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Abstract In this paper, a new data mining algorithm based on
the rough sets theory is presented for manufacturing process con-
trol. The algorithm extracts useful knowledge from large data sets
obtained from manufacturing processes and represents this know-
ledge using “if/then” decision rules. Application of the data min-
ing algorithm developed in this paper is illustrated with an indus-
trial example of rapid tool making (RTM). RTM is a technology
that adopts rapid prototyping (RP) techniques, such as spray form-
ing, and applies them to tool and die making. A detailed discus-
sion on how to control the output of the manufacturing process
using the results obtained from the data mining algorithm is also
presented. Compared to other data mining methods, such decision
trees and neural networks, the advantage of the proposed approach
is its accuracy, computational efficiency, and ease of use.

Keywords Data mining · Decision rules ·
Manufacturing process control · Rough sets

Nomenclature

A={a1,a2, . . .,an} Condition attributes set
B={b1,b2, . . .,bm} Decision attributes set
equivalence class set of objects that have the same values for

attributes in set A or B
Ai Equivalence classes of A, where i=1, . . ., p
Bj Equivalence classes of B, where j=1, . . ., q
V(Ai , ak) Values of the attributes in equivalence classes

of Ai
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V(Bj , bl) Values of the attributes in equivalence classes
of Bj

Xij Intersection of Ai and Bj

P Percent of objects in a current equivalence
class of condition attribute set that corres-
pond to a rule; measures rule confidence

Q Percent of objects in current equivalence
class of decision attribute set that correspond
to a rule

C Percent of objects that correspond to a rule;
measures rule support

QTY Quantity of objects corresponding to a rule.

1 Introduction

Data mining is a new area of computational intelligence that
offers new theories, techniques and tools for processing and ana-
lyzing large datasets. It is a discipline of growing interest and
importance. Its application area can provide significant compet-
itive advantages to a manufacturing organization by exploiting
the potential of large data warehouses.

The idea of finding patterns in manufacturing, design, busi-
ness, or medical data is not new. Traditionally, it was the respon-
sibility of analysts that generally used statistical techniques and
tools. However, the scope of this activity has recently changed.
For example, widespread usage of computers and networking
technologies and introduction of new data acquisition systems in
manufacturing companies has created large electronic databases
in which the manufacturing process, product, or equipment-
related data is stored. Manufacturing companies such as original
equipment manufacturers (OEM) and their suppliers capture mil-
lions of transactions through data acquisition systems. These
data can be analyzed to identify potential patterns in the pa-
rameters that control a manufacturing process or the quality of
products produced. One of the advantages of data mining is that
it is not necessary to do costly experimentation for collection of
data. Moreover, in data mining the dataset used for extracting
decision rules (knowledge) does not have to be complete.
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Currently, one of the most widely used approaches in data
mining are decision trees generated through symbolic inductive
algorithms [1–4]. Each branch node in a decision tree represents
a choice between a number of alternatives, and each leaf nodes
represents a classification or decision. When a new object is clas-
sified, the values of the object attributes are propagated through
the nodes of the tree to the leaf (decision). Decision trees, such
as the ID3 or C4.5 designs described in [4–6], use the maximum
generality bias to achieve a high predictive accuracy. Kusiak [7]
provides a brief description of several decision trees based algo-
rithms. The disadvantage of this method is that it uses probability
estimates to evaluate the quality of inductive rules. Unreliable
probability estimates resulting from a small number of training
instances often produces high error rates and occasionally identi-
fies patterns that are of no value to the system analyst. Also, de-
cision tree induction algorithms require large computer memory
to analyze and fit the training dataset. This limits the application
of decision tree algorithms to small size problems [8–10].

Neural networks are an alternative technique for pattern
recognition in complex and large datasets [11–13]. They are
data-driven, self-adaptive methods that use universal functional
approximations to estimate any function with arbitrary accu-
racy. Neural network-based approaches have been widely used
to solve data mining problems in manufacturing, design, and
medicine. Zhang [13] provides a detailed survey of neural
network algorithms for classification. Riplay and Riplay [14]
present a review of the application of several neural network
techniques in medicine, including methods for diagnosis and
prognoses tasks and survival analysis. Most applications of
neural networks in medicine refer to classification tasks. A com-
prehensive list of medical neural network applications can also
be found in Baxt [15]. One of the main disadvantages of neural
network is that it requires large computational time to analyze
data compared to other data mining techniques, such as decision
trees or rough sets (RS) theory (described in the paper).

