
Research in Engineering Design (1995) 7:6%85
© 1995 Springer-Verlag London Limited

Research in

El gineering
eslgn

Conceptual Robustness in Simultaneous Engineering: A Formulation in
Continuous Spaces

Tzyy-Shuh Chang and Allen C. Ward
Design Laboratory, Department of Mechanical Engineering and Applied Mechanics, University of Michigan, USA

Abstract. This paper develops a robust and distributed
decision-making procedure for mathematically modelin 9 and
computationally supporting simultaneous decision-making by
members of an engineering team. The procedure (1) treats
variations in the design posed by other members of the design
team as conceptual noise; (2) incorporates such noise factors
into conceptually robust decision-making; (3) provides
preference information to other team members on the variables
they control; and (4) determines whether to execute the
conceptually robust decision or to wait for further design
certainty. While Chang et al. (1994) extended Taguchi's
approach to such simultaneous decision-making, this paper
uses a continuous formulation and discusses the foundations
of the procedure in greater detail. The method is demonstrated
by a simple distributed design process for a DC motor, and
the results are compared with those obtained for the same
problem using sequential decision strategies in Krishnan et
al. (1991).

Keywords. Agents; Conceptual robustness; Concurrent
engineering; Distributed concurrent engineering;
Distributed decision making

1. Introduction

1.1. Motivation

Simultaneous or concurrent engineering normally
refers to recent efforts in development management to
increase the degree to which design tasks, especially
product and manufacturing process design tasks, are
conducted at the same time. The idea is not new -
Henry Ford and perhaps the designers of the pyramids
practiced highly concurrent design processes - but it
received much attention after Clark and Fujimoto

Correspondence and offprint requests to: Allen C. Ward, Design
Laboratory, Department of Mechanical Engineering and Applied
Mechanics, University of Michigan, Ann Arbor, MI 48109-2125;
Tel: (313)936-0353 (email: award@dip.eecs.umich.edu).

(1991) demonstrated that new model design at
American motor companies took much longer than
their Japanese counterparts, and attributed the
difference mostly to increased concurrency in sheet
metal part and die design. Early introduction of the
product to the market usually implies a longer sales
life and a larger market share (Smith and Reinertsen
1991), so American industry has imitated the practices
that Clark and Fujimoto credited with success.

Despite the clear success and long history of
simultaneous engineering, it lacks a theoretical basis.
Mathematical and computing tools to support
simultaneous engineering are not yet fully developed,
nor do we have a mathematical model of the process,
While computer science research in parallel processing
should have alerted the design community that
concurrent processes must often be very different from
sequential ones, little attention has been paid to the
logical foundation of concurrent design decision-
making.

The most common, usually implicit, process model
in the design literature is hill-climbing, in which a
sequence of designs is developed, each design better
than the last. Concurrent engineering efforts have
focused on increasing the speed with which each
successive design is passed around among the various
members of the team, either by physically locating the
team closer together, or by providing computational
tools that accelerate communication (e.g. Bond and
Ricci 1992). In this point-based approach, a change
made by one member of the team is likely to produce
changes on others, these in turn producing more
changes, in a chain reaction. There is no fundamental
reason for the change process ever to converge.

To minimize iterative cost, decisions about the
interdependent decision variables among the com-
ponents of a system (for example, the space available
for an engine) or between the product and its
manufacturing processes are often made by a higher-
ranking manager or by one of the several involved

68 T.-S. Chang and A. C. Ward

parties in isolation (e.g. Eppinger et al. 1990,
1992) that is, ignoring interdependence. This
approach often results in either conflicts in the later
stages of product development or lost quality, because
decisions are made with insutficient data. Iteration
may be required to resolve the conflicts or correct the
errors.

Conversely, Ward et al. (1995) observe that engineers
at Toyota (which has the most rapid and concurrent
design process in the automobile industry) com-
municate about the sets of possibilities rather than
changes to a single design. This communication
supports increased concurrency because decision-
makers can take into account the range of decisions
that other members of the team may produce.

This paper moves toward a methematical model of
distributed, simultaneous design decision-making
based on communication about sets of possibilities.
We intend that ultimately the model will satisfy several
criteria. First, it should be entirely distributed, in that:

1. Different design agents can develop local design
criteria which can be completely invisible to any
central authority or to other design agents. A global
objective function may be provided from which the
agents will derive parts of their local functions, but
none is required. There is no central representation
of constraints.

2. Local design agents can make all design decisions;
no central authority is required to mediate among
local agents, establish values for interface variables,
or determine in detail the sequence in which they
make decisions. A central authority (or a negotiating
process) need only determine which interface
variables are controlled by which agents, the time
at which each agent should be finished with all
decisions, and the cost of delay for the entire project.

3. Local processes can proceed at different speeds,
depending on the speed of the analysis and synthesis
methods used by each agent.

An agent is a module (human or computational) that
performs design activities based on its own knowledge
and interests, interacting with others. Agents are a
common idea in the distributed decision community;
applications relevant to design can be found in Ahn
and Crawford (1994), Cutkosky and Tenenbaum
(1990), Cutkosky et al. (1994), Birmingham et al.
(1993), Darr and Birmingham (1994), and Wellman
(1993, 1994).

Second, the process should be integrated, in that the
various agents take into account the most important
needs of other agents, based on an efficient com-
munication process.

Third, the model should guarantee convergence, in
the sense that a solution will be found in a time
appropriate to the cost of delay.

Fourth, the solution on which the model converges
should be approximately optimal, in the sense that the
possible difference between the solution found and
the solution that would be found using a perfect,
centralized, global optimization procedure is small in
most situations.

Fifth, with realistic assumptions about distributed
and centralized processing power, the process should
be faster than a centralized one.

We have not yet established all these properties.
This paper discusses an early version of the model,
and its performance on a problem defined by Krishnan
et al. (1991).

1.2. Concept

Our approach is based on conceptual robustness: the
idea that members of a team can make simultaneous,
interdependent decisions by treating their uncertainty
about others' derisions as a kind of noise, then
applying robust optimization techniques. The solutions
most robust against this conceptual noise may not be
those most appealing after the concentual noise has
been eliminated; therefore, team members must
consider the cost of time in deciding whether to
implement the conceptually robust solution, or wait
for more decisions by others. Finally, team members
need to provide each other with some sense of the
impact their decisions have on the rest of the design.
We propose formal techniques for accomplishing
these tasks.

We have done so before, in Chang et al. (1994),
using Taguchi's parameter design methods as a
starting point. In this paper, we start instead with
traditional continuous optimization theory. This shift
broadens the field of interest and provides insight. We
develop a procedure, illustrate it on a problem taken
from the distributed design literature (Krishnan et at.
1991), and compare our results with those produced
by the sequential method originally advocated for the
problem.

Section 1.3 describes generally related work. The
concepts, assumptions, notation, equations, and algo-
rithm schema for our simultaneous engineering
procedure (SEP) are in Section 2. Section 3
demonstrates the SEP step by step on an illustrative
example, discusses the results of different cases, and
compares SEP to the sequential decision strategies
(SDS) proposed by Krishnan et al. (1991). Section 4
discusses such issues as computational complexity and
extension to constrained problems. Section 5 concludes.

Conceptual Robustness in Simultaneous Engineering 69

1.3. Related Work

Related topics include robust design, set-based
reasoning, the value of information in decision-
making, timelessness, and distributed design and
optimization.

This paper has adopted two important ideas
advocated by Taguchi: robustness and search over each
variable independently (Taguchi 1986, 1987; Taguchi
and Clausing 1990). By extending Taguchi's method,
Chang et al. (1994) present a procedure for
simultaneous engineering while introducing the
concepts of conceptual robustness, marginal quality loss
along with timeliness. Wilde (1991, 1992), Otto and
Antonsson (1993), and Michelena and Agogino (1991)
provided methods for incorporating robustness
(through not single-variable search, discussed later)
into the standard optimization framework. Genetic
algorithms (Goldberg, 1989), abstractions of natural
evolution, provide another approach for robust design
that could easily be incorporated into our framework:
imitating natural selection, the robust designs
"survive" after "generations".

Ward et al. (1995) report that the first and best
practitioner of modern concurrent engineering, the
Toyota Motor Company, uses a highly set-based
process. Ward and Seering (1993a, 1993b) define a
formal mechanism, the labeled interval calculus (LIC),
for narrowing a set of possibilities by eliminating
infeasible regions. However, LIC does not provide
methods for making decisions within the feasible
region in a distributed, simultaneous engineering
configuration; the mechanisms described here do.

Bradley and Agogino (1991) address the value of
information by claiming that the designer should
make a selection with negligible expected value of
perfect information (EVPI), but do not define
negligibility.

Bond and Ricci (1992) state in their paper that time
and cost are the factors influencing the project
decisions. Ulrich et al. (1993) argue that apart from
the design and manufacturing costs, the cost of time
should be included in the decision-making process.
They do not incorporate an explicit cost function for
time, like the one used here.

Eppinger et al. (1990, 1992) and Krishnan et at.
(1991) discuss design sequence coordination. Section
3.7 will discuss sequential design methodology
(Krishnan et aL 1991) in detail. They address
interdependence by ignoring it (making the decision
in isolation), interaction, or task decoupling through
an early decision by a central authority. These
approaches are common in distributed design,
according to Finger and Dixon (1989).

