 1; . . . ;N ÿ 1� are replaced by a single `virtual'
machine. We thus have a simpli®ed system with N � 1
machines. Once again, the last machine in the simpli®ed
system has a processing rate equal to the last machine in
the last stage in the original system. In this case, we can
denote the state of the system as an N � 1-vector,
�i; jN�1; jN ; . . . ; j2�, where i denotes the amount of ®nished
goods inventory and jl denotes the amount of WIP in
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front of `virtual machine' l. The processing rate of the last
machine is given by

l̂N�1�i; jN�1; . . . ; j2� � lN ;mN
for jN�1 > 0 and i < TN�1;

0 otherwise;

�
�6�

and for all other machines k � 1; . . . ;N , it is given by

l̂k�i; jN�1; . . . ; j2� � T Hk Tk ÿ i� ÿ
XN�1

l� k�1
jl

 !
; �7�

where T Hk�x� is the throughput of a closed queueing
network consisting of the machines in stage k and x jobs
(note that in computing T HN �x�, we exclude the last
machine in stage N). Letting j � �jN�1; . . . ; j2�, and p�i; j�
denote the long-run probability of the system being in
state �i; j�, we need to solve the following system of
equations:

p�i; j�
�

lD �
XN�1
k� 1

lk�i; j�
�

� p�i� 1; j�lD � lN�1�iÿ 1; j� eN�1�p�iÿ 1; j� eN�1�

�
XN

k� 2
p�i; jÿ ek�1 � ek�lk�i; jÿ ek�1 � ek�

 !
� p�i; jÿ e2�l1�i; jÿ e2�: �8�

We let

u � f�i; j� : i � TN�1; i� �
XN�1

l� k�1
jl � Tk for k � 1; . . . ;Ng;

�9�
the cost of using target inventory levels �T1; . . . ; TN�1� is
then given by

C�T1; . . . ; TN�1� �
X

u

p�i; j� hN�1i� ÿ piÿ �
XN�1
k� 2

hkÿ1jk

 !
:

�10�
Once again, the system of equations (8) can be solved
rapidly owing to the sparsity of the system of equations.
We next report on the quality of the solutions obtained
by this approximation technique in terms of estimating
the best threshold values as well as on the performance of
the proposed base-stock policy compared with the opti-
mal policy.

4. Computational results

This section reports the results of a simulation study that
we conducted to test the performance of the proposed
base-stock policy as well as the success of the approxi-
mation scheme outlined in the previous section. To
conduct our study, we generated 50 example cases

representing a wide variety of situations. We created ex-
amples with three di�erent processing time distributions:
exponential, Erlang-2, and Erlang-4, to capture the e�ects
of di�erent levels of variability on the approximation. We
also created examples with varying levels of line length
and numbers of stages as well as di�erent holding and
backorder costs. We tested examples where the backorder
cost was higher than the ®nished goods inventory cost as
well as the case when the reverse was true. For each ex-
ample, we used simulation to ®nd the best base-stock
policy by using a GPSS-H program. For each candidate
vector of base-stock values, we obtained the simulation
value of the cost by running 20 replications of simulations
10 days in length each (after deleting the warm-up peri-
od). The approximation described in Section 3 was also
used to compute the `approximately optimal' base-stock
values. That is, we used the approximation to compute
the cost for each candidate base-stock policy and chose
the best base-stock policy found by the approximation.
We then used simulation to compute the cost of the base-
stock policy suggested by the approximation. The cost
di�erence between the cost of the best base-stock policy
found by simulating all feasible base-stock policies and
the cost of the base-stock policy suggested by our ap-
proximation is the measure of the approximation's suc-
cess. Finally, we also report the average cost achieved by
the best CONWIP policy. We note that because the
CONWIP policy is a special case of the base-stock policy,
the best base-stock policy is guaranteed to perform at
least as well as the best CONWIP policy.
Table 1 includes the data and the optimal solutions