Ostermark [16] presented the multi-group classification algo-
rithm based on a hybrid fuzzy neural network. A key feature of the
approach is the adaptation of the membership function to a new
data. They have tested the algorithm with real economic data and
results have suggested economically-meaningful interpretations.

Hemsathapat et al. [17] show an application of neuro-fuzzy-
genetic data mining architecture in an American charitable or-
ganization’s donor database. They combined the application of
several techniques to obtain successful results. In their data min-
ing approach, after using a preprocessing function as the first
step, principal component analysis (PCA) is used to reduce the
variables that describe the major trends in the data. Once the ma-
jor trends are identified, a probabilistic neural network is used to
classify the dataset according to the groups considered. A rule
extraction technique and genetic algorithms were used to extract
hidden knowledge and to eliminate weak rules, respectively.

The major drawback of decision trees and neural networks is
that they are computationally complex, make decisions essential
for all objects with unknown outcomes with some error, and re-
quire specialized software and hardware. In this paper, new data
mining and knowledge extraction algorithms based on RS the-

ory are presented that allow one to analyze and identify useful
patterns in datasets.

RS theory, first proposed by Pawlak [18], provides tools for
data analysis and autonomous decision-making, and has been
used to extract knowledge from datasets. The theory has a strong
mathematical foundation and is well suited to deal effectively
with various decision problems. Although it overlaps to some
extent with fuzzy set theory, RS theory can be viewed as an in-
dependent discipline [19]. The primary goal of RS theory is in
the classificatory analysis of data [18–20]. For the given dataset,
RS algorithms induce a set of relevant concepts which provide
data classification. The main advantage of RS theory is that it
does not need any preliminary or additional information about
the dataset, such as probability in statistics, grade membership
or value of possibility in fuzzy set theory. The literature provides
several applications of RS theory (see [21–25]).

Kusiak and Kurasek [21] applied a RS-based data mining
algorithm to solve a quality-engineering problem in electronics
assembly. Using a data mining algorithm, they were able to iden-
tify the cause of solder defects in a circuit board. Kusiak [22]
presented a new data mining algorithm (G-algorithm) for the
knowledge extraction in the form of “if/then” decision rules. G-
algorithm was applied to the dataset obtained for children born
with a malformation of the heart (tachycardia). The analysis of
results shows that the occurrence of tachycardia may be accu-
rately predicted for 78.08% of infants using the G-algorithm.
Ohrn et al. [23] developed an approach for generating rule-based
classifiers based on rough set theory and Boolean reasoning. The
approach was applied to a real-world medical dataset. The re-
sults showed that with a relatively small number of rules the
model was able to accurately describe the patterns in the ori-
ginal dataset. Kusiak [24] presented a RS-based approach that
combines different decision modes to allow for autonomous
decision-making. The approach has been tested on a medical
dataset for patients with lung abnormalities. Two independent
algorithms were developed to obtain an accurate diagnose. Das-
Gupta [25] presented a RS-theory-based data mining approach
for the design of information retrieval systems to improve docu-
ment indexing. The approach uses Boolean logic, term weight-
ing, and approximation space and search strategies to effectively
rank the retrieved documents.

In this paper, a new algorithm based on RS theory for
manufacturing process control is presented. An application of
the algorithm is presented with the industrial example of rapid
tool making. The rest of the manuscript is organized as fol-
lows: Sect. 2 describes the problem and the mathematical ap-
proach; Sect. 3 presents an industrial application of the data
mining algorithm and provides a detailed discussion of how to
control the output of the manufacturing process using the results
obtained from the algorithm.

2 Problem description and mathematical approach

The goal of data mining algorithm is to extract useful knowledge
from large datasets and represent this knowledge in a form that
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Fig. 1. Phases of the data mining process

is recognizable to human, for instance using “if/then” decision
rules. Figure 1 shows the main steps of a typical data min-
ing process. To illustrate these major steps and the data mining
algorithm developed in this paper, consider the sample manufac-
turing process dataset in Table 1. Each row (object) in Table 1
represents a single instance (i.e. a single test or experiment) in
a manufacturing process. Attributes a1 to a5 denote input and
output parameters of the process.