Wagner and Papalambros (1993) survey a large
class of optimization work in decomposition analysis.
A well-known example is the multidisciplinary design
optimization techniques of Sobieszczanski-Sobieski et
aI. (Sobieszczanski-Sobieski et al. 1985; Sobieszczanski-
Sobieski and Tulinius 1991; Consoli and Sobieszczan-
ski 1992). Decomposition analysis is a procedure for
solving well-defined optimization problems more
quickly through a distributed process. We, in addition,
address design activities in which such an overall
optimization objective is hard to form. For instance,
a power train which involves 128 variables (Wagner
1993) may have an optimization objective and require
decomposition analysis to solve this optimization
problem. However, designing a car may involve so
many variables that it is virtually impossible to
define the overall optimization objective, with parts
designed in many geographic locations. Consequently,
subsystems such as engine, suspension, etc., are
designed by multi-functional teams separately, but not
in isolation. That is, no complete overall objective
function can be defined, but each team must take into
account the needs of other teams in formulating its
own objective. Our method, in lieu of solving the
overall objective, formulates and solves cooperative
design tasks. More particularly, it can be rationally
used by any agent involved in a cooperative design,
whether or not it is used by other agents.

2. Formulation of Simultaneous Engineering
in Continuous Spaces

The performance of a design is a function of
manufacturing variations and variations in the
environment of use. The utility of the result of a design
decision may also depend on other decisions not yet
completed.

Let the delivered cost include the costs of
manufacture, etc., as well as the performance cost
relative to some datum design: it corresponds to the
objective function to be minimized in conventional
optimization. It is always possible for the designers of
a subsystem to make decisions immediately, producing
the best design possible now (though it may perform
badly with some possible decisions by others). Then,
we have

E[delivered cost now]

= f(current decisions,

manufacturing and environmental noises,

others' design decisions),

where E[.] represents the expected value.

70 T.-S. Chang and A. C. Ward

Conversely, at any time, a subsystem designer may
achieve a better design by waiting for more
information before making a decision. In particular,
the more decisions are made first by others, the better
the designer's decisions will fit the whole system. But
waiting is expensive; someone has to decide first; and
the other's decisions may preclude a good subsystem
design. We have:

cost of decision making

= E[detivered cost now]

- E[delivered cost achievable by waiting]

- cost of time lost by waiting;

this balances the gain from waiting and the loss in time.
The delivered cost for the subsystem is not only the

isolated cost directly perceivable by the subsystem
designer, but also includes costs imposed on other
parts of the design. These costs are hard to estimate
and represent. It is easier to deal with the marginal
cost: the increase from some datum imposed on other
parts of the design by the designer's decisions. Hence:

E[delivered cost] ~ E[isolated cost]

+ E[marginal costs imposed].

This section expands these ideas into a complete
procedure.

2.1. Bas ic A s s u m p t i o n s

The design problem will be set up based on these
assumptions.

1. There are only two basic kinds of variables
involved in the design: physical noises, if they exist,
and design variables. All the induced variables and
equality constraints have been eliminated using
substitution.

2. Design variables take continuous values. Chang
et al. (1994) have demonstrated an approach
to discrete-valued problems based on Taguchi's
method.

3. Agents have restricted ability to understand each
other's tasks, and no central authority can establish a
complete overall objective function. Some variables
may be identified as interface variables, of interest to
more than one agent, but even for these, only a
restricted amount of communication about the effect
of the variable is possible. This is usually true for
complex system designs (e.g. Bond and Ricci 1992).

4. The overall cost evaluation is the sum of the
individual agent's cost functions, plus a constant. This
implies that while actions by one agent may affect the

costs of others, and there may be some overlap
between the cost effects or some fixed costs that are
not assigned to any agent; agents can estimate with
reasonable accuracy the effect of a change in their local
costs on the overall cost. This paper does not address
how to set up these functions; we expect to argue in
future work that both cost and profit functions are
needed, with monetary units. We simply assume all
the cost function outputs have the same unit - dollars,
which has a common ground for value transmission
from individual to individual and is additive.

5. All design processes operate over candidate
domains of the design parameters, and all designs in
these candidate domains are feasible. Ward and
Seering (1993a, 1993b) have described propagation
mechanisms for distributed inferences about feasibility,
and at some point those methods should be integrated
with these, but for the present we will assume that
feasibility is enforced by methods external to this
paper.

6. Design parameters are reasonably independent.
This assumption is based on the extension of the
Taguchi method, because it is well known and well
studied (Otto and Antonsson 1993). Other robust
design techniques may not require this assumption.
We will discuss this assumption below.

We recognize that not all the design tasks satisfy these
assumptions: we intend only to provide a simplified
basis for early study. As discussed in Section 4, we
will work at relaxing some of these assumptions
in the future.

2.2. Def in i t ions

1. There are m agents, Ai, i = 1, 2, 3 m, in a
network that allows bi-directional communication
between any pair of agents. In graph theory (Aho et
al. 1983), one can view this network as a fully
connected, non-directional graph by treating each
agent as a node.

2. There are n design variables d{ spanning space
D, to be decided by the design team. We will denote
any particular vector of values in D by d, and use the
same convention for other spaces.

3. Subspaces D~ partition D. That is,

and

~ Di = ~Z ~, (2 .1a)
i = l

• D~ = D. (2.1b)

Conceptual Robustness in Simultaneous Engineering 71

The dimension of Di is n~, dim(Di) = hi, where

~ n i = n. (2.1c)
i=1

Namely, for any variable d~ in D~, agent A~ alone will
make decisions. This means individual yet inter-
dependent decisions, rather than consensus, are
expected. D~ can be null, in the case that A/ acts
as an evaluator, such as a consumer. Also, there
is no restriction on the partitioning - it could be
object-oriented or discipline-oriented (Wagner 1993),
based on the needs of the team. For example, D/can
be a component (engine, suspension, etc.) designer of
a car; she or he can be the manufacturing engineer
for the component, too.

4. f/ is the isolated cost function that A~ would
minimize in the absence of information about the effect
of her decisions on others.

5. A space X/ represents the distinct factors that
matter in Ai's design. That is, fi = f~(x/), where xl e Xv
Xi may include physical noises and variables
controlled by other agents, as well as the variables D~
that agent A~ controls.

6. Subspace C~ comprises A~'s incoming interface
variables (or conceptual noise):

C i = (Xl ~ D)kDi. (2.2)

These are the decision variables controlled by other
members of the design team but important to Av The
definition implies C~ ~ D~ = ~ , and

C ---- ~) Ci ---- D. (2.3)
i=1

Some design variables may not be interface variables.
Dim(C/) = n c.

7. The space of physical noises for A~ is

P, = X,k(D, w C~). (2.4)

X i = D i u C i u P I.

8. The space of Ai's outgoing interface variables,
Yi, is

Y, = D, c~ (CkC,). (2.5)

Yi ~ Di .

9. El ,

variables
the space of Afs purely internal design
(the variables that do not affect others'

design processes), is

El = D i \ Y i. (2.6)

Equations (2.2) and (2.4) imply that D/, C~ and P/
partition Xi. Thus, x~ = [d~,c~,pi] and the cost
function f/(x/) can be written as f/(d~, c/,p/) where
di E Di, ci ~ Ci, and Pi ~ Pi.

2.3. Problem Formulation

Agents face uncertainty about physical noise and
decisions to be made by other agents. For each agent,
an isolated, immediate formulation of the problem is:
find a d{* for every d{ in Di, or a d* e Di, such that

L (a,)=fcfe fi(di, ci,pi)'p(ci)'P(pildi)'dpi'dci
i ~ldl

(2.7a)

is minimized. Isolated means that this objective
function ignores the desires of other agents in the
design team. Immediate means it ignores the
possibility of waiting for more information, p is the
probability density function on C/and P~, so

f c P(C~).dc/= (2.7b) 1,
1

fp P(Pi I di)'dpi = 1. (2.7c)

P~ may be d/-dependent; i.e. the physical noise space
may vary when the design variables are given
different values. The process of specifying these
probabilities is not addressed in this paper; for now,
we can think of them as established by the judgment
of the users, and as possibly uniform. We think that
experienced engineers could be taught to estimate the
accumulated probability for options with reasonable
ease. For instance, to transmit a torque, one can
estimate that the shaft diameter, given the materials,
will not be larger than 50.8 mm (2 in) and has only
30% of the chance to go below 38.1 mm (1.5 in), based
on past experience, uncertainty about load conditions,
the cost of heat treatment, etc. A rough curve,
Pr(diameter), showing the accumulated probability
that the shaft diameter will be smaller than diameter,
can be sketched through these points. The derivative
of this accumulated probability can serve as the
probability density function in equation (2.7a).

Equation (2.7a) is the expected value of the cost
function. By integrating or averaging over C/and P/,
the conceptual and physical noises, we achieve a robust
design. Integration over the physical noises achieves
a design that performs well over a range of physical
conditions. Integration over the conceptual noise C/
produces design decisions by agent A/that will perform
well over a range of possible decisions by other
members of the design team.

