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Abstract. This paper develops a robust and distributed 
decision-making procedure for mathematically modelin 9 and 
computationally supporting simultaneous decision-making by 
members of an engineering team. The procedure (1) treats 
variations in the design posed by other members of the design 
team as conceptual noise; (2) incorporates such noise factors 
into conceptually robust decision-making; (3) provides 
preference information to other team members on the variables 
they control; and (4) determines whether to execute the 
conceptually robust decision or to wait for further design 
certainty. While Chang et al. (1994) extended Taguchi's 
approach to such simultaneous decision-making, this paper 
uses a continuous formulation and discusses the foundations 
of the procedure in greater detail. The method is demonstrated 
by a simple distributed design process for a DC motor, and 
the results are compared with those obtained for the same 
problem using sequential decision strategies in Krishnan et 
al. (1991). 

Keywords. Agents; Conceptual robustness; Concurrent 
engineering; Distributed concurrent engineering; 
Distributed decision making 

1. Introduction 

1.1. Motivation 

Simultaneous or concurrent engineering normally 
refers to recent efforts in development management to 
increase the degree to which design tasks, especially 
product and manufacturing process design tasks, are 
conducted at the same time. The idea is not new - 
Henry Ford and perhaps the designers of the pyramids 
practiced highly concurrent design processes - but it 
received much attention after Clark and Fujimoto 
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(1991) demonstrated that new model design at 
American motor companies took much longer than 
their Japanese counterparts, and attributed the 
difference mostly to increased concurrency in sheet 
metal part and die design. Early introduction of the 
product to the market usually implies a longer sales 
life and a larger market share (Smith and Reinertsen 
1991), so American industry has imitated the practices 
that Clark and Fujimoto credited with success. 

Despite the clear success and long history of 
simultaneous engineering, it lacks a theoretical basis. 
Mathematical and computing tools to support 
simultaneous engineering are not yet fully developed, 
nor do we have a mathematical model of the process, 
While computer science research in parallel processing 
should have alerted the design community that 
concurrent processes must often be very different from 
sequential ones, little attention has been paid to the 
logical foundation of concurrent design decision- 
making. 

The most common, usually implicit, process model 
in the design literature is hill-climbing, in which a 
sequence of designs is developed, each design better 
than the last. Concurrent engineering efforts have 
focused on increasing the speed with which each 
successive design is passed around among the various 
members of the team, either by physically locating the 
team closer together, or by providing computational 
tools that accelerate communication (e.g. Bond and 
Ricci 1992). In this point-based approach, a change 
made by one member of the team is likely to produce 
changes on others, these in turn producing more 
changes, in a chain reaction. There is no fundamental 
reason for the change process ever to converge. 

To minimize iterative cost, decisions about the 
interdependent decision variables among the com- 
ponents of a system (for example, the space available 
for an engine) or between the product and its 
manufacturing processes are often made by a higher- 
ranking manager or by one of the several involved 
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parties in isolation (e.g. Eppinger et al. 1990, 
1992) that is, ignoring interdependence. This 
approach often results in either conflicts in the later 
stages of product development or lost quality, because 
decisions are made with insutficient data. Iteration 
may be required to resolve the conflicts or correct the 
errors. 

Conversely, Ward et al. (1995) observe that engineers 
at Toyota (which has the most rapid and concurrent 
design process in the automobile industry) com- 
municate about the sets of possibilities rather than 
changes to a single design. This communication 
supports increased concurrency because decision- 
makers can take into account the range of decisions 
that other members of the team may produce. 

This paper moves toward a methematical model of 
distributed, simultaneous design decision-making 
based on communication about sets of possibilities. 
We intend that ultimately the model will satisfy several 
criteria. First, it should be entirely distributed, in that: 

1. Different design agents can develop local design 
criteria which can be completely invisible to any 
central authority or to other design agents. A global 
objective function may be provided from which the 
agents will derive parts of their local functions, but 
none is required. There is no central representation 
of constraints. 

2. Local design agents can make all design decisions; 
no central authority is required to mediate among 
local agents, establish values for interface variables, 
or determine in detail the sequence in which they 
make decisions. A central authority (or a negotiating 
process) need only determine which interface 
variables are controlled by which agents, the time 
at which each agent should be finished with all 
decisions, and the cost of delay for the entire project. 

3. Local processes can proceed at different speeds, 
depending on the speed of the analysis and synthesis 
methods used by each agent. 

An agent is a module (human or computational) that 
performs design activities based on its own knowledge 
and interests, interacting with others. Agents are a 
common idea in the distributed decision community; 
applications relevant to design can be found in Ahn 
and Crawford (1994), Cutkosky and Tenenbaum 
(1990), Cutkosky et al. (1994), Birmingham et al. 
(1993), Darr and Birmingham (1994), and Wellman 
(1993, 1994). 

Second, the process should be integrated, in that the 
various agents take into account the most important 
needs of other agents, based on an efficient com- 
munication process. 

Third, the model should guarantee convergence, in 
the sense that a solution will be found in a time 
appropriate to the cost of delay. 

Fourth, the solution on which the model converges 
should be approximately optimal, in the sense that the 
possible difference between the solution found and 
the solution that would be found using a perfect, 
centralized, global optimization procedure is small in 
most situations. 

Fifth, with realistic assumptions about distributed 
and centralized processing power, the process should 
be faster than a centralized one. 

We have not yet established all these properties. 
This paper discusses an early version of the model, 
and its performance on a problem defined by Krishnan 
et al. (1991). 

1.2. Concept 

Our approach is based on conceptual  robustness: the 
idea that members of a team can make simultaneous, 
interdependent decisions by treating their uncertainty 
about others' derisions as a kind of noise, then 
applying robust optimization techniques. The solutions 
most robust against this conceptual noise may not be 
those most appealing after the concentual noise has 
been eliminated; therefore, team members must 
consider the cost of time in deciding whether to 
implement the conceptually robust solution, or wait 
for more decisions by others. Finally, team members 
need to provide each other with some sense of the 
impact their decisions have on the rest of the design. 
We propose formal techniques for accomplishing 
these tasks. 

We have done so before, in Chang et al. (1994), 
using Taguchi's parameter design methods as a 
starting point. In this paper, we start instead with 
traditional continuous optimization theory. This shift 
broadens the field of interest and provides insight. We 
develop a procedure, illustrate it on a problem taken 
from the distributed design literature (Krishnan et at. 
1991), and compare our results with those produced 
by the sequential method originally advocated for the 
problem. 

Section 1.3 describes generally related work. The 
concepts, assumptions, notation, equations, and algo- 
rithm schema for our simultaneous engineering 
procedure (SEP) are in Section 2. Section 3 
demonstrates the SEP step by step on an illustrative 
example, discusses the results of different cases, and 
compares SEP to the sequential decision strategies 
(SDS) proposed by Krishnan et al. (1991). Section 4 
discusses such issues as computational complexity and 
extension to constrained problems. Section 5 concludes. 
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1.3. Related Work 

Related topics include robust design, set-based 
reasoning, the value of information in decision- 
making, timelessness, and distributed design and 
optimization. 

This paper has adopted two important ideas 
advocated by Taguchi: robustness and search over each 
variable independently (Taguchi 1986, 1987; Taguchi 
and Clausing 1990). By extending Taguchi's method, 
Chang et al. (1994) present a procedure for 
simultaneous engineering while introducing the 
concepts of conceptual robustness, marginal quality loss 
along with timeliness. Wilde (1991, 1992), Otto and 
Antonsson (1993), and Michelena and Agogino (1991) 
provided methods for incorporating robustness 
(through not single-variable search, discussed later) 
into the standard optimization framework. Genetic 
algorithms (Goldberg, 1989), abstractions of natural 
evolution, provide another approach for robust design 
that could easily be incorporated into our framework: 
imitating natural selection, the robust designs 
"survive" after "generations". 

Ward et al. (1995) report that the first and best 
practitioner of modern concurrent engineering, the 
Toyota Motor Company, uses a highly set-based 
process. Ward and Seering (1993a, 1993b) define a 
formal mechanism, the labeled interval calculus (LIC), 
for narrowing a set of possibilities by eliminating 
infeasible regions. However, LIC does not provide 
methods for making decisions within the feasible 
region in a distributed, simultaneous engineering 
configuration; the mechanisms described here do. 

Bradley and Agogino (1991) address the value of 
information by claiming that the designer should 
make a selection with negligible expected value of 
perfect information (EVPI), but do not define 
negligibility. 