obtained by solving the MDP for Examples 1±27. We
note that all of the processing times as well as the time
between two consecutive demands are assumed to have
exponential distributions in Examples 1±27. The cost of
holding inventory in front of each machine (starting with
the second machine as the cost of holding raw material in
front of machine 1 is set to 0) is given by the vector h. The
last entry of h is the cost of ®nished goods inventory. For
example, in Example 1, the cost of holding WIP is as-
sumed to be 1, and the FGI cost is 3 per item per unit
time. In Examples 1±21 the cost of WIP is the same re-
gardless of the location of WIP. In Examples 22±27 the
cost of WIP changes from machine to machine. However,
the value added is very small except at the very last op-
eration. Therefore, in computing the base-stock values,
we tested the performance of an approximation policy
that treats the cost of WIP as the same at each of these
operations. For instance, the WIP costs in Example 27
are 0.7, 1, and 1.3 for WIP waiting at machines 2, 3, and
4. Therefore, to be able to reduce this problem to a single-
stage problem in our approximation, we assumed WIP
costs to be 1. These examples test the performance of our
strategy, which replaces several stages with little value
added at each stage by a single stage with the average
WIP cost of the original stages.
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The results for Examples 1±27 are displayed in Table 2.
For each example, Table 2 includes the best base-stock
values found by simulation and the percentage subopti-
mality of the best base-stock policy compared with the
optimal policy found by solving the MDP. Similarly,
Table 2 includes the base-stock values computed by using
the approximation we presented in the previous section
and the suboptimality of this policy. Table 2 also displays
the percentage cost di�erence between the cost of the best
base-stock policy found by simulation, and that found by
our approximation (ABS/BBS). Finally, the best CON-
WIP policy as well as its suboptimality are also given for
each example. For example, the ®rst entry in Table 2
indicates that the best base stock policy found by simu-
lation had the base-stock values (11,3). The suboptimality
of the best base-stock policy was 4.6%. This value was
found by comparing the value of the optimal policy
found by solving the MDP with the value obtained by
simulating the base-stock policy with the base-stock val-
ues (11,3). When the approximation described in the
previous section was used to ®nd the best base-stock
policy, the best policy found by the approximation was
(11,2), which had a suboptimality of 7.3%. (These values
are reported under the `App. base-stock' column). The
suboptimality value was also found by comparing the
optimal solution value obtained by the MDP with the

cost obtained from the simulation of the base-stock pol-
icy (11,2). The ABS/BBS column shows that the best
base-stock policy suggested by the approximation, (11,2),
resulted in a 2.6% higher cost than the best base-stock
value obtained by simulation, (11,3). Finally, the best
CONWIP policy and its suboptimality, found by simu-
lation, is reported under the CONWIP column. We note
that the CONWIP policy is a special case of the base-
stock policy; therefore the best base-stock policy will
perform no worse than the best CONWIP policy. Ex-
amples 14, 15, 16, and 20 are some cases where the best
base-stock policy is of the CONWIP form and therefore
the suboptimality reported under both columns is the
same for these cases.
The results in Table 2 show that the best base-stock

policy performs very well compared with the optimal
policy. The average suboptimality of the best base-stock
policy found by simulation is around 5%. We note that
the optimal policy is very complex whereas the base-stock
policy is very simple to describe and implement. Given
that it is hard to estimate backorder or holding costs to a
precision of 5%, the performance of the simple base-
stock policy is encouraging. Table 2 also shows that our
approximation behaves very well. The average subopti-