2.1 Data acquisition

The first step in any data mining approach is the selection of
a historical dataset for analysis. A dataset may be retrieved from
a single source or may be obtained from several operational
databases. Once a dataset is retrieved and organized, data prepro-
cessing techniques (as described in the next section) are used to
prepare data for analysis.

2.2 Data preprocessing

Data preprocessing is significant in any data mining approach as
it may affect the data mining algorithm’s efficiency and accuracy.
Data preprocessing, as presented in this paper, consists of data
cleaning, data clustering, and attribute reduction.

2.2.1 Data cleaning

Data cleaning is an optional step in data preprocessing and is
used to remove outlying records and objects (rows) with missing,
null, or inconsistent values from the dataset. Also, in this step
data stored as strings (i.e. attributes with the continuous values)
are converted to numerical values.

2.2.2 Attribute reduction

Attribute reduction is used to identify and remove redundant at-
tributes from the dataset. It optimizes the knowledge extraction
process by reducing the size of the set and helps the user to
see dependencies between the attributes. The attribute reduction
method presented in this paper uses RS technique to evaluate

Table 1. Sample dataset

Input Output
Object # a1 a2 a3 a4 a5

1 0 0 0 1 Low
2 0 1 1 3 Low
3 1 0 0 2 Low
4 1 1 1 0 Medium
5 1 0 0 2 High

dependency levels between all pairs of attributes and removes
the attributes that have a higher level of dependency compared
to the user’s established threshold. The assumption here is that
if the dependency level between two attributes is greater than
some user established threshold, then either the first or the sec-
ond attribute may be removed from the dataset without the loss
of useful information. The dependency level K of attribute aj

from attribute ai is determined from the following:

K(ai , aj) =
∑

L∈a∗
j

∣∣ai(L)
∣∣

N
(1)

ai(L) = ∪ {
Y ∈ a∗

i

∣∣ Y ⊆ L
}

(2)

where:

a∗
i , a∗

j is the equivalence class of attributes ai and aj , respectively.
The equivalence class is the set of objects that have the
same value for attribute ai and aj).

L is the equivalence class of aj used in Eq. 1
Y is the equivalence class of ai used in Eq. 2
N is the total number of objects in the dataset
|•| is the cardinality of a set (i.e. number of elements in the

set)
ai(L) is the lower approximation of set L over attribute ai (i.e.

the union of equivalence classes of ai which are com-
pletely included in the given set L)

When the dependency level K(ai , aj) = 0, then the attribute aj

is independent from the attribute ai . When K(ai , aj) = 100 then
ai is fully dependent on aj . This means that for each unique value
of attribute aj there is a corresponding unique value of attribute
ai (i.e. each equivalence class of ai is fully included in one of the
equivalence classes of aj). It is important to emphasize that the at-
tribute aj cannot be removed from dataset based only on the value
of K(ai , aj ). The dependency K(aj , ai) should also satisfy the user
established threshold requirements for one of the attributes ai or
aj to be removed. In other words, for either attribute ai or aj to be
removed from the dataset min{K(ai , aj ), K(aj , ai)} must exceed
the user established threshold. The value of a threshold primarily
depends on the problem at hand. When a high value for a thresh-
old is selected, a small number of attributes is eliminated from the
dataset. For a problem with a large number of attributes (charac-
teristics), this may unnecessarily increase the computational com-
plexity of the algorithm by not eliminating the highly dependant
attributes from the dataset. At the same time, when the threshold
value is small, the attributes with a relatively small level of de-
pendency may be removed from the dataset and useful process
information could be lost. Typically, there is no measure or rule
for selecting a threshold value. For the most part, the acceptable
value of the threshold depends on the problem at hand and on the
analyst’s experience. Normally, in a problem where the attributes
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Table 2. Summary of dependency levels calculations

Attribute Input Output
Attribute a1 a2 a3 a4 a5

a1 – 0 0 100 40
a2 0 – 100 100 40
a3 0 100 – 100 40
a4 0 0 0 – 40
a5 40 0 0 60 –

Table 3. Reduced dataset

Attributes Decision
Object # a1 a3 a4 a5

1 0 0 1 Low
2 0 1 3 Low
3 1 0 2 Low
4 1 1 0 Medium
5 1 0 2 High

are strongly connected, a threshold value between 90 and 100%
is appropriate; otherwise, it is reasonable to select a threshold be-
tween 80 and 90%. To illustrate the attribute reduction method,
consider the dataset presented in Table 1 and assume for this ex-
ample the user established threshold for the attribute dependency
level is 85%. The dependency levels for all the pairs of attributes
shown in Table 1 are summarized in Table 2.