Bond and Ricci (1992) state in their paper that time 
and cost are the factors influencing the project 
decisions. Ulrich et al. (1993) argue that apart from 
the design and manufacturing costs, the cost of time 
should be included in the decision-making process. 
They do not incorporate an explicit cost function for 
time, like the one used here. 

Eppinger et al. (1990, 1992) and Krishnan et at. 
(1991) discuss design sequence coordination. Section 
3.7 will discuss sequential design methodology 
(Krishnan et aL 1991) in detail. They address 
interdependence by ignoring it (making the decision 
in isolation), interaction, or task decoupling through 
an early decision by a central authority. These 
approaches are common in distributed design, 
according to Finger and Dixon (1989). 

Wagner and Papalambros (1993) survey a large 
class of optimization work in decomposition analysis. 
A well-known example is the multidisciplinary design 
optimization techniques of Sobieszczanski-Sobieski et 
aI. (Sobieszczanski-Sobieski et al. 1985; Sobieszczanski- 
Sobieski and Tulinius 1991; Consoli and Sobieszczan- 
ski 1992). Decomposition analysis is a procedure for 
solving well-defined optimization problems more 
quickly through a distributed process. We, in addition, 
address design activities in which such an overall 
optimization objective is hard to form. For instance, 
a power train which involves 128 variables (Wagner 
1993) may have an optimization objective and require 
decomposition analysis to solve this optimization 
problem. However, designing a car may involve so 
many variables that it is virtually impossible to 
define the overall optimization objective, with parts 
designed in many geographic locations. Consequently, 
subsystems such as engine, suspension, etc., are 
designed by multi-functional teams separately, but not 
in isolation. That is, no complete overall objective 
function can be defined, but each team must take into 
account the needs of other teams in formulating its 
own objective. Our method, in lieu of solving the 
overall objective, formulates and solves cooperative 
design tasks. More particularly, it can be rationally 
used by any agent involved in a cooperative design, 
whether or not it is used by other agents. 

2. Formulation of Simultaneous Engineering 
in Continuous Spaces 

The performance of a design is a function of 
manufacturing variations and variations in the 
environment of use. The utility of the result of a design 
decision may also depend on other decisions not yet 
completed. 

Let the delivered cost include the costs of 
manufacture, etc., as well as the performance cost 
relative to some datum design: it corresponds to the 
objective function to be minimized in conventional 
optimization. It is always possible for the designers of 
a subsystem to make decisions immediately, producing 
the best design possible now (though it may perform 
badly with some possible decisions by others). Then, 
we have 

E[delivered cost now] 

= f(current decisions, 

manufacturing and environmental noises, 

others' design decisions), 

where E[.]  represents the expected value. 
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Conversely, at any time, a subsystem designer may 
achieve a better design by waiting for more 
information before making a decision. In particular, 
the more decisions are made first by others, the better 
the designer's decisions will fit the whole system. But 
waiting is expensive; someone has to decide first; and 
the other's decisions may preclude a good subsystem 
design. We have: 

cost of decision making 

= E[detivered cost now] 

- E[delivered cost achievable by waiting] 

- cost of time lost by waiting; 

this balances the gain from waiting and the loss in time. 
The delivered cost for the subsystem is not only the 

isolated cost directly perceivable by the subsystem 
designer, but also includes costs imposed on other 
parts of the design. These costs are hard to estimate 
and represent. It is easier to deal with the marginal 
cost: the increase from some datum imposed on other 
parts of the design by the designer's decisions. Hence: 

E[delivered cost] ~ E[isolated cost] 

+ E[marginal costs imposed]. 

This section expands these ideas into a complete 
procedure. 

2.1. Bas ic  A s s u m p t i o n s  

The design problem will be set up based on these 
assumptions. 

1. There are only two basic kinds of variables 
involved in the design: physical noises, if they exist, 
and design variables. All the induced variables and 
equality constraints have been eliminated using 
substitution. 

2. Design variables take continuous values. Chang 
et al. (1994) have demonstrated an approach 
to discrete-valued problems based on Taguchi's 
method. 

3. Agents have restricted ability to understand each 
other's tasks, and no central authority can establish a 
complete overall objective function. Some variables 
may be identified as interface variables, of interest to 
more than one agent, but even for these, only a 
restricted amount  of communication about the effect 
of the variable is possible. This is usually true for 
complex system designs (e.g. Bond and Ricci 1992). 

4. The overall cost evaluation is the sum of the 
individual agent's cost functions, plus a constant. This 
implies that while actions by one agent may affect the 

costs of others, and there may be some overlap 
between the cost effects or some fixed costs that are 
not assigned to any agent; agents can estimate with 
reasonable accuracy the effect of a change in their local 
costs on the overall cost. This paper does not address 
how to set up these functions; we expect to argue in 
future work that both cost and profit functions are 
needed, with monetary units. We simply assume all 
the cost function outputs have the same unit - dollars, 
which has a common ground for value transmission 
from individual to individual and is additive. 

5. All design processes operate over candidate 
domains of the design parameters, and all designs in 
these candidate domains are feasible. Ward and 
Seering (1993a, 1993b) have described propagation 
mechanisms for distributed inferences about feasibility, 
and at some point those methods should be integrated 
with these, but for the present we will assume that 
feasibility is enforced by methods external to this 
paper. 

6. Design parameters are reasonably independent. 
This assumption is based on the extension of the 
Taguchi method, because it is well known and well 
studied (Otto and Antonsson 1993). Other robust 
design techniques may not require this assumption. 
We will discuss this assumption below. 

We recognize that not all the design tasks satisfy these 
assumptions: we intend only to provide a simplified 
basis for early study. As discussed in Section 4, we 
will work at relaxing some of these assumptions 
in the future. 

2.2. Def in i t ions  

1. There are m agents, Ai, i =  1, 2, 3 . . . . .  m, in a 
network that allows bi-directional communication 
between any pair of agents. In graph theory (Aho et 
al. 1983), one can view this network as a fully 
connected, non-directional graph by treating each 
agent as a node. 

2. There are n design variables d{ spanning space 
D, to be decided by the design team. We will denote 
any particular vector of values in D by d, and use the 
same convention for other spaces. 

3. Subspaces D~ partition D. That  is, 

and 

~ Di = ~Z ~, (2 .1a)  
i = l  

• D~ = D. (2.1b) 
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The dimension of Di is n~, dim(Di) = hi, where 

~ n i = n. (2.1c) 
i=1 

Namely, for any variable d~ in D~, agent A~ alone will 
make decisions. This means individual yet inter- 
dependent decisions, rather than consensus, are 
expected. D~ can be null, in the case that A/ acts 
as an evaluator, such as a consumer. Also, there 
is no restriction on the partitioning - it could be 
object-oriented or discipline-oriented (Wagner 1993), 
based on the needs of the team. For example, D/can 
be a component (engine, suspension, etc.) designer of 
a car; she or he can be the manufacturing engineer 
for the component, too. 

4. f/ is the isolated cost function that A~ would 
minimize in the absence of information about the effect 
of her decisions on others. 

5. A space X/ represents the distinct factors that 
matter in Ai's design. That is, fi = f~(x/), where xl e Xv 
Xi may include physical noises and variables 
controlled by other agents, as well as the variables D~ 
that agent A~ controls. 

6. Subspace C~ comprises A~'s incoming interface 
variables (or conceptual noise): 

C i = (Xl ~ D)kDi. (2.2) 

These are the decision variables controlled by other 
members of the design team but important to Av The 
definition implies C~ ~ D~ = ~ ,  and 

C ---- ~) Ci ---- D. (2.3) 
i=1 

Some design variables may not be interface variables. 
Dim(C/) = n c. 

7. The space of physical noises for A~ is 

P, = X,k(D, w C~). (2.4) 

X i = D i u C i u P  I. 

8. The space of Ai's outgoing interface variables, 
Yi,  is 

Y, = D, c~ (CkC,). (2.5) 

Yi ~ Di .  

9. El ,  

variables 
the space of Afs purely internal design 
(the variables that do not affect others' 

design processes), is 

El = D i \ Y  i.  (2.6) 

Equations (2.2) and (2.4) imply that D/, C~ and P/ 
partition Xi. Thus, x~ = [d~,c~,pi] and the cost 
function f/(x/) can be written as f/(d~, c/,p/) where 
di E Di, ci ~ Ci, and Pi ~ Pi. 