To further focus on the concept of conceptual
robustness, we will hereafter consider only the
conceptual noise Cv Physical noise will be implicitly

72 T.-S. Chang and A. C. Ward

included in the objective function. That is, we consider
the problem

minimize Fi(di, ci) ;

if physical noise exists, then

Fi(di, cl) = (|](di, ¢i, Pi)'P(P' I di)'dPi •
31,

Thus, we can rewrite equation (2.7a) into

Ld(dl) = ~ Fi(d o c~)'p(ci)'dc ,. (2.8)
,de i

2.3.1. Marginal Cost for Conceptual Noise Factors
Equation (2.8) reflects only agent A[s individual
interests, without considering others' preferences on
Yi, a subspace of D~. It ignores change in one agent's
costs that may be induced by others' decisions. To
achieve an integrated design, the decision criterion
must capture other agents' costs, in addition to the
costs A t can directly perceive. We introduced the
concept of marginal quality loss (Chang et al. 1994) to
convey these preferences; here we generalize this idea
to marginal cost.

Marginal cost enables an agent to provide feedback
to neighboring agents about her preferred values for
the interdependent variables controlled by those
agents and the cost of deviations from those values.
The agent can consider each of her conceptual noise
factors individually, as if it was one of her own design
decision variables. For each value of each conceptual
noise factor, the agent can compute an isolated average
cost, by averaging over the space of other conceptual
noises and candidate values for the decision variables.
The marginal cost at any value of the conceptual noise
is the difference between the average cost for that value
and the lowest average cost for this variable. This
function provides a measure of the importance of this
factor to this agent. The neighboring agent who
controls this conceptual noise variable can then take
the marginal cost into account.

Figure 1 illustrates this concept. Equation (2.9) gives
the cost averaged over A~'s design space D~ and
conceptual noise space C~, except c~:

L~(cgl) = f o f c Fi(d~' ci)'p(di)'P(c~lc~)'dci'ddi"
, , \ d

(2.9)

Again, p(di) is the probability density function of d~
and its integration over the space D~ equals one. Agent
Ai will have to estimate p(d~) - a t worst, by making
it uniform. The integration is over the candidate
domains.

Best Value

Candidate domain of c{

Fig. 1. Illustration of marginal cost.

Y

The marginal cost associated with c{ is then:

lA,~(c{) = L¢(c{) - min [L~(c{)]. (2.10)
c a n d i d a t e d o m a i n o f c j

This function will be transmitted to the agent who has
• i control of variable cl (the one who takes c~ as a d]

in her design space).
If we shift perspective from the conceptual noises

imposed on A~, other agents use Eq. (2.10) to
assess their marginal cost for the interface variables
controlled by Ai - those in Y/. A~ collects these la, k(c~)
to compute the total m_arginal cost associated with
each y[as (where y~ = c~):

La, i(Y~) = Y', la, k(C~)
k = l , 2 m

k=/=i

and

0, d{ not in Y~,

La'i(dJl) = Z d
la, k(ck), di = c~ and d~ in Y/.

(2.11)

A i then adds these total marginal cost functions into
her own objective function to produce an integrated
design.

2.3.2. Cost Objective and Robust Values
We now rewrite equation (2.8) to search over one
variable at a time. This yields

Ld(d l)= fD fcF~(d~,el)'P(d~ld{)'P(c3"dc~'dd.
,\d!

(2.12)

The outcome of Eq. (2.12), like Eq. (2.8), is subject to
conceptual noise. It is also averaged over the candidate
design space for the other variables. This is the
approach Taguchi uses.

There are several reasons for preferring to search

Conceptual Robustness in Simultaneous Engineering 73

over one variable at a time, provided a reasonable
degree of independence can be assured among the
variables (assumption 6 in Section 2.1). Here,
reasonable means that averaging over the other
decisions wilt not produce a greatly different result
than would be obtained by fixing those variables at
one of the candidate values. As in Taguchi's approach,
we rely on the judgment of the designer to set up the
problem so that variables are reasonably independent.
This will enable the direct computation of the marginal
costs associated with each variable, avoiding the
difficulty of allocating the cost function to the
variables. That allows us to easily feed back marginal
costs to other members of the design team, and to
compare the costs of making a decision now with the
costs of waiting. It also means that we can represent
the candidate designs by a set of intervals for each
variable, rather than a possibly very complex
volume in the decision space. It simplifies the search
process: as we will see, we need only find the zeros
of functions of single variables, rather than finding
level sets in the space. Averaging over the other
decision variables may add an additional margin of
robustness against unmodelled noises. Still, the
assumption of reasonable independence is question-
able, and it is possible to carry out our general
approach without it by formulating the problem based
on other robust design techniques. We return to these
issues in Section 4 where we discuss future work.

Equation (2.12) involves only agent Ai's isolated
costs. To incorporate others' preferences, the cost
objective should include the marginal cost in the
following form:

[,~(dl) = L~(dl) + LA.g(dl), (2.13)

which combines Eqs (2.11) and (2.12). La(d{) is
the isolated cost objective of As;/],~(d~) the integrated
one.

With this cost objective, agent A~ can identify the
robust value of d{, denoted d{*, through

Le(d~) = rain [£d(d{)], (2.14)
candidate domain of d{

by using any appropriate optimization technique. This
value has the smallest expected cost of any value that
can be selected now. Figure 2 illustrates the relations
described in Eqs (2.13) and (2.14).

2.3.3. Expected Achievable Cost
The cost in Eq. (2.14) is now integrated rather
than isolated, but it is still immediate. We need to
estimate the best cost achievable if agent A i waits for
decisions by other agents. We will use this estimate in
deciding which parts of the candidate region to retain

L

^), J
C

Candidate domain of d)

Fig. 2. Illustration of cost objective and the robust value of d~

Improvement

t NOW

Fig. 3. Illustration of the expected achievable cost

while waiting for more information. In Fig. 3,
£WAIT(d]) is the asymptotic value of La(d~) at t ~ ~ .
We claim that when used in the decision making
criterion, approximations to this function should:

1. cause variable values that perform exceptionally
well for some values of the interface variables to be
retained until those interface values have been
eliminated, or time pressure precludes waiting;

2. always cause the currently most robust value to be
retained.

A variety of functions could be used to estimate
Lwnir(d~). In this paper, we use a simple, conservative
approximation: the maximum possible improvement
from the immediate, integrated cost La(d]) (Eq.
2.13). Maximum means that for each conceptual noise
we compute the difference between the currently
expected cost at each value of d] and the cost
achievable at that value if the conceptual noise is fixed
at its most favorable value. We then take the maximum
possible improvement over the entire candidate set for
d], and average these possible maximum improve-
ments. We then apply this constant to the entire cost
function Ld(d~), producing an offset curve that
approximates the best achievable result. This procedure
is conservative because it overestimates the possible
improvement, producing a tendency to keep values in
the candidate domains longer.

To convert this idea into symbolic form, we begin
by considering the design variable d~ and the

74 T.-S. Chang and A. C. Ward

conceptual noise c{. The cost, described as a function
of these parameters, is:

Ld~(d!, c~) = fo~\d! fc~\~ Fi(di' ci)'P(d~ldi)

x p(c i I ck) "dei" ddi. (2.15)

k yields the Note that averaging La~(d ~, c k) over c~
averaged immediate, isolated cost, La(di), while
minimizing La~(dJi, cki) over c/k results in the lowest cost
we can hope for at any given value of dl. The maximum
expected improvement to be gained by keeping d{ in

k has been fixed (rather the candidate set until after c~
than using the robust value d{* immediately) can then
be approximated as

fC
m a x Lac(di, c~)" p(c~)'dc~

candidatedomain ofd~ {.,Jc

- . m i n . ~ [L d ~ (d { , e ~)] }
candidate domain of c~

= max {La(di)
candidate domain of d!

- - . min . k [rdc(d 1, c~)]}. (2.16)
candidate domain of ci

ALeig is a constant. Finally, the expected achievable
cost by waiting for all the conceptual noises to be fixed
before deciding on d{, as a function of d{, is:

LwArt(d~) = £d(d!) -- n c k=l ~ ALd!c~, (2.17)

the immediate, integrated cost with an offset.
By using the maximum expected improvement, we

meet requirements (I) and (2) mentioned in the first
paragraph of this section. Values for d{ will be
eliminated if and only if they have costs so much higher
than that for the robust value that no possible
improvement can justify the cost of waiting. Let Zd{
produce the maximum improvement, ALeid. In the
decision procedure below, it will be retained until the
cost of waiting exceeds the possible gain. If ld{ results
in a more robust £d(d{) than Zd{, it will receive a lower
LWAIT than 2 j . di, so it will be retained if ZdJ i is.

This approach is conservative, in the sense that it
tends to overestimate the expected improvement. A
more accurate but more complex approach uses the
expectation of the improvement, rather than ALdi d.
Designers can obtain the expectation of the improve-

ment by computing

E{Ld(d~) -- min [Ldc(d~,

= fa {Ld(d{)-min[Lec(d{'c ')]} "p(d¢)'dd{" (2.18)
I c, ~

Here, p(d¢) must be estimated by the designer. More
desirable would be an improvement function based on
the actual possible improvement at each value of d{,
and the probability of the improvement taking place.
We have not found such a function that meets
requirements (1) and (2).