Table 1. Input data and the optimal cost for Examples 1±27

Example Processing times lD h p Optimal

1 2,3,4,3 5 1,1,1,3 5 19.09
2 3,2,3,4 5 1,1,1,3 5 21.10
3 3,3,4,2 5 1,1,1,3 5 16.66
4 3,4,3,4 5 1,1,1,3 5 27.70
5 2,2,3,4 5 1,1,1,3 5 20.29
6 1,1,3,4 6 1,1,1,1.5 2 6.61
7 3,3,4 5 1,1,3 5 20.71
8 2,3,4 5 1,1,3 5 19.62
9 2,3,4 5 1,1,3 2 12.74
10 3,4,2 5 1,1,3 5 14.29
11 3,4,2 5 1,1,3 2 10.14
12 2,4,3 5 1,1,3 5 16.43
13 2,4,3 5 1,1,3 2 11.20
14 1,1,3 4 1,1,1.5 2 6.84
15 2,2,4 5 2,2,3 4 19.03
16 1,2,3 4 1,1,2 3 10.49
17 3,3,2 5 4,4,5 7 22.58
18 2,4,4 7 2,2,2.5 3 10.43
19 3,5,5 7 2,2,3 5 22.18
20 2,5,5 7 1,1,1.5 3 11.31
21 3,4,1 5 2,2,4 5 18.09
22 2,3,4,3 5 0.5,1,1.5,3 5 20.73
23 3,2,3,4 5 0.5,1,1.5,3 5 22.17
24 3,3,4,2 5 0.5,1,1.5,3 5 18.12
25 3,4,3,4 5 0.5,1,1.5,3 5 28.62
26 2,2,3,4 5 0.5,1,1.5,3 5 21.39
27 1,1,3,4 6 0.7,1,1.3,1.5 2 6.87

Table 2. Performance of base-stock and CONWIP policies for
Examples 1±27

Example Best
base-stock

App.
base-stock

CONWIP ABS/BBS
(%)

1 (11,3) 4.6% (11,2) 7.3% (10) 29.6% 2.6
2 (10,5) 7.3% (9,5) 9.0% (10) 10.2% 1.6
3 (12,0) 4.9% (12,1) 6.7% (10) 42.4% 1.7
4 (16,5) 3.0% (14,5) 7.3% (13) 13.8% 4.1
5 (10,5) 4.5% (8,5) 5.9% (8) 12.8% 1.3
6 (4,3) 7.7% (4,3) 7.7% (4) 7.8% 0.0
7 (10,5) 3.6% (9,5) 7.9% (7) 9.7% 4.1
8 (9,6) 3.0% (7,5) 6.6% (7) 8.4% 2.0
9 (7,3) 7.9% (6,3) 11.8% (6) 11.7% 3.6
10 (9,1) 7.4% (10,1) 11.1% (7) 40.1% 3.4
11 (8,0) 10.9% (7,0) 15.8% (6) 36.0% 4.4
12 (9,2) 7.2% (9,2) 7.2% (7) 28.6% 0.0
13 (7,1) 11.6% (7,1) 11.6% (6) 27.2% 0.0
14 (4,4) 3.2% (3,3) 7.4% (4) 3.2% 4.0
15 (6,6) 0.9% (5,5) 1.7% (6) 0.9% 0.8
16 (5,5) 1.3% (5,4) 3.3% (5) 1.3% 2.0
17 (5,4) 12.0% (5,2) 12.8% (5) 15.4% 0.7
18 (4,3) 6.7% (4,3) 6.7% (4) 8.1% 0.0
19 (7,6) 2.9% (7,7) 3.9% (7) 3.9% 0.9
20 (7,7) 4.7% (7,7) 4.7% (7) 4.7% 0.0
21 (7,0) 10.8% (7,0) 10.8% (6) 28.5% 0.0
22 (10,4) 0.9% (11,2) 1.5% (10) 13.4% 0.6
23 (9,8) 1.8% (9,5) 8.1% (9) 11.3% 6.2
24 (11,1) 0.8% (12,1) 5.5% (10) 24.8% 4.7
25 (13,4) 0.1% (14,5) 7.7% (13) 12.3% 7.6
26 (9,8) 0.3% (8,5) 3.6% (10) 12.1% 3.3
27 (4,4) 6.1% (4,3) 8.6% (4) 6.1% 2.4
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mality of the base-stock policy with the target inventory
levels computed by using our approximation was 7.5%.
As Table 2 clearly demonstrates, our approximation's
estimates of the best base-stock levels were very close to
the optimal base-stock levels found by simulation. In fact,
the average cost di�erence between the best base-stock
policy and that suggested by our approximation was
about 2.5%. Given the speed with which our approx-
imation computed the best base-stock values, these re-
sults are encouraging.
Table 3 includes the data for Examples 28±50. In Ex-