2.3. Problem Formulation 

Agents face uncertainty about physical noise and 
decisions to be made by other agents. For each agent, 
an isolated, immediate formulation of the problem is: 
find a d{* for every d{ in Di, or a d* e Di, such that 

L (a,)=fcfe fi(di, ci,pi)'p(ci)'P(pildi)'dpi'dci 
i ~ldl 

(2.7a) 

is minimized. Isolated means that this objective 
function ignores the desires of other agents in the 
design team. Immediate means it ignores the 
possibility of waiting for more information, p is the 
probability density function on C/and P~, so 

f c  P(C~).dc/= (2.7b) 1, 
1 

fp  P(Pi I di)'dpi = 1. (2.7c) 

P~ may be d/-dependent; i.e. the physical noise space 
may vary when the design variables are given 
different values. The process of specifying these 
probabilities is not addressed in this paper; for now, 
we can think of them as established by the judgment 
of the users, and as possibly uniform. We think that 
experienced engineers could be taught to estimate the 
accumulated probability for options with reasonable 
ease. For instance, to transmit a torque, one can 
estimate that the shaft diameter, given the materials, 
will not be larger than 50.8 mm (2 in) and has only 
30% of the chance to go below 38.1 mm (1.5 in), based 
on past experience, uncertainty about load conditions, 
the cost of heat treatment, etc. A rough curve, 
Pr(diameter), showing the accumulated probability 
that the shaft diameter will be smaller than diameter, 
can be sketched through these points. The derivative 
of this accumulated probability can serve as the 
probability density function in equation (2.7a). 

Equation (2.7a) is the expected value of the cost 
function. By integrating or averaging over C/and P/, 
the conceptual and physical noises, we achieve a robust 
design. Integration over the physical noises achieves 
a design that performs well over a range of physical 
conditions. Integration over the conceptual noise C/ 
produces design decisions by agent A/that will perform 
well over a range of possible decisions by other 
members of the design team. 

To further focus on the concept of conceptual 
robustness, we will hereafter consider only the 
conceptual noise Cv Physical noise will be implicitly 
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included in the objective function. That is, we consider 
the problem 

minimize Fi(di,  ci) ; 

if physical noise exists, then 

Fi(di, cl) = ( |](di, ¢i, Pi)'P(P' I di)'dPi • 
31, 

Thus, we can rewrite equation (2.7a) into 

Ld(dl) = ~ Fi(d o c~)'p(ci)'dc ,. (2.8) 
,de i 

2.3.1. Marginal Cost for Conceptual Noise Factors 
Equation (2.8) reflects only agent A[s individual 
interests, without considering others' preferences on 
Yi, a subspace of D~. It ignores change in one agent's 
costs that may be induced by others' decisions. To 
achieve an integrated design, the decision criterion 
must capture other agents' costs, in addition to the 
costs A t can directly perceive. We introduced the 
concept of marginal quality loss (Chang et al. 1994) to 
convey these preferences; here we generalize this idea 
to marginal cost. 

Marginal cost enables an agent to provide feedback 
to neighboring agents about her preferred values for 
the interdependent variables controlled by those 
agents and the cost of deviations from those values. 
The agent can consider each of her conceptual noise 
factors individually, as if it was one of her own design 
decision variables. For each value of each conceptual 
noise factor, the agent can compute an isolated average 
cost, by averaging over the space of other conceptual 
noises and candidate values for the decision variables. 
The marginal cost at any value of the conceptual noise 
is the difference between the average cost for that value 
and the lowest average cost for this variable. This 
function provides a measure of the importance of this 
factor to this agent. The neighboring agent who 
controls this conceptual noise variable can then take 
the marginal cost into account. 

Figure 1 illustrates this concept. Equation (2.9) gives 
the cost averaged over A~'s design space D~ and 
conceptual noise space C~, except c~: 

L~(cgl) = f o  f c  Fi(d~' ci)'p(di)'P(c~lc~)'dci'ddi" 
, , \ d  

(2.9) 

Again, p(di) is the probability density function of d~ 
and its integration over the space D~ equals one. Agent 
Ai will have to estimate p(d~) - a t  worst, by making 
it uniform. The integration is over the candidate 
domains. 

Best Value 

Candidate domain of c{ 

Fig. 1. Illustration of marginal cost. 

Y 

The marginal cost associated with c{ is then: 

lA,~(c{) = L¢(c{) - min [L~(c{)]. (2.10) 
c a n d i d a t e  d o m a i n  o f  c j 

This function will be transmitted to the agent who has 
• i control of variable cl (the one who takes c~ as a d] 

in her design space). 
If we shift perspective from the conceptual noises 

imposed on A~, other agents use Eq. (2.10) to 
assess their marginal cost for the interface variables 
controlled by Ai -  those in Y/. A~ collects these la, k(c~) 
to compute the total m_arginal cost associated with 
each y[ as (where y~ = c~): 

La, i(Y~) = Y', la, k(C~) 
k = l , 2  . . . . .  m 

k=/=i  

and 

0, d{ not in Y~, 

La'i(dJl) = Z d 
la, k(ck), di = c~ and d~ in Y/. 

(2.11) 

A i then adds these total marginal cost functions into 
her own objective function to produce an integrated 
design. 

2.3.2. Cost Objective and Robust Values 
We now rewrite equation (2.8) to search over one 
variable at a time. This yields 

Ld(d l )= fD fcF~(d~,el)'P(d~ld{)'P(c3"dc~'dd. 
,\d! 

(2.12) 

The outcome of Eq. (2.12), like Eq. (2.8), is subject to 
conceptual noise. It is also averaged over the candidate 
design space for the other variables. This is the 
approach Taguchi uses. 

There are several reasons for preferring to search 
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over one variable at a time, provided a reasonable 
degree of independence can be assured among the 
variables (assumption 6 in Section 2.1). Here, 
reasonable means that averaging over the other 
decisions wilt not produce a greatly different result 
than would be obtained by fixing those variables at 
one of the candidate values. As in Taguchi's approach, 
we rely on the judgment of the designer to set up the 
problem so that variables are reasonably independent. 
This will enable the direct computation of the marginal 
costs associated with each variable, avoiding the 
difficulty of allocating the cost function to the 
variables. That allows us to easily feed back marginal 
costs to other members of the design team, and to 
compare the costs of making a decision now with the 
costs of waiting. It also means that we can represent 
the candidate designs by a set of intervals for each 
variable, rather than a possibly very complex 
volume in the decision space. It simplifies the search 
process: as we will see, we need only find the zeros 
of functions of single variables, rather than finding 
level sets in the space. Averaging over the other 
decision variables may add an additional margin of 
robustness against unmodelled noises. Still, the 
assumption of reasonable independence is question- 
able, and it is possible to carry out our general 
approach without it by formulating the problem based 
on other robust design techniques. We return to these 
issues in Section 4 where we discuss future work. 

Equation (2.12) involves only agent Ai's isolated 
costs. To incorporate others' preferences, the cost 
objective should include the marginal cost in the 
following form: 

[,~(dl) = L~(dl) + LA.g(dl), (2.13) 

which combines Eqs (2.11) and (2.12). La(d{) is 
the isolated cost objective of As;/],~(d~) the integrated 
one. 

With this cost objective, agent A~ can identify the 
robust value of d{, denoted d{*, through 

Le(d~ ) = rain [£d(d{)], (2.14) 
candidate domain of d{ 

by using any appropriate optimization technique. This 
value has the smallest expected cost of any value that 
can be selected now. Figure 2 illustrates the relations 
described in Eqs (2.13) and (2.14). 

2.3.3. Expected Achievable Cost 
The cost in Eq. (2.14) is now integrated rather 
than isolated, but it is still immediate. We need to 
estimate the best cost achievable if agent A i waits for 
decisions by other agents. We will use this estimate in 
deciding which parts of the candidate region to retain 

L 

^ ), J 
C 

Candidate domain of d ) 

Fig. 2. Illustration of cost objective and the robust value of d~ 

Improvement 

t NOW 

Fig. 3. Illustration of the expected achievable cost  

while waiting for more information. In Fig. 3, 
£WAIT(d]) is the asymptotic value of La(d~) at t ~ ~ .  
We claim that when used in the decision making 
criterion, approximations to this function should: 

1. cause variable values that perform exceptionally 
well for some values of the interface variables to be 
retained until those interface values have been 
eliminated, or time pressure precludes waiting; 

2. always cause the currently most robust value to be 
retained. 

A variety of functions could be used to estimate 
Lwnir(d~). In this paper, we use a simple, conservative 
approximation: the maximum possible improvement 
from the immediate, integrated cost La(d]) (Eq. 
2.13). Maximum means that for each conceptual noise 
we compute the difference between the currently 
expected cost at each value of d] and the cost 
achievable at that value if the conceptual noise is fixed 
at its most favorable value. We then take the maximum 
possible improvement over the entire candidate set for 
d], and average these possible maximum improve- 
ments. We then apply this constant to the entire cost 
function Ld(d~), producing an offset curve that 
approximates the best achievable result. This procedure 
is conservative because it overestimates the possible 
improvement, producing a tendency to keep values in 
the candidate domains longer. 