2.3.4. Cost of Time
"Time is money". The problem is to establish how
much money each unit of time costs. Ulrich et al.
(1993) propose a cost of time implicit in a profit model,
in which the functions of the rate of unit sale, the unit
price, the unit cost, etc., are time-dependent. The model
is complicated and varies from case to case. For
simplicity, Chang et at. (1994) assume a quadratic form
for the cost function of time based on Taguchi's
formulation of deviation loss. The appropriate form
of the cost function of time is debatable, and may vary
from problem to problem. We therefore, give general
criteria for the cost function of time, denoted
L~etay, i(t), without specifying a form.

We assume that agents are given individual time
frames - starting and ending times - for completing
their tasks by a central authority, and that an estimate
is available of the total cost of delaying the project,
as a function of the amount of delay. The first
assumption is reasonable, because even in highly
concurrent projects, some tasks must normally be
performed before others. The second is reasonable
given fairly standard business planning methods, for
example those described in Smith and Reinertsen
(1991). Consistent with, but more generally than, in
our previous paper, we claim that:

1. the marginal cost of delay must increase with delay
and be positive everywhere after the start;

2. the total cost of delay by any agent at t = 0 (the
start of the agent's task) is zero;

3. the marginal cost of delay at an agent's time limit
equals the cost of delaying the entire project.

Here the marginal cost is the derivative of the total
cost of delay.

Criterion (1) is key to guarantee process convergence
and is reasonable since profits decrease with
increasing lead time (Smith and Reinertsen 1991). One
can interpret criterion (2) as: No loss due to delay is

Conceptual Robustness in Simultaneous Engineering 75

incurred i f the decision is made right at the beginning
of the task; and criterion (3) as: I f the decision is not
made at the due time, the whole project is delayed.

Symbolically, we can write

marginal cost of time is zero when the task begins; thus

dLa~l"Y'i(t)dt ,=o = 0.

d2La~tay, i(t)

dt 2
> 0, (criterion (1)) (2.19a)

Ldez,y,i(start time) = 0, (criterion (2)) (2.19b)

dLdetar i(t))
~tt" t=t, = LrOrAL' (criterion (3)) (2.19c)

where t~ is the due time for A~ (starting from the
beginning of each agent's task) and LrOTAL is the cost
of delaying the entire project. Criteria (2) and (3)
provide initial and end conditions to help determine
the cost function.

By letting t be the time now and Lrm~.~(t) be the
cost caused by delay (from now to the next meeting)
in fixing the value of d{, and assuming the design
process is discretized into periods between exchanges
of information,

LrmE. i (t) = Ldel,y,i(t + to) - - Lde tay , i (t) , (2.20)

where t o is the meeting period. Figure 4 illustrates the
ideas in Eqs (2.19) and (2.20).

Note that LrlM~,~(t) is independent of d{, which
implies that delay on any part of Ai's design task costs
a new iteration. Also, criterion (3) states that if A~ fails
to decide on time, then the whole project is delayed.
Imposing such a strong penalty on all delays
aggressively shrinks the candidate domains. While
criterion (3) seems valid, holding a delay in any of Afs
decisions to be equivalent to delaying Ai's entire task
is harder to justify. A less aggressive approach might
divide A~'s total cost of delay among the decision
variables, either equally or according to the judgment
of the designer.

Aggressiveness can also be reduced by imposing
another constraint on the time cost function: that the

A more accurate but expensive assessment of the
cost of delay might be achieved by assigning delay
costs only to Ai's outgoing interface variables, and
allowing the other agents to estimate the delay
function for each such variable.

2.3.5. Decision Making
We are at last in a position to rewrite the statement
with which we introduced this section, namely

cost of decision making

= E[delivered cost now]

- E[delivered cost achievable by waiting]

- cost of time lost by waiting,

in more precise form, by using Eqs (2.14), (2.17)
and (2.20). For each di, there is a "decision-making
cost function" LoM(d~),

LoM(d¢) = f-.a(d!*) -- LwArr(d]) -- Lz,Me.,(t), (2.21)

which is the estimated cost of immediately eliminating
d] from its candidate domain. Af should keep the
values of d] that cause LoM(d¢) to be greater than zero
in the candidate domain of d] because waiting is
promising. On the other hand, values causing Lou(d i)
to be less than zero should be eliminated from the
candidate domain, since waiting does not look
profitable. A i can find the zero-crossing points by
solving LDu(d]) -- 0, making it easy to eliminate
costly regions of d{ (Fig. 5). This process of narrowing
the candidate domains retains the robust optima, while
steadily reducing the conceptual noise. If the candidate
domains of every design variable shrink by 10~,
then the remaining design space is only (9/10)" the size
of the original space. Since the cost of time steadily
increases, the process is guaranteed to converge
eventually.

0 to 2to ... t, t

Off-candidate domain

Candidate domain

Fig. 4. Illustration of the cost function of time. Fig. 5. Illustration of the decision-making process.

76

The narrowing process should iterate until

LD~a(d~) <_ 0 (2.22)

over the candidate domain ofd i (or the new candidate
domain of d~ is an empty set); that is, waiting is
expected to produce a higher cost than making a
decision now. Then, A i should pick the robust value
of d~, d~*, as the final design decision. Note that d~*,
as a result of assumption (5) in Section 2.1, is a feasible
solution.

2.4. Qualifications for Early Determination

Eppinger et al. (1990, 1992) argue that concurrent
engineering implies the introduction of more coupling
into the design process, making tasks harder but
reducing overall iterations, and that the balance
between the gain in shrinking the iterative processes
and the increased effort in solving a more sophisticated
problem remains indeterminate. It is therefore
important to use every opportunity to determine
design variable values in isolation. We here present
methods for correctly fixing selected variable values
without waiting for preference information.

More precisely, Ei, A{s internal design space has
not been specifically addressed previously. However,
the task may be greatly simplified if many of the purely
internal design variables can be fixed by a purely
internal process of A{s without the need for
information exchange with other agents. For many
well-designed development processes, the dimension
of E~ should be larger than that of Yi or C i.

In general, if a d{ in E~ is truly (not reasonably)
independent from any other variables, then we can fix
it without regard to the rest of the design.
Independence may be hard to determine in a noisy
environment, but d i in E~ meeting the following
qualifications can be safely fixed, using the associated
methods, prior to the iterative cooperation process.

(Q2.1) If d{'s are monotonic variables in F~, fix using
monotonieity analysis.

(Q2.2) If di's do not cross-couple with any interface
variables, fix using standard (possibly robust)
optimization inside A~.

Proof of Q2. I
By assuming, d{ does not appear in any objective
functions other than F~, and is monotonic in F~. Then
the value of d! can be easily fixed by monotonicity
analysis (Papalambros and Wilde, 1988). The total
cost function is the sum of the agents' cost functions
plus a constant (assumption (4) in Section 2.1). Since
d{ is monotonic in F~ and appears nowhere else, for

T.-S. Chang and A. C. Ward

Fig. 6. Graph representation of equation (2.23).

any value of all other variables, the sum of the cost
functions will be minimized at the same extremum of
di's candidate domain. Therefore, we can fix d~
immediately at that extremum. []

Cross-coupling is defined using graph theory (Aho et
at. 1983). Let each variable in Xg be a vertex. There is
an edge between two vertices providing that there is
at least one term of F~ containing the corresponding
variables. Two variables are cross-coupled if they are
connected (there exists a path between them). For
example, with Eq. (2.23),

F ~ = d] - d ~ + d 2 - d ~ - d 4 + d ~ (d ~) 2, (2.23)

we have the undirected graph in Fig. 6 in which f~l,
fi2, fi3 and fi4 are terms of Fi. d~, di 2 and di 3 are
mutually cross-coupled, while d 7 is cross-coupled with
d~. However, d/4 and d~ do not cross-couple with d],
d/2 or d{ and vice versa. In some of the literature, f~3
and f~4, as a group, are also said to be additively
separable from fil and f~2.

Proof of Q2.2
Let Ei and ~;i partition Ei, where Ei is the space
spanned by those design variables that are internal
and do not cross-couple with any interface variables.
As the total cost function is the sum of the agents' cost
functions plus a constant (assumption (4) in Section
2.1), F,~ can be separated from Ai's design task such
that a new agent ~,~ will handle it with a new cost
function F~. A~ has only internal design parameters
and possibly physical noise. F~ + ~ = F~; Fi is the part
of F~ that does not contain any interface variables in its
expression. The d~ ~ ~;i can be determined earlier using
optimization (if there is no physical noise), or the
robust optimization techniques mentioned in Section
1.4, regardless of interface variables.

Since d~ appears in F'i and nowhere else, for any
value of all other variables, the sum of the cost
functions will be minimized at the same optimizer of
di. Therefore, we can fix d~ immediately at that
optimizer. []

C o n c e p t u a l R o b u s t n e s s in S i m u l t a n e o u s E n g i n e e r i n g 77

2.5. The Simultaneous Engineering Procedure (SEP)

The following simultaneous engineering procedure
(SEP) implements conceptually robust design and
summarizes Section 2.