amples 28±38, the processing times are still exponential.
However, these examples have multiple stages and as
many as seven machines. We were unable to compute the
optimal costs owing to the very large size of the state
spaces in these examples. In Examples 39±46 the pro-
cessing times had Erlang-2 distributions, whereas in Ex-
amples 47±50 the distributions were Erlang-4. As
described in the previous section, our approach in these
cases was the same as in the exponential cases except that
we used an approximation due to Shanthikumar and
Gocmen [21] for computing the throughputs of the
nonexponential closed queueing networks involved.
The results for Examples 28±50 are presented in

Table 4. Table 4 includes the best base-stock values found
by simulation and the cost associated with the best base-
stock policy, the base-stock values suggested by our ap-
proximation and the percentage cost di�erence between
the best base-stock policy and the base-stock policy

computed by the approximation. We also present the best
CONWIP policy and its percentage di�erence from the
best base-stock policy. For example, the ®rst entry in
Table 4. indicates that for Example 28 the best base-stock
policy found by simulation was (6,5,1), which had an
average cost per unit time of 9.19. When we used the
approximation to compute costs for all base-stock poli-
cies, the best base-stock policy found by the approxima-
tion was (6,6,1) and this policy resulted in a 3.0% higher
cost than the best base-stock policy. Finally, the best
CONWIP policy resulted in a 27.4% higher cost than the
best base-stock policy. (We remind the reader that
whereas in Table 2 the percentage values reported rep-
resent the suboptimality of each policy with respect to the
optimal policy, the percentage values reported in Table 4.
represent the percentage di�erence between the cost of a
policy and the cost of the best base-stock policy. This is
because we were unable to solve the MDP to obtain
optimal costs for Examples 28±50).
We note that despite the fact that these examples were

more challenging to our approximation (owing to either
the greater size of the problems or the non-exponential
distributions involved), our approximation still performed
very well in estimating the best base-stock parameters. In
the examples with Erlang distributions, our approxima-
tion predictably tended to overestimate the target inven-
tory levels. These examples indicate that if the processing
times distributions are less variable than exponential, the
results of our approximation can serve as approximate

Table 3. Input data for Examples 28±50

Example Pr. times Distribution lD h p

28 1,2,3,1,2 Exp. 5 0.5,0,5,1,1,3 5
29 2,3,1,2,3 Exp. 5 0.5,0.5,1,1,3 5
30 1,3,2,1,3 Exp. 5 0.5,0.5,1,1,3 5
31 1,2,3,4,1,2 Exp. 5 0.5,0.5,0.5,1,1,3 5
32 2,2,4,3,3,1 Exp. 5 1,1,1,2,2,3 6
33 3,1,2,2,1,1 Exp. 6 1,1,1,3,3,5 7
34 1,2,3,4,5,1,2 Exp. 7 0.5,0.5,0.5,1,1,1,3 5
35 2,1,3,1,4,1,4 Exp. 6 1,1,1,2,2,2,3 6
36 5,1,2,1,1,3,3 Exp. 7 2,2,2,3,3,3,4 4
37 4,3,4,3,1,4,2 Exp. 7 2,2,2,3,3,3,3.5 4
38 4,4,3,1,2,1,2 Exp. 6 1,1,1,5,5,5,6 6
39 2,3,4,3 Erl-2 5 1,1,1,3 5
40 3,3,4,2 Erl-2 5 1,1,1,3 5
41 2,2,3,4 Erl-2 5 1,1,1,3 5
42 2,3,4 Erl-2 5 1,1,3 5
43 3,4,2 Erl-2 5 1,1,3 5
44 3,4,2 Erl-2 5 1,1,3 2
45 2,4,3 Erl-2 5 1,1,3 5
46 2,4,3 Erl-2 5 1,1,3 2
47 2,3,4,3 Erl-4 5 1,1,3 5
48 3,3,4,2 Erl-4 5 1,1,3 5
49 1,4,4,3 Erl-4 5 1,1,2 3
50 2,1,2,1 Erl-4 3 2,2,3 4