To convert this idea into symbolic form, we begin 
by considering the design variable d~ and the 
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conceptual noise c{. The cost, described as a function 
of these parameters, is: 

Ld~(d!, c~) = fo~\d! fc~\~ Fi(di' ci)'P(d~ldi) 

x p(c i I ck) "dei" ddi. (2.15) 

k yields the Note that averaging La~(d ~, c k) over c~ 
averaged immediate, isolated cost, La(di), while 
minimizing La~(dJi, cki) over c/k results in the lowest cost 
we can hope for at any given value of dl. The maximum 
expected improvement to be gained by keeping d{ in 

k has been fixed (rather the candidate set until after c~ 
than using the robust value d{* immediately) can then 
be approximated as 

fC 
m a x  Lac(di, c~)" p(c~)'dc~ 

candidatedomain  ofd~ {.,Jc 

- . m i n  . ~ [ L d ~ ( d { ,  e ~ ) ] }  
candidate  domain of c~ 

= max {La(di) 
candidate domain of d! 

- -  . min . k [rdc(d 1, c~)]}. (2.16) 
candidate domain of ci 

ALeig is a constant. Finally, the expected achievable 
cost by waiting for all the conceptual noises to be fixed 
before deciding on d{, as a function of d{, is: 

LwArt(d~) = £d(d!) -- n c k=l ~ ALd!c~, (2.17) 

the immediate, integrated cost with an offset. 
By using the maximum expected improvement, we 

meet requirements (I) and (2) mentioned in the first 
paragraph of this section. Values for d{ will be 
eliminated if and only if they have costs so much higher 
than that for the robust value that no possible 
improvement can justify the cost of waiting. Let Zd{ 
produce the maximum improvement, ALeid. In the 
decision procedure below, it will be retained until the 
cost of waiting exceeds the possible gain. If ld{ results 
in a more robust £d(d{) than Zd{, it will receive a lower 
LWAIT than 2 j .  di, so it will be retained if ZdJ i is. 

This approach is conservative, in the sense that it 
tends to overestimate the expected improvement. A 
more accurate but more complex approach uses the 
expectation of the improvement, rather than ALdi d. 
Designers can obtain the expectation of the improve- 

ment by computing 

E{Ld(d~) -- min [Ldc(d~, 

= fa {Ld(d{)-min[Lec(d{'c ')]} "p(d¢)'dd{" (2.18) 
I c, ~ 

Here, p(d¢) must be estimated by the designer. More 
desirable would be an improvement function based on 
the actual possible improvement at each value of d{, 
and the probability of the improvement taking place. 
We have not found such a function that meets 
requirements (1) and (2). 

2.3.4. Cost of Time 
"Time is money". The problem is to establish how 
much money each unit of time costs. Ulrich et al. 
(1993) propose a cost of time implicit in a profit model, 
in which the functions of the rate of unit sale, the unit 
price, the unit cost, etc., are time-dependent. The model 
is complicated and varies from case to case. For 
simplicity, Chang et at. (1994) assume a quadratic form 
for the cost function of time based on Taguchi's 
formulation of deviation loss. The appropriate form 
of the cost function of time is debatable, and may vary 
from problem to problem. We therefore, give general 
criteria for the cost function of time, denoted 
L~etay, i(t), without specifying a form. 

We assume that agents are given individual time 
frames - starting and ending times - for completing 
their tasks by a central authority, and that an estimate 
is available of the total cost of delaying the project, 
as a function of the amount of delay. The first 
assumption is reasonable, because even in highly 
concurrent projects, some tasks must normally be 
performed before others. The second is reasonable 
given fairly standard business planning methods, for 
example those described in Smith and Reinertsen 
(1991). Consistent with, but more generally than, in 
our previous paper, we claim that: 

1. the marginal cost of delay must increase with delay 
and be positive everywhere after the start; 

2. the total cost of delay by any agent at t = 0 (the 
start of the agent's task) is zero; 

3. the marginal cost of delay at an agent's time limit 
equals the cost of delaying the entire project. 

Here the marginal cost is the derivative of the total 
cost of delay. 

Criterion (1) is key to guarantee process convergence 
and is reasonable since profits decrease with 
increasing lead time (Smith and Reinertsen 1991). One 
can interpret criterion (2) as: No loss due to delay is 
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incurred i f  the decision is made right at the beginning 
of  the task; and criterion (3) as: I f  the decision is not 
made at the due time, the whole project is delayed. 

Symbolically, we can write 

marginal cost of time is zero when the task begins; thus 

dLa~l"Y'i(t)dt ,=o = 0. 

d2La~tay, i(t) 

dt 2 
> 0, (criterion (1)) (2.19a) 

Ldez,y,i(start time) = 0, (criterion (2)) (2.19b) 

dLdetar i(t)) 
~tt" t=t, = LrOrAL' (criterion (3)) (2.19c) 

where t~ is the due time for A~ (starting from the 
beginning of each agent's task) and LrOTAL is the cost 
of delaying the entire project. Criteria (2) and (3) 
provide initial and end conditions to help determine 
the cost function. 

By letting t be the time now and Lrm~.~(t  ) be the 
cost caused by delay (from now to the next meeting) 
in fixing the value of d{, and assuming the design 
process is discretized into periods between exchanges 
of information, 

LrmE. i ( t )  = Ldel,y,i(t + to) - -  Lde tay ,  i ( t ) ,  (2.20) 

where t o is the meeting period. Figure 4 illustrates the 
ideas in Eqs (2.19) and (2.20). 

Note that LrlM~,~(t ) is independent of d{, which 
implies that delay on any part of Ai's design task costs 
a new iteration. Also, criterion (3) states that if A~ fails 
to decide on time, then the whole project is delayed. 
Imposing such a strong penalty on all delays 
aggressively shrinks the candidate domains. While 
criterion (3) seems valid, holding a delay in any of Afs 
decisions to be equivalent to delaying Ai's entire task 
is harder to justify. A less aggressive approach might 
divide A~'s total cost of delay among the decision 
variables, either equally or according to the judgment 
of the designer. 

Aggressiveness can also be reduced by imposing 
another constraint on the time cost function: that the 

A more accurate but expensive assessment of the 
cost of delay might be achieved by assigning delay 
costs only to Ai's outgoing interface variables, and 
allowing the other agents to estimate the delay 
function for each such variable. 

2.3.5. Decision Making 
We are at last in a position to rewrite the statement 
with which we introduced this section, namely 

cost of decision making 

= E[delivered cost now] 

- E[delivered cost achievable by waiting] 

- cost of time lost by waiting, 

in more precise form, by using Eqs (2.14), (2.17) 
and (2.20). For each di, there is a "decision-making 
cost function" LoM(d~), 

LoM(d¢) = f-.a(d!*) -- LwArr(d]) -- Lz,Me.,(t),  (2.21) 

which is the estimated cost of immediately eliminating 
d] from its candidate domain. Af should keep the 
values of d] that cause LoM(d¢) to be greater than zero 
in the candidate domain of d] because waiting is 
promising. On the other hand, values causing Lou(d i )  
to be less than zero should be eliminated from the 
candidate domain, since waiting does not look 
profitable. A i can find the zero-crossing points by 
solving LDu(d]) -- 0, making it easy to eliminate 
costly regions of d{ (Fig. 5). This process of narrowing 
the candidate domains retains the robust optima, while 
steadily reducing the conceptual noise. If the candidate 
domains of every design variable shrink by 10~, 
then the remaining design space is only (9/10)" the size 
of the original space. Since the cost of time steadily 
increases, the process is guaranteed to converge 
eventually. 

0 to 2to ... t, t 

Off-candidate domain 

Candidate domain 

Fig. 4. Illustration of the cost function of time. Fig. 5. Illustration of the decision-making process. 
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The narrowing process should iterate until 

LD~a(d~) <_ 0 (2.22) 

over the candidate domain ofd i (or the new candidate 
domain of d~ is an empty set); that is, waiting is 
expected to produce a higher cost than making a 
decision now. Then, A i should pick the robust value 
of d~, d~*, as the final design decision. Note that d~*, 
as a result of assumption (5) in Section 2.1, is a feasible 
solution. 