One may see from Table 2 that K(a2, a3) = K(a3, a2) = 100
(i.e., attributes a2 and a3 are fully dependant), and one of the
attributes a2 or a3 may be removed from the dataset. The remain-
ing attribute pairs do not satisfy the user threshold requirements
and cannot be removed. The datasets which are obtained after the
attribute reduction process are shown in Table 3.

2.2.3 Data clustering

Once the data cleaning and attribute reduction steps are com-
plete, data clustering algorithms are used (the k-mean [26] or
centroid method [27], for example) to discretize attributes with
continuous numeric values. This groups continuous numeric
values of attributes into numeric ranges (classes). This step helps
the data mining algorithm to produce well summarized results
and to work more efficiently.

2.3 Decision rules generation

Once the data preprocessing step is complete, a decision rule
generation algorithm is used to extract useful knowledge from
the dataset. To illustrate the knowledge representation algorithm,
the following notation is introduced.

Rule 1: IF a1 = 0 THEN a5 is Low. (P = 100%, Q = 66.67%, C = 40%, QTY = 2)
Rule 2: IF a1 = 1 THEN a5 is Medium. (P = 33.33%, Q = 100%, C = 20%, QTY = 1)
Rule 3: IF a1 = 1 THEN a5 is High. (P = 33.33%, Q = 100%, C = 20%, QTY = 1)
Rule 4: IF a1 = 1 THEN a5 is Low. (P = 33.33%, Q = 33.33%, C = 20%, QTY = 1)

Fig. 2. Decision rules generate from
the sample dataset

Decision rules generation algorithm

Step 1. Initialize: A = {a1, a2, . . ., an}; B = {b1, b2, . . ., bm}
Step 2. Determine Xij = Ai ∩ Bj for each i = 1, . . ., p and j =

1, . . ., q
Step 3. For each Xij �= ∅, generate a rule

IF a1 = V(Ai, a1) AND . . . AND an = V(Ai , an)

THEN b1 = V(Bj , b1) AND . . . AND bm = V(Bj , bm)

[P, Q, C, QTY]
where: P = |Xij |/|Ai|; Q = |Xij |/|Bj|; C = |Xij |/N;
QTY = |Xij |

In the decision rule generation algorithm, each non-empty in-
tersection of the equivalence classes of A and B attribute sets
obtained in Step 2 is represented with a single “if/then” decision
rule. In this decision rule, the “if” portion of the rule includes the
set of attributes representing process conditions (inputs), and the
“then” portion of the rule includes the set of attributes that repre-
sents process decisions (outputs). The sum (P+Q+C) indicates
the importance of the rule and that parameters P, Q, and C in-
dividually or jointly provide more insight on rule importance or
weakness.

To illustrate the steps of the decision rules extraction al-
gorithm and how parameters P, Q, and C are used to analyze
the rule, consider the sample dataset provided in Table 3. Here,
assume that one wants to obtain “if/then” decision rules to
represent the relationships between attributes a1 and a5 of the
manufacturing process. In Step 1 of the algorithm, sets A = {a1}
and B = {a5} are initialized. In Step 2, the equivalence classes
of A and B are determined and their corresponding intersections
are calculated as follows:

A1 = {1, 2}, A2 = {3, 4, 5}, B1 = {1, 2, 3}, B2 = {4}, B3 = {5} .

X11 = A1 ∩B1 = {1, 2}, X12 = A1 ∩B2 = ∅,

X13 = A1 ∩B3 = ∅, X21 = A2 ∩B1 = {3},
X22 = A2 ∩B2 = {4}, X23 = A2 ∩B3 = {5} .

In this step the values of the equivalence classes are also
determined:

V(A1, a) = 0, V(A2, b) = 1, V(B1, d) = Low,

V(B2, d) = Medium, and V(B3, d) = High .

In the final step of the algorithm the decision rules are gen-
erated and the values of parameters P, Q, C, and QTY are calcu-
lated for each rule (see Fig. 2).