Given a design task, for each agent Ai, concurrently,
Begin

Identify D i, C~, Yi, E~, Fi, ti and P~ if applicable;

/*Defining the problem the ith agent is
encountering: design spaces, interface variables,
cost function, due time, and possibly physical
noises. */

Determine some d{'s in E i through qualifications
(Q2.1) and (Q2.2);

/* Early determination process. */

Repeat Until all d~ are fixed:
Transmit and receive candidate domains for

C~, conceptual noises, and Yi, outgoing
interface variables;

For j := 1 to n c,
Compute lz, dc~), marginal costs, using equa-
tions (2.9) and (2.10);

Communicate l~,i(c]). (For Yi, receive I~,,k(Yi),
k = 1 , 2 , 3 m a n d k # i) ;

For j := 1 to n i,
If d~ is not fixed,

Begin
Compute LA,~(d~), the total marginal

cost, using (2.11);
Compute Ld(di), the cost objective, using

equations (2.12) and (2.13);
j*

Compute Ld(d~), the minimum cost
objective, and find d~*, the robust value
of d~, using equation (2.14);

Compute LwA~r(d~), the expected achiev-
able cost, using equation (2.15), (2.16)
and (2.17);

Compute Lrm~,~(t), the cost of time,
using equation (2.20);

Compute LDM(di), the cost of decision
making, using equation (2.21);

If LDM(d~) _< 0, /* Decision made on d i. ~ */
, • . - - j*

di [J] . - - d i

else
/* Otherwise shrink the candidate domain. */

Eliminate from the candidate domain
values of d~ that cause LDu(d~) < O;

end;
endrepeat;

end.

On finishing the procedure, agent Ai's design solution
is the vector d*.

3. Simple Illustrative Example

We now illustrate the SEP on an example introduced
by Krishna et aL (1991) to demonstrate their
sequential decision strategies for distributed design
(with the units converted into the SI system). The
(highly simpified) example problem is to design a DC
motor by determining the decision variables listed in
Table 1, maximizing the output torque (performance)
and minimizing the area occupied by the stator (space)
as well as the sum of the areas occupied by the
steel portion of the rotor and the copper (cost of
materials). Krishnan et aL (1991) separate the design
into three tasks, accomplished by three different
agents, with different objectives (as summarized in
Table 2). Table 3 shows the results under the condition
that designers for these tasks make their decisions in
isolation (without considering others' preference).
Two conflicts are observed: dw* = dw* # dw~ and
ad~ ~ d~.

Krishnan et at. (1991) propose a sequential decision
strategy (SDS) to solve this problem. They aim at
minimizing the quality loss, which they define as the
absolute value of the deviation from the optimal
output obtained in isolation ([Ji--J*l). This is
different from Taguchi's quadratic form ((J~ - j ,)z) .
They use the reciprocal of the magnitude of the isolated
solutions, i.e. wl = 1/J*, to weigh the quality loss in
computing the total quality loss. This quality loss
function and these weightings seem to us rather
arbitrary, but they do satisfy assumption (4) in Section
2.1, and we will retain them to allow direct comparison.

In this section, the design problem is solved using
the SEP with the same three-agent configuration as in
Krishnan et al. (1991); each agent is responsible for one
task. In this example, there is no physical noise,
P1 = P2 = P3 = ~:~; adding physical noises would
complicate the integrations but have no other
effect.

This is an illustrative example; our purpose is to
demonstrate the proposed SEP and compare it with
the SDS. The scale of this problem does not
convincingly need a cooperative design, and the
physics and economies were simplified by Krishnan
et al. (1991).

3.1. Identification of Di, C;, ~], E~, F~ and tl

We assign the following, with D = {cd, dw, od, nw, ad,
id, tin}:

For agent AI: (task T1)

X 1 = {cd, dw}, D 1 = {ca, dw}

C1 = ~ , Y1 = {dw}, E , = {cd},

t 1 = 10 days , F l (d i) = w l l J - J*[.

78 T.-S. Chang and A. C. Ward

Table 1. Design variables for a d.c. motor (Krishnan et al. 1991).

Decision variables Symbol Bounds

Armature diameter ad
Motor inner diameter id
Motor outer diameter od
Diameter of windings dw
Current density cd
Turns of armature windings nw
Thickness of magnet used tm

0.254 _< ad < 0.3048 (meters)
0.002 54 < id < 0.0762 (meters)
0.508 _< od < 0.6096 (meters)
0.000 254 < dw < 0.005 08 (meters)
155 _< cd < 77 500 (amp/meter 2)
1 < nw _< 1500
0.00127 < t m < 0.0254 (meters)

Table 2. Objectives as functions of variables (Krishnan et al. 1991).

Task Task description Local objective functions to be minimized

7"i Maximize output torque dl = - 1.57cd- dw 2
T 2 Minimize space J2 = 0.785(od2 - adZ) - 0.26nw'dw2
T 3 Minimize material cost Ja = 0-785(ad2 -- id2) - 2.lad-tin + 0.785dw 2

Table 3. Isolated decisions (Krishnan et al. 1991).

Task Isolated decisions

T 1 cd* = 77 500; dw~ = 0.00508; J* = -3 .14
T 2 ad* = 0.3048; od~ = 0.508; dw~ = 0.005 08; nw* = 1500; J ~ = 185.36
T 3 ad* = 0.254; id~ = 0.0762; dw~ = 0.000254; tin* = 0.0254; J~ = 50.4351

For agent A2: (task T2)

X 2 = {od, nw, ad, dw},

C~ = {dw},

t z = 10 days,

D2 = {od, nw, ad},

Y= {ad},

Fz(dE, Cz) = w2l J2 - S ~l.

E2 = {od, nw},

For agent A 3 : (task Ta)

Xa = {id, tin, aa, dw}, D3 = {ia, ~m},
C a = {ad, dw}, Ya = ~,

t 3 = 10 days, F3(d a, c3) = w 3 l J 3 - J~].

E 3 = {id, tm},

The cost functions are in the quality loss form defined
by Krishnan et al. (1991). In F~, both w~ and J* are
constants which do not affect the isolated opt imizat ion
results. However, as the cost evaluat ion may be
communica ted to other agents, they are included for
proper value scaling. Assigning market values to time,
and finding realistic costs in monetary units are critical
tasks in cooperat ive design, but we have not addressed
them in this paper: we therefore use the weights
proposed by Krishnan et aI. (1991). The design team
will meet daily (t o = 1 day); agents have the same
starting time; and the cost of delaying the entire
project, L r o r A r , is the sum of the weighted, isolated
optimal results, w~J~; + w z J * + w3J~.

3.2. Determination of ~ ' s in E i by Checking
Qualifications (Q2.1) and (Q2.2)

For A 1, cd is the only internal variable. It satisfies
qualification (Q2.1), because it causes Fl(dl) to
decrease monotonical ly . Thus A1 will fix cd at its upper
bound; cd* = 77 500 amp/mete r 2.

Regarding od and nw, A 2 will find that both satisfy
(Q2.1) (are mono ton ic variables in Fz(dz, ez)) while
the former also satisfies (Q2.2) (does no t cross-couple
ad or dw). Her decisions on these two variables will
be od* = 0 . 5 0 8 meters (the lower bound) and
nw* = 1500 turns (the upper bound).

For A 3 , id satisfies (Q2.1) as well as (Q2.2); it causes
Fa(da, c3) to decrease monotonica l ly and does not
cross-couple ad or dw. tm satisfies (Q2.1); it causes
Fa(d3, c3) to decrease monotonical ly . They should be
determined as 0.0762 meters and 0.0254 meters (their
upper bounds), respectively.

Thus, only dw and ad remain undetermined.

3.3. lterative Narrowing of the Candidate Domains

3.3.1. Transmission and Recept ion o f Candidate

Domains for Ci and Yi
At this step, agents communica te about the candidate
domains of the interface variables, dw and ad. The

Conceptual Robustness in Simultaneous Engineering 79

messages are:

From A 2 ~ Aa:

0.254 < ad <_ 0.3048 (meters);

From A 1 ~ A2, A3:

0.000254 < dw < 0.00508 (meters).

We assume that all the values in the candidate domain
of a design variable are equally likely to be selected
so the communicat ion does not include probabili ty
functions.

3.3.2. Computation and Communication of la, i(c~)
Usin9 Eqs (2.9) and (2.10)
Here each agent computes the marginal cost for each
of her conceptual noise factors (incoming interface
variables):

AI: N/A.

1 f 0.3048
- F2(dz, c2)lod*,,~*" d a d

A2: Lc(dw) Iladt[dad=O.254

= -- 3261.2279dw 2 + 0.1802,

where l['II denotes the size of the variable's

candidate domain, and min[L~(dw)] = 0.0960,
dw

/A, 2(dw) = L~(dw) -- min[L~(dw)]
dw

= -- 3261.2279dw 2 + 0.0842.