2.4. Qualifications for Early Determination 

Eppinger et al. (1990, 1992) argue that concurrent 
engineering implies the introduction of more coupling 
into the design process, making tasks harder but 
reducing overall iterations, and that the balance 
between the gain in shrinking the iterative processes 
and the increased effort in solving a more sophisticated 
problem remains indeterminate. It is therefore 
important to use every opportunity to determine 
design variable values in isolation. We here present 
methods for correctly fixing selected variable values 
without waiting for preference information. 

More precisely, Ei, A{s internal design space has 
not been specifically addressed previously. However, 
the task may be greatly simplified if many of the purely 
internal design variables can be fixed by a purely 
internal process of A{s without the need for 
information exchange with other agents. For many 
well-designed development processes, the dimension 
of E~ should be larger than that of Yi or C i. 

In general, if a d{ in E~ is truly (not reasonably) 
independent from any other variables, then we can fix 
it without regard to the rest of the design. 
Independence may be hard to determine in a noisy 
environment, but d i in E~ meeting the following 
qualifications can be safely fixed, using the associated 
methods, prior to the iterative cooperation process. 

(Q2.1) If d{'s are monotonic variables in F~, fix using 
monotonieity analysis. 

(Q2.2) If di's do not cross-couple with any interface 
variables, fix using standard (possibly robust) 
optimization inside A~. 

Proof of Q2. I 
By assuming, d{ does not appear in any objective 
functions other than F~, and is monotonic in F~. Then 
the value of d! can be easily fixed by monotonicity 
analysis (Papalambros and Wilde, 1988). The total 
cost function is the sum of the agents' cost functions 
plus a constant (assumption (4) in Section 2.1). Since 
d{ is monotonic in F~ and appears nowhere else, for 
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Fig. 6. Graph representation of equation (2.23). 

any value of all other variables, the sum of the cost 
functions will be minimized at the same extremum of 
di's candidate domain. Therefore, we can fix d~ 
immediately at that extremum. [] 

Cross-coupling is defined using graph theory (Aho et 
at. 1983). Let each variable in Xg be a vertex. There is 
an edge between two vertices providing that there is 
at least one term of F~ containing the corresponding 
variables. Two variables are cross-coupled if they are 
connected (there exists a path between them). For 
example, with Eq. (2.23), 

F ~ = d ] - d ~ + d  2 - d ~ - d  4 + d ~ ( d ~ )  2, (2.23) 

we have the undirected graph in Fig. 6 in which f~l, 
fi2, fi3 and fi4 are terms of Fi. d~, di 2 and di 3 are 
mutually cross-coupled, while d 7 is cross-coupled with 
d~. However, d/4 and d~ do not cross-couple with d], 
d/2 or d{ and vice versa. In some of the literature, f~3 
and f~4, as a group, are also said to be additively 
separable from fil and f~2. 

Proof of  Q2.2 
Let Ei and ~;i partition Ei, where Ei is the space 
spanned by those design variables that are internal 
and do not cross-couple with any interface variables. 
As the total cost function is the sum of the agents' cost 
functions plus a constant (assumption (4) in Section 
2.1), F,~ can be separated from Ai's design task such 
that a new agent ~,~ will handle it with a new cost 
function F~. A~ has only internal design parameters 
and possibly physical noise. F~ + ~ = F~; Fi is the part 
of F~ that does not contain any interface variables in its 
expression. The d~ ~ ~;i can be determined earlier using 
optimization (if there is no physical noise), or the 
robust optimization techniques mentioned in Section 
1.4, regardless of interface variables. 

Since d~ appears in F'i and nowhere else, for any 
value of all other variables, the sum of the cost 
functions will be minimized at the same optimizer of 
di. Therefore, we can fix d~ immediately at that 
optimizer. [] 
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2.5. The Simultaneous Engineering Procedure (SEP) 

The following simultaneous engineering procedure 
(SEP) implements conceptually robust design and 
summarizes Section 2. 

Given a design task, for each agent Ai, concurrently, 
Begin 

Identify D i, C~, Yi, E~, Fi, ti and P~ if applicable; 

/*Defining the problem the ith agent is 
encountering: design spaces, interface variables, 
cost function, due time, and possibly physical 
noises. */ 

Determine some d{'s in E i through qualifications 
(Q2.1) and (Q2.2); 

/* Early determination process. */ 

Repeat Until all d~ are fixed: 
Transmit and receive candidate domains for 

C~, conceptual noises, and Yi, outgoing 
interface variables; 

For j := 1 to n c, 
Compute lz, dc~), marginal costs, using equa- 
tions (2.9) and (2.10); 

Communicate l~,i(c]). (For Yi, receive I~,,k(Yi), 
k = 1 , 2 , 3  . . . . .  m a n d k # i ) ;  

For j := 1 to n i, 
If d~ is not fixed, 

Begin 
Compute LA,~(d~), the total marginal 

cost, using (2.11); 
Compute Ld(di), the cost objective, using 

equations (2.12) and (2.13); 
j* 

Compute Ld(d~ ), the minimum cost 
objective, and find d~*, the robust value 
of d~, using equation (2.14); 

Compute LwA~r(d~), the expected achiev- 
able cost, using equation (2.15), (2.16) 
and (2.17); 

Compute Lrm~,~(t), the cost of time, 
using equation (2.20); 

Compute LDM(di), the cost of decision 
making, using equation (2.21); 

If LDM(d~) _< 0, /* Decision made on d i. ~ */ 
, • . - -  j* 

di  [ J ]  . - -  d i 

else 
/* Otherwise shrink the candidate domain. */ 

Eliminate from the candidate domain 
values of d~ that cause LDu(d~) < O; 

end; 
endrepeat; 

end. 

On finishing the procedure, agent Ai's design solution 
is the vector d*. 

3. Simple Illustrative Example 

We now illustrate the SEP on an example introduced 
by Krishna et aL (1991) to demonstrate their 
sequential decision strategies for distributed design 
(with the units converted into the SI system). The 
(highly simpified) example problem is to design a DC 
motor by determining the decision variables listed in 
Table 1, maximizing the output torque (performance) 
and minimizing the area occupied by the stator (space) 
as well as the sum of the areas occupied by the 
steel portion of the rotor and the copper (cost of 
materials). Krishnan et aL (1991) separate the design 
into three tasks, accomplished by three different 
agents, with different objectives (as summarized in 
Table 2). Table 3 shows the results under the condition 
that designers for these tasks make their decisions in 
isolation (without considering others' preference). 
Two conflicts are observed: dw* = dw* # dw~ and 
ad~ ~ d~. 

Krishnan et at. (1991) propose a sequential decision 
strategy (SDS) to solve this problem. They aim at 
minimizing the quality loss, which they define as the 
absolute value of the deviation from the optimal 
output obtained in isolation ([Ji--J*l). This is 
different from Taguchi's quadratic form ((J~ - j , )z) .  
They use the reciprocal of the magnitude of the isolated 
solutions, i.e. wl = 1/J*, to weigh the quality loss in 
computing the total quality loss. This quality loss 
function and these weightings seem to us rather 
arbitrary, but they do satisfy assumption (4) in Section 
2.1, and we will retain them to allow direct comparison. 

In this section, the design problem is solved using 
the SEP with the same three-agent configuration as in 
Krishnan et al. (1991); each agent is responsible for one 
task. In this example, there is no physical noise, 
P1 = P2 = P3 = ~:~; adding physical noises would 
complicate the integrations but have no other 
effect. 

This is an illustrative example; our purpose is to 
demonstrate the proposed SEP and compare it with 
the SDS. The scale of this problem does not 
convincingly need a cooperative design, and the 
physics and economies were simplified by Krishnan 
et al. (1991). 

3.1. Identification of Di, C;, ~], E~, F~ and tl 

We assign the following, with D = {cd, dw, od, nw, ad, 
id, tin}: 

For agent AI: (task T1) 

X 1 = {cd, dw}, D 1 = {ca, dw} 

C1 = ~ ,  Y1 = {dw}, E ,  = {cd}, 

t 1 = 10 days ,  F l ( d i )  = w l l J -  J*[. 
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Table 1. Design variables for a d.c. motor (Krishnan et al. 1991). 

Decision variables Symbol Bounds 

Armature diameter ad 
Motor inner diameter id 
Motor outer diameter od 
Diameter of windings dw 
Current density cd 
Turns of armature windings nw 
Thickness of magnet used tm 

0.254 _< ad < 0.3048 (meters) 
0.002 54 < id < 0.0762 (meters) 
0.508 _< od < 0.6096 (meters) 
0.000 254 < dw < 0.005 08 (meters) 
155 _< cd < 77 500 (amp/meter 2) 
1 < nw _< 1500 
0.00127 < t m <  0.0254 (meters) 

Table 2. Objectives as functions of variables (Krishnan et al. 1991). 