The decision rules in Fig. 2 are sorted in descending order
of (P + Q + C). Rule 1 corresponds to the objects 1 and 2 in
Table 3, Rule 2 corresponds to the object 4, and so on. Rule 1
is the strongest, and is based on (P + Q + C). The value of
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P = 100% in this rule indicates that all the objects in the dataset
that have condition a1 = 0 are covered by this rule. The value
of Q = 100% in Rules 2 and 3 indicate that the objects with the
decision outcome a5 = Medium and a5 = High are covered by
Rules 2 and 3, respectively. One may also see that the lower
value of P = 33.3%, indicates that condition a1 = 1 produces
different decision outcomes in the manufacturing process, i.e.
a5 = Medium, a5 = High, and a5 = Low in rules 2, 3, and 4, re-
spectively. More detailed discussion on how parameters P, Q, and
C are used to analyze the strength and the weakness of the rule is
presented in Sect. 3 with an industrial example.

3 Industrial application: rapid tool making

Rapid tool making (RTM), a technology that adopts rapid proto-
typing (RP) techniques and applies them to tool and die making,
is becoming an increasingly attractive alternative to traditional
machining [28]. Among the existing RTM technologies, spray
tooling is an emerging and cost-effective technology for a wide
variety of manufacturing applications. In the spray tooling pro-
cess, tool fabrication begins with a model design represented as
a CAD file, which is produced to a master by a RP technology
such as fused deposition system (see Fig. 3). A castable ceramic
mold is made from this master. Molten metal is sprayed against
the ceramic mold, faithfully reproducing the mold shape, details,
and texture.

The turnaround is very fast and so far, it has worked well
for small stamping tool sets. When the spray-formed tooling pro-
cess is scaled-up to manufacture tool sets for stamping doors,
hoods and other large body panels, it will save millions of dollars
and cut several months off the production process. Therefore,
much of the focus at this point is on the development of a pro-
cess which can maximize the density of the deposited material,
minimize the loss of alloying elements while spraying in the
air, and enhance the strength of the tool. In a nutshell, the pro-
cess parameters that influence spray process are: current and the
voltage supplied to the spray gun, carrier gas type (argon, ni-
trogen or air), gas flow rate, wire type (solid, cored, Boron or
Ni/Alum), and the cap type used at the gun tip. The goal of the

Fig. 3. Spray tooling scheme

Fig. 4. The data acquisition process

data mining algorithm when applied to the spray tooling process
is to identify the process input parameters that can be used to ef-
fectively control spray material characteristics (i.e. the average
particle temperature, average velocity, and particle number and
size). For example, experiments indicate that to achieve max-
imum density and low porosity in the deposited steel, the average
particle temperature and velocity at the gun tip should be above
2700 K and 200 m/s, respectively. Therefore, in this study the
goal of data mining algorithms is to identify the input param-
eters of the spray process that can achieve the target levels of
average particle temperature and velocity. The software program
developed in C# is used to execute data preprocessing and the
rule generation algorithms presented in this paper. An Oracle9i
database is used to store and to represent the manufacturing pro-
cess data.

3.1 Data acquisition from the spray system

A thermal imaging system (TIS, Stratonics, Inc., Laguna Hills,
CA) (see Fig. 4) is utilized to measure the spray process output
parameters. For this industrial application, a process dataset con-
sisting of 1200 records is used. A representative dataset obtained
from the imaging system is shown in Table 4. All the possible
values of the input and output process parameters of the process
are shown in Table 5.

Next, an application of the data mining approach developed
in this paper is presented to identify the controlling parameters of
the process. First, data preprocessing results are introduced, then
decision rules are generated from the preprocessed data.
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Table 4. Representative dataset of the spray process

Object Input parameters Output parameters
No Current (A) Voltage (V) Flow rate (cfm) Gas type Wire type Cap dia. (in.) Temp. (K) Velocity (m/s) No. particles