1 fo.ao48
-- F3(d3, C3)lid.,tm.'d ad A3: Lc(dw) llad [I ,J~d=o.254

= 24.1251dw 2 + 0.2904,

and min[Lc(dw)] = 0.2904,
dw

Ia, 3(dw) = Lc(dw) - min[L~(dw)]
dw

= 24.1251dw2;

1 l ' o.ooso8
tc~ad ~ -- t F3(d3, c3)[ie*,,m*" ddw

Itdwll ~aw=0.000254
= 24.1251ad 2 - 1 .6393ad- 1.1399,

and min[Lc(ad)] = 0,0002,
ad

IA, 3(ad) = Lc(ad) -- min[Lc(ad)]
ad

= 2 4 . 1 2 5 1 a d 2 - 1 . 6 3 9 3 a d - l . 1 4 0 1 .

After the above computations, these marginal cost
functions are transmitted to associated agents.

3.3.3. Computation of La,i(dJl) Using Eq. (2.11)
After receiving the marginal cost functions, each agent
computes the total marginal cost function for her
outgoing interface variables.

AI: Za, l(dw) = 1A,2(dw) + la,3(dw)

= - 3237.1028dw 2 + 0.0842.

A2: La.2(ad) = la.a(ad)

= 24.1251ad 2 - 1.6393ad - 1.1401.

A3: N/A.

3.3.4. Computation of £d(d{) Using Eqs (2.12) and
(2.13)
With the total marginal cost and equation (2.12), each
agent computes the integrated cost function for each of
the design variables that she controls.

AI: Ld(dw) = F1(dl)lcd.

= " 3 8 750.0775dw 2 + 1,

=~ Ld(dw) = Ld(dw) + LA, l(dw)

= -41987.1803dw 2 + 1.0842.

A2: La(ad)= l ~ ~0.00508
F2(d 2, cz)loa, ,w." d dw

t]dwll ,/aw=0.000254

= - 6.5643ad 2 + 0.6645,

£d(ad) = Ld(ad) + La.2(ad)

= 17.5609ad 2 - 1 .6393ad- 0.4756.

A3: N/A.

^ j*
3.3.5. Computation of Ld(d i) and Find d~* Using
Eq. (2.14)
In this step, agents find the robust values for the design
variables - those that minimize the expected cost
functions.

A 1 : £d(dw*) = 0.0006, dw* = 0.005 08.

A2: Ld(ad*) = 0,2410, ad* = 0.254.

Aa: N/A.

3.3.6. Computation of Lwarr(di) Using Eqs (2.15),
(2.16) and (2.17)
Agents now estimate the expected achievable cost.

A 1 : There is no conceptual noise (C1 = ~) . Therefore,
the decision should be d w * = 0.00508, because
waiting is unnecessary.

80 T.-S. Chang and A. C. Ward

A2: Ld~(ad, dw) = F z (d 2 , ez)lod,.nw.

= 0 .6940- 6.5643ad z -- 3261.2279dw 2,

ALad, dw = max {Ld(ad) - min[Lac(ad, dw)]}

= 0.0546,

LwA1r(ad) = £d(ad) -- ALo~,dw

= 17.5609ad 2-1 .6393ad-0 .5302.

(Note that A1 has made a decision on dw. With
prompt communication, A z can make a determin-
istic decision on ad without computing LwAzr(ad)
and LriM~,i(t). However, in order to illustrate the
process, we assume that this piece of information
is not communicated until the next meeting.)

A3: N/A.

When there is no conceptual noise (as for A0, then
the expected available cost is the immediate, integrated
cost objective.

3.3.7. Computation of Lr1Me, i(t) Usin 9 Eq. (2.20)
We will use the quadratic form, Ld~t~y,i(t)= kt.t 2,
suggested in Chang et al. (1994), with t o = 1 day,
ti = 10 days, LTOrA c = 3. From equation (2.19c),

LTOTA L 3
kz -- 2t i -- 2" 10"

The quadratic form satisfies the criteria in equations
(2.19). For the first iteration, equation (2.20) yields

LrxMe ' 1(1) = Lr1Me,2(t) = LrIME,3(1) = 0.15.

3.3.8. Computation of LDM(d{) Usin9 Eq. (2.21)
Combining the results in Sections 3.3.5, 3.3.6 and 3.3.7,
we have the cost of immediate decision-making:

A 1 : N/A.

A2: LoM(ad) = - 17.5609ad 2 + 1.6393ad + 0.6212.

A3: N/A.

3.3.9. Decision Makin9
Figure 7 shows that LDM(ad) is negative within its
candidate domains. Thus, the iteration stops here;
the answer found for ad is 0.254 meters.

0 L

LoM (~a) } t
0.25 0.26 0.27 0.28 0.29 013 0.31

ad

Fig. 7. LoM over the candidate domain.

The solution found using the SEP process can be
summarized as

ad* = 0.254 meters,

od* = 0.508 meters,

cd* = 775 00 amp/meter z,

tm = 0.0254 meters.

id* = 0.0762 meters,

dw* = 0.005 08 meters,

nw* = 1500 turns,

It duplicates that of Krishnan et al. (1991). Readers
can easily verify that this is the global optimizer for
the DC motor design. Notice that the global opt imum
happens at values of the isolated optimal decisions
(ad* = ad* and dw* = dw~).

3.4. Different Weightings

This section explores what happens when the global
opt imum lies off all the isolated optimal decisions. To
do so, the weighting is switched to wl = WE = 1 and

1517 (left in fraction form because this problem
is very sensitive to the number). The SEP will find
the global opt imum at ad* =0.2794 meters the
sequential strategy will continue to return the old
value, 0.254.

3.4.1. Result of Sequential Decision Strategies (SDS)
Using the SDS procedure proposed by Krishnan et
al. (t991), the optimal sequence is either T 1 ~ Tz ~ T3
or T1---' T3 ~ Tz. The solution is the same as in
Section 3.3, except that ad can be either 0.254 or 0.3048.
The resulting total quality loss is 30.3713. SDS fails
to find the global optimum.

3.4.2. Results of the SEP
Following the SEP, we have

A 1 • dw* = 0.005 08 (no conceptual noise).

A 2" LDM(ad) = - 147.9548ad 2 -4- 82.6772ad - 13.1602,
ad* = 0.2794.

A 3" N/A.

Again, Fig. 8 shows that LoM(ad) is negative within
its candidate domain and the answer found for ad is
0.2794 meters.

-1.9

-2A
0.25 0.26 0.27 0.½8 0.½9 0~3 0.31

ad

Fig. 8. Lo~ over the candidate domain.

Conceptual Robustness in Simultaneous Engineering 81

The summarized solution,

ad* = 0.2794 meters,

od* = 0.508 meters,

cd* = 775 00 amp/meter 2,

tm* = 0.0254 meters,

id* = 0.0762 meters,

dw* = 0.005 08 meters,

nw* = 1500 turns,

coincides with the global optimum.

3.5. Ignorance of the Qualifications for Early
Determination

In Section 3.2, we fixed the values of cd, od, nw, id and
tm without iteration, using qualifications (Q2.1) and
(Q2.2). What if we did not do so? As an example,
Lc(dw) for agent A 2 would become

L c (d w) : 1 f0,3048 f1500 ~0.6096
l l o d ll " l l n w t l " l i a d l] Jad=0.254 d n w = l clod=0.508
x F2(d2, c2)" d od" d nw" dad ,

which requires much more computation than the one
in Section 3.3.2.

Even worse, this more complex process produces
an inferior solution. Using the weighting function set
in Section 3.4, following the SEP without the
qualification check changes the result such that
ad*= 0.254 meters. This is because averaging over
values of tm from its optimal value to the lower bound
weakens the advantage of a large ad (or the influence
of the term -2 . lad . t in) . In other words, this ad*
(0.254) is a robust response to the uncertainty of trn,
but this robustness is unnecessary because tm can be
fixed earlier.

Furthermore, higher uncertainty usually requires
more iterations to converge.

Fortunately, in well-decomposed design problems,
we can hope that a majority of variables can be
fixed by isolated processes. The criteria for doing so
are an important feature of the SEP.

3.6. The Influence of the Cost of Time

If we set LrxME, i(t) = 0 (no time pressure), the result
of the first iteration in Section 3.4.2 fixes dw only. An
additional iteration is needed, but the final solution is
the same, showing the cost of time contributes to rapid
convergence. In some cases, in which time pressure is
very strong and the information is quite vague, the
solutions may be quite different with and without time
pressure.

3.7. Comparison with Sequential Decision Strategies

The simultaneous engineering procedure (SEP)
appears superior to the sequential decision strategy
(SDS) in this respect: the SEP is not restricted to
isolated, local results, and thus may achieve or
approximate the true optimum for a wider variety of
problem types.

SDS works well when the global opt imum
coincidentally happens at the values where isolated
optima lie. However, it fails to locate the global
optimum in the case depicted in Section 3.4. Actually,
for this particular case, the ad* found using the
optimum sequence in SDS is located as far as possible
from where the globally optimal value locates.

Conversely, for this case SEP can quickly converge
to a good solution. Still, the result obtained in Section
3.4.2 does not imply that the integrated solution found
using SEP will duplicate the global optimum in every
case: there is a price to be paid for concurrency. At
best, we hope eventually to be able to estimate the
expected deviation from the true optimum as a
function of the level of time pressure.