Task Task description Local objective functions to be minimized 

7"i Maximize output torque dl = - 1.57cd- dw 2 
T 2 Minimize space J2 = 0.785( od2 - adZ) - 0.26nw'dw2 
T 3 Minimize material cost Ja = 0-785( ad2 -- id2) - 2.lad-tin + 0.785dw 2 

Table 3. Isolated decisions (Krishnan et al. 1991). 

Task Isolated decisions 

T 1 cd* = 77 500; dw~ = 0.00508; J* = -3 .14 
T 2 ad* = 0.3048; od~ = 0.508; dw~ = 0.005 08; nw* = 1500; J ~ = 185.36 
T 3 ad* = 0.254; id~ = 0.0762; dw~ = 0.000254; tin* = 0.0254; J~ = 50.4351 

For  agent A2: (task T2) 

X 2 = {od, nw, ad, dw}, 

C~ = {dw}, 

t z = 10 days, 

D2 = {od, nw, ad}, 

Y= {ad}, 

Fz(dE, Cz) = w2l J2 - S ~l. 

E2 = {od, nw}, 

For  agent A 3 :  (task Ta) 

Xa = {id, tin, aa, dw}, D3 = {ia, ~m}, 
C a = {ad, dw}, Ya = ~,  

t 3 = 10 days, F3(d a, c3) = w 3 l J  3 - J~]. 

E 3 = {id, tm}, 

The cost functions are in the quality loss form defined 
by Krishnan et al. (1991). In  F~, both  w~ and J*  are 
constants  which do not  affect the isolated opt imizat ion 
results. However,  as the cost evaluat ion may  be 
communica ted  to other  agents, they are included for 
proper  value scaling. Assigning market  values to time, 
and finding realistic costs in monetary  units are critical 
tasks in cooperat ive design, but we have not  addressed 
them in this paper: we therefore use the weights 
proposed  by Krishnan et aI. (1991). The design team 
will meet daily (t o = 1 day); agents have the same 
starting time; and the cost  of  delaying the entire 
project, L r o r A r ,  is the sum of the weighted, isolated 
optimal results, w~J~; + w z J *  + w3J~. 

3.2. Determination of ~ ' s  in E i by Checking 
Qualifications (Q2.1) and (Q2.2) 

For  A 1, cd is the only internal variable. It satisfies 
qualification (Q2.1), because it causes Fl(dl)  to 
decrease monotonical ly .  Thus  A1 will fix cd at its upper  
bound; cd* = 77 500 amp/mete r  2. 

Regarding od and nw, A 2 will find that  both satisfy 
(Q2.1) (are mono ton ic  variables in Fz(dz,  ez)) while 
the former  also satisfies (Q2.2) (does no t  cross-couple 
ad or  dw). Her decisions on these two variables will 
be od* = 0 . 5 0 8  meters (the lower bound)  and 
nw* = 1500 turns (the upper  bound).  

For  A 3 , id satisfies (Q2.1) as well as (Q2.2); it causes 
Fa(da, c3) to decrease monotonica l ly  and does not  
cross-couple ad or dw. tm satisfies (Q2.1); it causes 
Fa(d3, c3) to decrease monotonical ly .  They should be 
determined as 0.0762 meters and 0.0254 meters (their 
upper bounds),  respectively. 

Thus, only dw and ad remain undetermined.  

3.3. lterative Narrowing of the Candidate Domains 

3.3.1. Transmission and Recept ion  o f  Candidate 

Domains for  Ci and Yi 
At this step, agents communica te  about  the candidate  
domains  of  the interface variables, dw and ad. The 
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messages are: 

From A 2 ~ Aa: 

0.254 < ad <_ 0.3048 (meters); 

From A 1 ~ A2, A3: 

0.000254 < dw < 0.00508 (meters). 

We assume that all the values in the candidate domain 
of a design variable are equally likely to be selected 
so the communicat ion does not include probabili ty 
functions. 

3.3.2. Computation and Communication of  la, i(c~) 
Usin9 Eqs (2.9) and (2.10) 
Here each agent computes the marginal cost for each 
of her conceptual noise factors (incoming interface 
variables): 

AI: N/A. 

1 f 0.3048 
- F2(dz, c2)lod*,,~*" d a d  

A2: Lc(dw) Iladt[ dad=O.254 

= -- 3261.2279dw 2 + 0.1802, 

where l['II denotes the size of the variable's 

candidate domain, and min[L~(dw)] = 0.0960, 
dw 

/A, 2(dw) = L~(dw) -- min[L~(dw)] 
dw 

= -- 3261.2279dw 2 + 0.0842. 

1 fo.ao48 
-- F3(d3, C3)lid.,tm.'d ad A3: Lc(dw) llad [I ,J~d=o.254 

= 24.1251dw 2 + 0.2904, 

and min[Lc(dw)] = 0.2904, 
dw 

Ia, 3(dw) = Lc(dw) - min[L~(dw)] 
dw 

= 24.1251dw2; 

1 l '  o.ooso8 
tc~ad ~ -- t F3(d3, c3)[ie*,,m*" ddw 

Itdwll ~aw=0.000254 
= 24.1251ad 2 -  1 .6393ad-  1.1399, 

and min[Lc(ad)] = 0,0002, 
ad 

IA, 3(ad) = Lc(ad ) -- min[Lc(ad)] 
ad 

= 2 4 . 1 2 5 1 a d 2 - 1 . 6 3 9 3 a d - l . 1 4 0 1 .  

After the above computations,  these marginal cost 
functions are transmitted to associated agents. 

3.3.3. Computation of  La,i(dJl) Using Eq. (2.11) 
After receiving the marginal cost functions, each agent 
computes the total marginal cost function for her 
outgoing interface variables. 

AI: Za, l(dw) = 1A,2(dw) + la,3(dw) 

= - 3237.1028dw 2 + 0.0842. 

A2: La.2(ad) = la.a(ad) 

= 24.1251ad 2 - 1.6393ad - 1.1401. 

A3: N/A. 

3.3.4. Computation of  £d(d{) Using Eqs (2.12) and 
(2.13) 
With the total marginal cost and equation (2.12), each 
agent computes the integrated cost function for each of 
the design variables that she controls. 

AI: Ld(dw) = F1(dl)lcd. 

= " 3 8  750.0775dw 2 + 1, 

=~ Ld(dw) = Ld(dw) + LA, l(dw) 

= -41987.1803dw 2 + 1.0842. 

A2: La(ad)= l ~ ~0.00508 
F2(d 2, cz)loa, ,w." d dw 

t]dwll ,/aw=0.000254 

= - 6.5643ad 2 + 0.6645, 

£d(ad) = Ld(ad ) + La.2(ad) 

= 17.5609ad 2 -  1 .6393ad-  0.4756. 

A3: N/A. 

^ j* 
3.3.5. Computation of  Ld(d i ) and Find d~* Using 
Eq. (2.14) 
In this step, agents find the robust values for the design 
variables - those that  minimize the expected cost 
functions. 

A 1 : £d(dw*) = 0.0006, dw* = 0.005 08. 

A2: Ld(ad* ) = 0,2410, ad* = 0.254. 

Aa: N/A. 

3.3.6. Computation of  Lwarr(di) Using Eqs (2.15), 
(2.16) and (2.17) 
Agents now estimate the expected achievable cost. 

A 1 : There is no conceptual noise (C1 = ~ ) .  Therefore, 
the decision should be d w * =  0.00508, because 
waiting is unnecessary. 
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A2: Ld~(ad, dw) = F z ( d 2 ,  ez)lod,.nw. 

= 0 .6940-  6.5643ad z -- 3261.2279dw 2, 

ALad, dw = max {Ld(ad) - min[Lac(ad, dw)]} 

= 0.0546, 

LwA1r(ad) = £d(ad) -- ALo~,dw 

= 17.5609ad 2-1 .6393ad-0 .5302.  

(Note that A1 has made a decision on dw. With 
prompt  communication, A z can make a determin- 
istic decision on ad without computing LwAzr(ad) 
and LriM~,i(t ). However, in order to illustrate the 
process, we assume that this piece of information 
is not communicated until the next meeting.) 

A3: N/A. 

When there is no conceptual noise (as for A0,  then 
the expected available cost is the immediate, integrated 
cost objective. 