Table 4. Results for Examples 28±50

Example Best base-stock App. base-stock CONWIP

28 (6,5,1) 9.19 (6,6,1) 3.0% (5) 27.4%
29 (8,7,2) 12.38 (7,7,2) 2.9% (7) 16.3%
30 (7,6,2) 12.22 (6,6,2) 0.7% (6) 12.9%
31 (13,11,0) 15.9 (10,10,1) 11.3% (8) 40.4%
32 (11,11,0) 26.3 (10,10,1) 11.2% (12) 11.9%
33 (5,3,0) 13.0 (4,4,0) 3.0% (4) 19.8%
34 (10,10,0) 12.8 (9,9,1) 7.5% (8) 36.8%
35 (8,8,8) 22.9 (8,8,4) 3.6% (8) 0.0%
36 (6,5,2) 18.9 (5,5,2) 12.1% (6) 7.10%
37 (8,7,3) 24.1 (7,7,2) 6.3% (8) 4.2%
38 (10,4,1) 26.3 (8,5,2) 10.6% (8) 21.8%
39 (8,2) 14.9 (11,2) 7.6% (8) 21.4%
40 (10,1) 13.5 (12,1) 9.2% (7) 30.3%
41 (7,4) 15.8 (7,7) 6.6% (6) 4.4%
42 (6,3) 15.1 (5,5) 2.6% (5) 2.6%
43 (7,1) 12.0 (9,1) 3.2% (6) 14.2%
44 (5,0) 8.7 (7,0) 5.7% (5) 22.9%
45 (7,2) 13.7 (9,2) 2.9% (6) 13.9%
46 (5,1) 9.1 (6,1) 4.4% (4) 15.4%
47 (6,2) 12.2 (9,2) 8.2% (5) 16.3%
48 (7,1) 11.1 (8,1) 2.7% (6) 27.3%
49 (7,2) 11.1 (8,3) 10.1% (7)12.6%
50 (4,1) 11.4 (4,1) 0% (4) 4.4%
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upper bounds on the amount of inventory required at each
stage, and therefore as a starting point for a more detailed
simulation study. However, we note that even using the
values suggested by the approximation resulted in costs
that were not much higher than the cost of the best base-
stock policies. The average percentage cost di�erence be-
tween the best base-stock policy and that suggested by our
approximation was around 6%. In contrast, the average
percentage di�erence in cost between the best CONWIP
policy and the best base-stock policy was nearly 17%.
These results clearly show the signi®cant decrease in cost
that can be obtained by using multiple-stage base-stock
policies and the success of our approximation, which in-
volves very little computational work.

5. Conclusions and further research

In this paper we analyzed base-stock policies for multiple-
stage tandem make-to-stock systems. The base-stock
policies we analyzed di�er from those in the literature in
that they limit the WIP on the shop ¯oor, therefore
avoiding unnecessary stockpiling of WIP on the shop
¯oor when there are many backorders. Our simulation
results comparing the performance of the proposed base-
stock policies with the performance of the optimal policy
indicate that the proposed base-stock policies perform
very well. Comparisons of the cost of the optimal policy
and the cost of the best base-stock policy in our simula-
tion experiments reveal that Veatch and Wein's obser-
vations [19] on the e�ectiveness of base-stock policies
(which were based on a limited set of experiments with
only two machines in their paper) carry over to larger and
more complicated systems. We also presented a simple
approximation based on aggregation of several stages
(with the same or very close WIP costs) into one for
computation of `approximately optimal' base-stock lev-
els. We presented the results of a simulation study that
demonstrated that our approximation is successful in
estimating the best base-stock values.
Further research should characterize e�ective and

simple control strategies for more complicated systems
than those considered here. Examples include multiple-
stage assembly systems where the output of several sub-
assembly lines are assembled together, and systems with
probabilistic routing of products.
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