Despite the performance difference, there are
interesting similarities between the ideas proposed by
Krishnan et al. (1991) and ours. Their idea of using
exclusive groups is close to our idea of design space
partitioning, while our marginal cost is somewhat
akin to their partial quality loss.

However, Krishnan et al. (1991) do not allow
their exclusive groups to communicate, but rely on
communication by the groups with a central authority
that sequences their decisions. This approach restricts
their overall result to some combination of the results
achievable in isolation. We do not require sequencing
or much central authority, but do allow our agents to
communicate.

Our marginal cost provides feedback to integrate
the agents' decisions, considering the influence of the
yet-to-be fixed variables. Their partial quality loss
does neither, but is a substitute for a global cost
function.

To conclude, the fundamental distinction is that
they make decisions early in isolation, then adjust the
decision sequence to minimize the cost of isolation,
while we leave the uncertain decisions open until we
have sufficient information to fix them.

4. Discussion and Future Work

We have defined a procedure, and demonstrated it on
a simple problem. However, the work raises as many
questions as it answers. We first discuss some
theoretical issues; then a practical one.

82 T.-S. Chang and A. C. Ward

4.1. Foundations

The SEP seems plausible to us, but there is no formal
connection between our assumptions and the proce-
dure. We would like to axiomatize the procedure. The
treatment of game theory by Van Neumann and
Morgenstern (1964) is a suggestive example, because
SEP is a form of cooperative game.

We assume that individual agents have their own
cost evaluations and the results are all in a common,
additive unit with an external reference (e.g. dollars).
This assumption may be relaxed somewhat if the
agents act as buyers and sellers, as in Wellman (1994),
Vasseur et al. (1993), and Cook (1992). The goods in
this case would be the possibilities (or options) of the
design variables and the price bidding would show the
preferences of the buyers (interested agents). The
"trade" among agents represents the communication
and the "bidding strategies" (decisions) are based on
utility functions, no matter whether they are additive
or not. Consumers could also be agents in the design
group.

4.2. Computational Complexity vs Optimality

Most computations in the SEP are integrations.
Integration can usually be done numerically, if not
analytically, but may be slow. Even without analytical
equations, empirical data can be used to find the
solution by curve-fitting, or by replacing the integrals
with summations. The procedure can therefore easily
be extended to the mixed discrete-continuous case.

The other computational problem is to find the
candidate domain. We solve for one variable at a
time - a line search. The example uses graphical
methods, but the solution can be obtained formally
by solving LD~t(di)= 0, finding the zero-crossing
points.

However, we have yet to define a measure of the
computational cost of the SEP. Its complexity, as a
function of the size of the problem, depends on the
amount of time pressure: there is a tradeoff between
how close the answer comes to the global optimum,
and the time required to find it (Eppinger et at. 1990,
1992). We would like to derive an analytical formula
for this tradeoff, but it seems unlikely, since no
centralized procedure can guarantee a global optimum
in finite time. Perhaps some probabilistic result, or
one dependent on the problem, is possible.

Without such a theory, or experiments, we cannot
even be confident that our distributed process is faster
than a centralized, standard optimization process. It
may be useful even if slower, simply because it does
not require a single model to be formulated. But our

guess is that it can be much faster: we need a way to
test the guess.

4.3. Variable Independence and Constrained Problems

We assumed feasibility within the candidate domains
and the reasonable independence of variables, so that
we can use line search. We have not developed a
precise measure of reasonable independence, nor do
we know how common problems can be reformulated
to provide reasonable independence, although users
of Taguchi's methods seem to incorporate this
assumption with fairly good affects. It seems possible
that by using appropriate combinations of variables,
adding variables, eliminating equality constraints by
substitution, and replacing inequality constraints with
penalty functions (see Chapter 9 in Bazaraa 1993), or
perhaps the quadratic penalty functions used by
Taguchi), most problems can be recast to involve
only reasonably independent, unconstrained decision
variables. Formalizing and proving this conjecture is
a research task.

Another approach is to interleave constraint
reasoning based on intervals, as in Ward and Seering
(1993a, 1993b), with SEP. In this case feasibility and
candidacy will be examined in parallel. This combina-
tion allows the constraints to be built-up, instead of
specified firmly in the beginning - an advantage,
because designers often do not initially fully
understand how, when, and where to apply what
constraints.

A third approach is to use constraint checking only
during minimization, at Eqs (2.7), (2.10) and (2.14).
The presence of noise complicates the meaning
of constraints, since a solution may violate the
constraints for some circumstances but not for others.
This problem can be addressed by using a threshold
probability of satisfying the constraints (Siddall 1983;
Otto and Antonsson 1993). That is, the constraints in
the problem

minimize Fi(di , ci, Pi) "~ (4. t)
subject to g((d i, c,, Pi) < 0 J

can be replaced by probabilistic constraints:

min[Pr(g~(d~, ci, Pi) <- 0)] > 6.
J

Here] indexes the constraints and 6 is the acceptable
probability threshold of meeting constraints. For
instance, suppose At has constraints as in Eq. (4.1):
she would do the constraint checking using

min i Pr (g~(d~,c~,pi)l > (~ (4.2)
i L O,\dl

C~,Pi

Conceptual Robustness in Simultaneous Engineering 83

in conjunction with the minimization of (2.14). For
the operations associated with Eqs (2.7) and (2.10),
the examined spaces in Eq. (4.2) would be changed.

Probabilistic constraint checking is hard to
incorporate into qualifications (Q2.1) and (Q2.2) for
early value determination, because the bounds of
domains are not always available. Nevertheless,
agents should try to reduce the number of parameters
by conducting monotonicity analysis.

Constraint checking would allow relaxation of the
feasibility assumption 5 in Section 2.1. The candidate
domains could then range over all rational values
to the design variables at the beginning of the
process.

4.4. Practical Utility

The example problem is too simple to provide real
feedback on the utility of the SEP for large-scale
practical engineering problems. The great advantage
of the SEP is that it does not require either a
centralized utility function, or compatibility in speed
or level of detail in the models used by the design
agents. It is possible, for example, for one agent to
explore a wide variety of solutions using a fast
analytical model, achieving a highly optimized
subsystem, while another uses a complex finite element
code to achieve a merely good solution based on a
limited number of runs. To explore these advantages
more fully, we will need to test it on real problems.
We are currently working with Ford and Whirlpool
on industrial tests.

5. Conclusion

In this article we have extended the conceptual
robustness approach to simultaneous engineering
from discrete levels to continuous spaces. With the
assumptions made, each designer in the team can
identify both physical and conceptual noise. She will
make robust decisions based on a criterion which
comprises expected quality loss and timeliness. The
criterion is easily implemented in many circumstances,
and is based on plausible considerations, but we have
not formalized it. The design process must converge
because of a satisfactory result, or the time pressure, or
both to approximately minimize the overall cost
(where we have not formalized "approximately").

The qualifications for early determination contribute
significantly to problem simplification, and establish a
partial ordering of tasks, increasing both speed and
solution quality.

The example illustrates an advantage of the

proposed simultaneous engineering procedure in
comparison with sequential designs, and the con-
tribution of the qualifications for early determination
and the cost of time.

The proposed procedure is still subject to limitations
embedded in the assumptions. First, the functions used
to compute induced design variables (or performance
variables) from design variables have to be com-
municated along with the domains of the design
variables. The substitution of these functions into
the cost objective functions may be cumbersome.

Second, the global reference of the cost evaluation
is hard to define for a large-scale design task. Believing
that utility theory does not provide effective evaluation
among agents because it is inherently individual, we
envision that cost and revenue concepts, as in market
economics, will play a major role in distributed design
plans.

Third, there are a variety of possible strategies for
dealing with constraints, and we do not know how to
compare them yet.

Innovative concepts in this paper are closely related
to both "distributed design" (Finger and Dixon, 1989)
and distributed optimization. In distributed design as
defined by Finger and Dixon, interdependent variables
are fixed through a hierarchical decision structure or
in isolation. Conversely, we advocate parallel decision
making with peer-to-peer communication to integrate
the design. Distributed optimization work normally
addresses large optimal design problems that are
decomposed for easier solution. We envision the
reverse process, in which local problems are partially
integrated through an efficient communication
process. We will further explore these concepts in real
engineering applications as well as through analytical
studies.

Acknowledgments

This research is funded by the National Science Foundation under
grant No. DDM 9300376, and by the Office of Naval Research
under grant N00014-91-J-1918. Any opinions, findings, conclusions,
or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the view of the sponsors. We
are also grateful to the anonymous reviewers for their thorough
reviews and valuable comments.