3.3.7. Computation of Lr1Me, i(t) Usin 9 Eq. (2.20) 
We will use the quadratic form, Ld~t~y,i(t)= kt.t 2, 
suggested in Chang et al. (1994), with t o = 1 day, 
ti = 10 days, LTOrA c = 3. From equation (2.19c), 

LTOTA L 3 
kz -- 2t i -- 2" 10" 

The quadratic form satisfies the criteria in equations 
(2.19). For the first iteration, equation (2.20) yields 

LrxMe ' 1(1) = Lr1Me,2(t ) = LrIME,3(1 ) = 0.15. 

3.3.8. Computation of LDM(d{) Usin9 Eq. (2.21) 
Combining the results in Sections 3.3.5, 3.3.6 and 3.3.7, 
we have the cost of immediate decision-making: 

A 1 : N/A. 

A2: LoM(ad) = - 17.5609ad 2 + 1.6393ad + 0.6212. 

A3: N/A. 

3.3.9. Decision Makin9 
Figure 7 shows that LDM(ad ) is negative within its 
candidate domains. Thus, the iteration stops here; 
the answer found for ad is 0.254 meters. 

0 L 

LoM (~a) } t 
0.25 0.26 0.27 0.28 0.29 013 0.31 

ad 

Fig. 7. LoM over the candidate domain. 

The solution found using the SEP process can be 
summarized as 

ad* = 0.254 meters, 

od* = 0.508 meters, 

cd* = 775 00 amp/meter  z, 

tm = 0.0254 meters. 

id* = 0.0762 meters, 

dw* = 0.005 08 meters, 

nw* = 1500 turns, 

It duplicates that of Krishnan et al. (1991). Readers 
can easily verify that this is the global optimizer for 
the DC motor  design. Notice that the global opt imum 
happens at values of the isolated optimal decisions 
(ad* = ad* and dw* = dw~). 

3.4. Different Weightings 

This section explores what happens when the global 
opt imum lies off all the isolated optimal decisions. To 
do so, the weighting is switched to wl = WE = 1 and 

1517 (left in fraction form because this problem 
is very sensitive to the number). The SEP will find 
the global opt imum at ad* =0.2794 meters the 
sequential strategy will continue to return the old 
value, 0.254. 

3.4.1. Result of Sequential Decision Strategies (SDS) 
Using the SDS procedure proposed by Krishnan et 
al. (t991), the optimal sequence is either T 1 ~ Tz ~ T3 
or T1---' T3 ~ Tz. The solution is the same as in 
Section 3.3, except that ad can be either 0.254 or 0.3048. 
The resulting total quality loss is 30.3713. SDS fails 
to find the global optimum. 

3.4.2. Results of the SEP 
Following the SEP, we have 

A 1 • dw* = 0.005 08 (no conceptual noise). 

A 2" LDM(ad ) = - 147.9548ad 2 -4- 82.6772ad - 13.1602, 
ad* = 0.2794. 

A 3" N/A. 

Again, Fig. 8 shows that LoM(ad ) is negative within 
its candidate domain and the answer found for ad is 
0.2794 meters. 

-1.9 

-2A 
0.25 0.26 0.27 0.½8 0.½9 0~3 0.31 

ad 

Fig. 8. Lo~ over the candidate domain. 
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The summarized solution, 

ad* = 0.2794 meters, 

od* = 0.508 meters, 

cd* = 775 00 amp/meter  2, 

tm* = 0.0254 meters, 

id* = 0.0762 meters, 

dw* = 0.005 08 meters, 

nw* = 1500 turns, 

coincides with the global optimum. 

3.5. Ignorance of the Qualifications for Early 
Determination 

In Section 3.2, we fixed the values of cd, od, nw, id and 
tm without iteration, using qualifications (Q2.1) and 
(Q2.2). What if we did not do so? As an example, 
Lc(dw) for agent A 2 would become 

L c ( d w )  : 1 f0,3048 f1500 ~0.6096 
l l o d  ll " l l n w t l  " l i a d  l] Jad=0.254 d n w =  l clod=0.508 
x F2(d2, c2)" d od" d nw" dad ,  

which requires much more computation than the one 
in Section 3.3.2. 

Even worse, this more complex process produces 
an inferior solution. Using the weighting function set 
in Section 3.4, following the SEP without the 
qualification check changes the result such that 
ad*= 0.254 meters. This is because averaging over 
values of tm from its optimal value to the lower bound 
weakens the advantage of a large ad (or the influence 
of the term -2 . lad . t in) .  In other words, this ad* 
(0.254) is a robust response to the uncertainty of trn, 
but this robustness is unnecessary because tm can be 
fixed earlier. 

Furthermore, higher uncertainty usually requires 
more iterations to converge. 

Fortunately, in well-decomposed design problems, 
we can hope that a majority of variables can be 
fixed by isolated processes. The criteria for doing so 
are an important feature of the SEP. 

3.6. The Influence of the Cost of Time 

If we set LrxME, i(t) = 0 (no time pressure), the result 
of the first iteration in Section 3.4.2 fixes dw only. An 
additional iteration is needed, but the final solution is 
the same, showing the cost of time contributes to rapid 
convergence. In some cases, in which time pressure is 
very strong and the information is quite vague, the 
solutions may be quite different with and without time 
pressure. 

3.7. Comparison with Sequential Decision Strategies 

The simultaneous engineering procedure (SEP) 
appears superior to the sequential decision strategy 
(SDS) in this respect: the SEP is not restricted to 
isolated, local results, and thus may achieve or 
approximate the true optimum for a wider variety of 
problem types. 

SDS works well when the global opt imum 
coincidentally happens at the values where isolated 
optima lie. However, it fails to locate the global 
optimum in the case depicted in Section 3.4. Actually, 
for this particular case, the ad* found using the 
optimum sequence in SDS is located as far as possible 
from where the globally optimal value locates. 

Conversely, for this case SEP can quickly converge 
to a good solution. Still, the result obtained in Section 
3.4.2 does not imply that the integrated solution found 
using SEP will duplicate the global optimum in every 
case: there is a price to be paid for concurrency. At 
best, we hope eventually to be able to estimate the 
expected deviation from the true optimum as a 
function of the level of time pressure. 

Despite the performance difference, there are 
interesting similarities between the ideas proposed by 
Krishnan et al. (1991) and ours. Their idea of using 
exclusive groups is close to our idea of design space 
partitioning, while our marginal cost is somewhat 
akin to their partial quality loss. 

However, Krishnan et al. (1991) do not allow 
their exclusive groups to communicate, but rely on 
communication by the groups with a central authority 
that sequences their decisions. This approach restricts 
their overall result to some combination of the results 
achievable in isolation. We do not require sequencing 
or much central authority, but do allow our agents to 
communicate. 

Our marginal cost provides feedback to integrate 
the agents' decisions, considering the influence of the 
yet-to-be fixed variables. Their partial quality loss 
does neither, but is a substitute for a global cost 
function. 

To conclude, the fundamental distinction is that 
they make decisions early in isolation, then adjust the 
decision sequence to minimize the cost of isolation, 
while we leave the uncertain decisions open until we 
have sufficient information to fix them. 

4. Discussion and Future Work 

We have defined a procedure, and demonstrated it on 
a simple problem. However, the work raises as many 
questions as it answers. We first discuss some 
theoretical issues; then a practical one. 
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4.1. Foundations 

The SEP seems plausible to us, but there is no formal 
connection between our assumptions and the proce- 
dure. We would like to axiomatize the procedure. The 
treatment of game theory by Van Neumann and 
Morgenstern (1964) is a suggestive example, because 
SEP is a form of cooperative game. 

We assume that individual agents have their own 
cost evaluations and the results are all in a common, 
additive unit with an external reference (e.g. dollars). 
This assumption may be relaxed somewhat if the 
agents act as buyers and sellers, as in Wellman (1994), 
Vasseur et al. (1993), and Cook (1992). The goods in 
this case would be the possibilities (or options) of the 
design variables and the price bidding would show the 
preferences of the buyers (interested agents). The 
"trade" among agents represents the communication 
and the "bidding strategies" (decisions) are based on 
utility functions, no matter whether they are additive 
or not. Consumers could also be agents in the design 
group. 

4.2. Computational Complexity vs Optimality 

Most computations in the SEP are integrations. 
Integration can usually be done numerically, if not 
analytically, but may be slow. Even without analytical 
equations, empirical data can be used to find the 
solution by curve-fitting, or by replacing the integrals 
with summations. The procedure can therefore easily 
be extended to the mixed discrete-continuous case. 

The other computational problem is to find the 
candidate domain. We solve for one variable at a 
time - a line search. The example uses graphical 
methods, but the solution can be obtained formally 
by solving LD~t(di)= 0, finding the zero-crossing 
points. 