Table of Nomenclature

Ai
Ci
Ci

D

the ith design agent
the space of conceptual noise factors of Ai
a vector in Ci
thejth conceptual noise factor or one-dimensional
subspace in C i
the space containing all the design variables

84 T.-S. Chang and A. C. Ward

Oi
ai
d~
d!

d~*
l

Ei

E

gi
i
j,j,
L
L,,

Ld
L~

Ldc

ALd~,c'~

Ldelay, i
LDM

LTIME. i
LTOTAL
LwmT

^

LWAIT

LA. i

m
n

Hi

P,

Pi
t
to
ti

Xi

Xi

A

the design space controlled by A i
a vector in D i

the solution of Ai's design
the j t h design variable or one-dimensional
subspace in Di
the value of d{ that minimizes the cost/~a(di)
(the j th element of d*)
the space of A~'s purely internal design variables
the cost function of A~ in which physical
noise is explicit
the cost function of A~; f~ integrated over the
physical noise
the j th constraint in A/'s design
agent index
variable and noise factor indices
cost function
isolated cost, as a function of a conceptual
noise factor
isolated cost, as a function of a design variable
integrated cost, as a function of a design
variable
cost, as a function of a design variable and
a conceptual noise factor
maximum cost improvement to be gained
by waiting until c k is fixed before fixing d]
cost as a function of time delay for Ai
cost of eliminating a value of a design variable
immediately
cost of waiting one time period for Ai
cost of delaying the whole design project
expected cost, as a function of a design
variable, achievable by waiting until all con-
ceptual noises have been fixed before fixing the
variable
true cost, as a function of a design variable,
achievable by waiting until all conceptual
noises have been fixed before fixing the variable
total marginal cost to other agents of Ai's
decisions on an interface variable
marginal cost to A~ of another agent's decisions
on an interface variable
number of agents
dimension of D
dimension of D i
dimension of Ci
the space containing physical noise factors
of A i
a vector in Pi
time
time period between meetings
due time for Ai
the space containing all the factors that
affect Ai's design
a position vector in Xi
the space containing the interdependent design
variables controlled by A~
the j th interdependent design variable or
one-dimensional subspace of Y~

P
d im(')
E[-]
P,(-)
\
I

probability density function
dimension of a space
expectation
probability
set of space subtraction
condition []

References

Ahn, J-S. and Crawford, R. H. 1994. "Complexity Analysis of
Computational Engineering Design Processes", Design Theory
and Methodology, ASME, DE-vol. 68, pp. 205-20.

Aho, A. V., Hopcroft, J. E. and Ullman, J. D. 1983. Data Structures
and Algorithms, Addison-Wesley, Reading, Mass.

Bazaraa, M. S., Sherali, H. D. and Shetty, C. M. 1993. Nonlinear
Programming, Wiley, New York.

Birmingham, W. P., Darr, T. P., Durfee, E. H., Ward, A. C.
and Wellman, M. P. 1993. "Supporting Mechatronic Design
via a Distributed Network of Intelligent Agents", Workshop
on AI in Collaborative Design. AAAI, July 11-15, 1993,
Washington, DC.

Bond, A. H. and Ricci, R. J. 1992. "Cooperation in Aircraft Design",
Research in Engineering Design, vol. 4, pp. 115-30.

Bradley, S. R. and Agogino, A. M. 1991. "An Intelligent Real
Time Design Methodology for Catalog Selection", Design Theory
and Methodology, vol. 31, pp. 201-8.

Chang, T.-S., Ward, A. C., Lee, J. and Jacox, E. H. 1994. "Conceptual
Robustness in Simultaneous Engineering: An Extension of
Taguchi's Parameter Design", Research in Engineering Design,
vol. 6, pp. 211-22.

Clark, K. B. and Fujimoto, T. 1991. Product Development
Performance, Harvard Business School Press, Boston, Mass.

Consoli, R. D. and Sobieszczanski-Sobieski, J. 1992. "Application
of Advanced Multidisciplinary Analysis and Optimization
Methods to Vehicle Design Synthesis", Journal of Aircraft
(Sept.-Oct.), vol. 29, no. 5, pp. 811-18.

Cook, H. E. 1992. "New Avenues to Total Quality Management",
Manufacturing Review (Dec.), vol. 5, pp. 284-92.

Cutkosky, M. R., Conru, A. B. and Lee, S-H. 1994. "An Agent-based
Approach to Concurrent Cable Harness Design", AIEDAM, vol.
8, pp. 45-61.

Cutkosky, M. R. and Tenenbaum, J. M. 1990. "Toward a
Computational Framework for Concurrent Engineering",
IECON, IEEE, vol. 1, pp. 700-6.

Darr, T. P. and Birmingham, W. P. 1994. "Automated Design for
Concurrent Engineering", IEEE Expert, October 1994, vol. 9,
No. 5, pp. 35-42.

Eppinger, S. D., Whitney, D. E., Smith, R. P. and Gebala, D. A.
1990. "Organizing the Tasks in Complex Design Projects",
Design Theory and Methology, DE-vol. 27, pp. 39 46.

Eppinger, S. D., Whitney, D. E. and Gebala, D. A. 1992. "Organizing
the Tasks in Complex Design Projects: Development of Tools
to Present Design Procedures", Proceedings, NSF Design
and Manufacturing System Conference, Atlanta, Ga., January
1992.

Finger, S. and Dixon, J. R. 1989. "A Review of Research in
Mechanical Engineering Design. Part I: Descriptive, Prescriptive,
and Computer-Based Models of Design Processes", Research in
Engineering Design, vol. 1, pp. 51-67.

Goldberg, D. 1989. Genetic Algorithms in Search, Optimization, and
Machine Learning, Addison-Wesley, Reading, Mass.

Conceptual Robustness in Simultaneous Engineering 85

Krishnan, V., Eppinger, S. D. and Whitney, D. E. 1991. "Towards
a Cooperative Design Methodology: Analysis of Sequential
Descision Strategies", Design Theory and Methodology, DE-voL
31, pp. 165 72.

Michelena, N. F. and Agogino, A. M. 1991. "Formal Solution of
N-type Taguchi Parameter Design Problems with Stochastic
Noise Factors", Design Theory and Methodology, DE-vol. 31,
pp. 13-20.

Otto, K. N. and Antonsson, E. K. 1993. "Extension to the Taguchi's
Method of Product Design", Journal of Mechanical Design
(March), vol. 115, pp. 5-13.

Papa|ambros, P. Y. and Wilde, D. J. 19.88. Principles of Optimal
Design, Cambridge University Press, New York.

Si, ddall, J. N. 1983. Probabilistic Engineering Design, Dekker, New
5'ork.

Smith, P. G. and Reinertsen, D. G. 1991. Developing Product in
Ha!/'the Time, Van Nostrand Reinhold, New York.

Sobieszczanski-Sobieski, J., James, B. B. and Dovi, A. R. 1985.
"Structural Optimization by Multilevel Decomposition", AIAA
Journal (Nov.), vol. 23, no. 1 I, pp. 1775 82.

Sobieszczanski-Sobieski, J. and Tulinius, J. t991. "MDO Can Help
Resot~e ~he :Designer's Dilemma", Aerospace America, September,
pp. 32-5, 63.

Taguchi, G. 1986. Introduction to Quality Engineering, Krauss
International Publications, White Plains, NY.

Taguchi, G. 1987. System of Experimental Design, vols. 1 and 2,
Krauss International Publications, White Plains, NY.

Taguchi, G. and Clausi~g, D. 1990. "Robust Quality", Harvard
Business Review (Jan.-lTeb.), vol. 68, pp. 65-75.

Ulrich, K., Sartorius, D., Pearson, S. and Jakiela, M. 1993.
"Including the Value of Time in Design-for-Manufacturing
Decision Making", Management Science (April), vol. 39, no. 4,
pp. 429-47.

Vasseur, H., Kurfess, T. R. and Cagan, J. 1993. "Economic

Analysis of Quality Innovation in Design and Manufacturing",
Advances in Design Automation, ASME, DE-vol. 65-2, pp.
495-500.

Von Neumann, J. and Morgenstern, O. 1964. Theory of Games and
Economic Behavior, Wiley, New York.

Wagner, T. C. 1993. "A General Decomposition Methodology for
Optimal System Design", PhD dissertation, University of
Michigan.

Wagner, T. C. and Papalambros, P. Y. 1993. "A General Framework
for Decomposition Analysis in Optimal Design", Advances in
Design Automation, ASME, DE-vol. 65-2, pp. 315-25.

Ward, A. C. and Seering, W. 1993a. "The Performance of a
Mechanical Design Compiler", Journal of Mechanical Design
(Sept), vol. 115, pp. 341-5.

Ward, A. C. and Seering, W. 1993b. "Quantitative Inference in a
Mechanical Design Compiler", Journal of Mechanical Design
(March), vol. 115, pp. 29-35.

Ward, A. C., Liker, J., Sobek, D. and Christiano, J. 1995. "The
Second Toyota Paradox" accepted by the Sloan Management
Review.

Wellman, M. P. 1993. "A Market-oriented Programming
Environment and its Application to Distributed Multicommodity
Flow Problems', Journal of Artificial Intelligence Research, vol. 1,
pp. 1-23.

Wellman, M. P. 1994. "A Computational Market Model for
Distributed Configuration Design", Proceedings of the 12th
National Conference on AI, AAAI, vol. 1, pp. 401-7. Seattle, WA,
1994.

Wilde, D. J. 1992. "Monotonicity Analysis of Taguchi's Robust
Circuit Design Problem", Journal of Mechanical Design (Dec),
vol. 114, pp. 616-9.

Wilde, D. J. 1991. "A Counterexample to Signal-to-Noise Ratio as
a Measure of Design Robustness", Advances in Design
Automation, DE-vol. 32-1, pp. 233-4.