However, we have yet to define a measure of the 
computational cost of the SEP. Its complexity, as a 
function of the size of the problem, depends on the 
amount of time pressure: there is a tradeoff between 
how close the answer comes to the global optimum, 
and the time required to find it (Eppinger et at. 1990, 
1992). We would like to derive an analytical formula 
for this tradeoff, but it seems unlikely, since no 
centralized procedure can guarantee a global optimum 
in finite time. Perhaps some probabilistic result, or 
one dependent on the problem, is possible. 

Without such a theory, or experiments, we cannot 
even be confident that our distributed process is faster 
than a centralized, standard optimization process. It 
may be useful even if slower, simply because it does 
not require a single model to be formulated. But our 

guess is that it can be much faster: we need a way to 
test the guess. 

4.3. Variable Independence and Constrained Problems 

We assumed feasibility within the candidate domains 
and the reasonable independence of variables, so that 
we can use line search. We have not developed a 
precise measure of reasonable independence, nor do 
we know how common problems can be reformulated 
to provide reasonable independence, although users 
of Taguchi's methods seem to incorporate this 
assumption with fairly good affects. It seems possible 
that by using appropriate combinations of variables, 
adding variables, eliminating equality constraints by 
substitution, and replacing inequality constraints with 
penalty functions (see Chapter 9 in Bazaraa 1993), or 
perhaps the quadratic penalty functions used by 
Taguchi), most problems can be recast to involve 
only reasonably independent, unconstrained decision 
variables. Formalizing and proving this conjecture is 
a research task. 

Another approach is to interleave constraint 
reasoning based on intervals, as in Ward and Seering 
(1993a, 1993b), with SEP. In this case feasibility and 
candidacy will be examined in parallel. This combina- 
tion allows the constraints to be built-up, instead of 
specified firmly in the beginning - an advantage, 
because designers often do not initially fully 
understand how, when, and where to apply what 
constraints. 

A third approach is to use constraint checking only 
during minimization, at Eqs (2.7), (2.10) and (2.14). 
The presence of noise complicates the meaning 
of constraints, since a solution may violate the 
constraints for some circumstances but not for others. 
This problem can be addressed by using a threshold 
probability of satisfying the constraints (Siddall 1983; 
Otto and Antonsson 1993). That is, the constraints in 
the problem 

minimize Fi(di ,  ci, Pi) "~ (4. t ) 
subject to g((d i, c,, Pi) < 0 J 

can be replaced by probabilistic constraints: 

min[Pr(g~(d~, ci, Pi) <- 0)] > 6. 
J 

Here ] indexes the constraints and 6 is the acceptable 
probability threshold of meeting constraints. For 
instance, suppose At has constraints as in Eq. (4.1): 
she would do the constraint checking using 

min i  Pr (g~(d~,c~,pi)l > (~ (4.2) 
i L O,\dl 

C~,Pi 
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in conjunction with the minimization of (2.14). For 
the operations associated with Eqs (2.7) and (2.10), 
the examined spaces in Eq. (4.2) would be changed. 

Probabilistic constraint checking is hard to 
incorporate into qualifications (Q2.1) and (Q2.2) for 
early value determination, because the bounds of 
domains are not always available. Nevertheless, 
agents should try to reduce the number of parameters 
by conducting monotonicity analysis. 

Constraint checking would allow relaxation of the 
feasibility assumption 5 in Section 2.1. The candidate 
domains could then range over all rational values 
to the design variables at the beginning of the 
process. 

4.4. Practical Utility 

The example problem is too simple to provide real 
feedback on the utility of the SEP for large-scale 
practical engineering problems. The great advantage 
of the SEP is that it does not require either a 
centralized utility function, or compatibility in speed 
or level of detail in the models used by the design 
agents. It is possible, for example, for one agent to 
explore a wide variety of solutions using a fast 
analytical model, achieving a highly optimized 
subsystem, while another uses a complex finite element 
code to achieve a merely good solution based on a 
limited number of runs. To explore these advantages 
more fully, we will need to test it on real problems. 
We are currently working with Ford and Whirlpool 
on industrial tests. 

5. Conclusion 

In this article we have extended the conceptual 
robustness approach to simultaneous engineering 
from discrete levels to continuous spaces. With the 
assumptions made, each designer in the team can 
identify both physical and conceptual noise. She will 
make robust decisions based on a criterion which 
comprises expected quality loss and timeliness. The 
criterion is easily implemented in many circumstances, 
and is based on plausible considerations, but we have 
not formalized it. The design process must converge 
because of a satisfactory result, or the time pressure, or 
both to approximately minimize the overall cost 
(where we have not formalized "approximately"). 

The qualifications for early determination contribute 
significantly to problem simplification, and establish a 
partial ordering of tasks, increasing both speed and 
solution quality. 

The example illustrates an advantage of the 

proposed simultaneous engineering procedure in 
comparison with sequential designs, and the con- 
tribution of the qualifications for early determination 
and the cost of time. 

The proposed procedure is still subject to limitations 
embedded in the assumptions. First, the functions used 
to compute induced design variables (or performance 
variables) from design variables have to be com- 
municated along with the domains of the design 
variables. The substitution of these functions into 
the cost objective functions may be cumbersome. 

Second, the global reference of the cost evaluation 
is hard to define for a large-scale design task. Believing 
that utility theory does not provide effective evaluation 
among agents because it is inherently individual, we 
envision that cost and revenue concepts, as in market 
economics, will play a major role in distributed design 
plans. 

Third, there are a variety of possible strategies for 
dealing with constraints, and we do not know how to 
compare them yet. 

Innovative concepts in this paper are closely related 
to both "distributed design" (Finger and Dixon, 1989) 
and distributed optimization. In distributed design as 
defined by Finger and Dixon, interdependent variables 
are fixed through a hierarchical decision structure or 
in isolation. Conversely, we advocate parallel decision 
making with peer-to-peer communication to integrate 
the design. Distributed optimization work normally 
addresses large optimal design problems that are 
decomposed for easier solution. We envision the 
reverse process, in which local problems are partially 
integrated through an efficient communication 
process. We will further explore these concepts in real 
engineering applications as well as through analytical 
studies. 
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Table of Nomenclature 

Ai 
Ci 
Ci 

D 

the ith design agent 
the space of conceptual noise factors of Ai 
a vector in Ci 
thejth conceptual noise factor or one-dimensional 
subspace in C i 
the space containing all the design variables 
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Oi 
ai 
d~ 
d! 

d~* 
l 

Ei 

E 

gi 
i 
j,j,  
L 
L,, 

Ld 
L~ 

Ldc 

ALd~,c'~ 

Ldelay, i 
LDM 

LTIME. i 
LTOTAL 
LwmT 

^ 

LWAIT 

LA. i 

m 
n 

Hi 

P, 

Pi 
t 
to 
ti 

Xi 

Xi 

A 

the design space controlled by A i 
a vector in D i 

the solution of Ai's design 
the j t h  design variable or one-dimensional 
subspace in Di 
the value of d{ that minimizes the cost/~a(di) 
(the j th  element of d*) 
the space of A~'s purely internal design variables 
the cost function of A~ in which physical 
noise is explicit 
the cost function of A~; f~ integrated over the 
physical noise 
the j th  constraint in A/'s design 
agent index 
variable and noise factor indices 
cost function 
isolated cost, as a function of a conceptual 
noise factor 
isolated cost, as a function of a design variable 
integrated cost, as a function of a design 
variable 
cost, as a function of a design variable and 
a conceptual noise factor 
maximum cost improvement to be gained 
by waiting until c k is fixed before fixing d] 
cost as a function of time delay for Ai 
cost of eliminating a value of a design variable 
immediately 
cost of waiting one time period for Ai 
cost of delaying the whole design project 
expected cost, as a function of a design 
variable, achievable by waiting until all con- 
ceptual noises have been fixed before fixing the 
variable 
true cost, as a function of a design variable, 
achievable by waiting until all conceptual 
noises have been fixed before fixing the variable 
total marginal cost to other agents of Ai's 
decisions on an interface variable 
marginal cost to A~ of another agent's decisions 
on an interface variable 
number of agents 
dimension of D 
dimension of D i 
dimension of Ci 
the space containing physical noise factors 
of A i 
a vector in Pi 
time 
time period between meetings 
due time for Ai 
the space containing all the factors that 
affect Ai's design 
a position vector in Xi 
the space containing the interdependent design 
variables controlled by A~ 
the j th  interdependent design variable or 
one-dimensional subspace of Y~ 

P 
d im( ' )  
E[-] 
P,(-) 
\ 
I 

probability density function 
dimension of a space 
expectation 
probability 
set of space subtraction 
condition []  
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