1 200 32 50 N2 Solid 0.250′′ 2741 199.7 530
2 100 36 50 N2 Solid 0.250′′ 2731 197.3 264
3 300 28 50 N2 Solid 0.250′′ 2693 191.5 533
4 200 32 40 N2 Solid 0.250′′ 2917 166.2 24
5 200 32 65 N2 Solid 0.250′′ 2716 240.3 71
6 200 32 50 N2 Cored 0.375′′ 2656 182.0 243
7 200 32 50 N2 Cored 0.375′′ 2661 185.8 625
8 200 32 50 N2 Boron 0.275′′ 2894 201.5 216
9 200 32 50 N2 Boron 0.275′′ 3029 218.1 266
10 200 32 50 Arc Jet Solid 0.250′′ 2906 268.6 887
11 200 32 50 Arc Jet Solid 0.250′′ 2937 267.4 312
12 200 32 50 Air Solid 0.250′′ 2871 198.4 439
13 200 32 50 N2 Ni/Alum 0.300′′ 3053 221.9 284

Attribute Values

Current (A) 100, 200, 300
Voltage (V) 28, 32, 36
Gas flow rate (cfm) 40, 50, 65
Gas type N2, Arc Jet, Air
Wire type Solid, Cored, Boron, Ni/Alum
Cap opening diameter 0.250′′, 0.275′′, 0.300′′, 0.375′′
Temperature (K) Floating point numbers form the range [2000; 3200]
Velocity (m/s) Floating point numbers from the range [170; 300]
No. particles Integer numbers from the range [0; 1000]

Table 5. Spray process attribute
values

3.2 Data preprocessing and rule generation

Data preprocessing techniques are used to prepare the spray pro-
cess dataset for knowledge extraction. No data cleaning is per-
formed since the data obtained from the acquisition system was

Fig. 5. Clusters of the attribute temperature

consistent and had no null or missing values or errors. Next, the
process attributes (parameters) with continuous values (i.e. tem-
perature, velocity, and the number of particles) are clustered into
four separate ranges using the k-mean clustering algorithm [26].
Clusters of attribute temperature are shown in Fig. 5. Figure 5
depicts the clustering results in two dimensions to illustrate the
density of data points in each cluster that are located on the diam-
eter. Note that the number of clusters is the choice of the system
analyst and determines the number of classes of attributes used
in the data mining algorithm. When the choice for the number
of clusters is large, each rule generated by the algorithm cov-
ers a small number of objects. For example, when the number
of clusters is equal to the number of possible attribute values,
each rule generated by the algorithm for this attribute will be
supported by a single object.

Clustering analysis results for the process attribute tempera-
ture are shown in Table 6. Columns 2 and 3 in Table 6 show
the range and the mean value of the range for each of the four

Table 6. Four different clusters of attribute temperature

Cluster # Range Mean # Objects

1 [2500, 2684] 2587.59 100
2 [2686, 2820] 2776.4 335
3 [2826, 2915] 2867.06 539
4 [2916, 3000] 2959.45 226
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clusters, respectively. Column 4 indicates the number of objects
in each cluster. Using a similar clustering approach, values of
the attribute velocity and particle number are also grouped into
clusters. Once clustering results for these three attributes are ob-
tained, continuous values of these attributes are replaced with the
corresponding mean values of the clusters in the original dataset.

Next, an attribute reduction technique is used to identify and
remove the redundant attributes from the dataset. The results
of dependency level calculations for all the pairs of attributes
of the spray process are summarized in Table 7. From the re-
sults in Table 7, it can be seen that the attributes of current and
voltage are fully dependent and one of these attributes (i.e. volt-
age) can be removed from further analysis without any loss of
information.

Once the data preprocessing step is complete, the rule gen-
eration algorithm is used to extract useful knowledge from the
preprocessed dataset. The rules are used to establish relation-
ships between input/output process parameters and to control the
output of the spray process. It is important to emphasize that the
algorithm allows one to relate multiple input to multiple output

Table 7. Summary of dependency levels calculations

Attribute Input parameters Output parameters
Attribute Current Voltage Flow Gas Wire Cap Temperature Velocity No. particles

Current – 100 4.5 1 7.5 0 3 3 1.5
Voltage 100 – 4.5 1 7.5 0 3 3 1.5
Flow 4 4 – 5 3 5 3 6 1.5
Gas 4 4 7.5 – 3 15.5 9 3 9
Wire 4 4 0 0 – 0 3 1.5 1.5
Cap 0 0 0 1 0 – 0 0 1.5
Temperature 0 0 0 0 0 0 – 0 1.5
Velocity 0 0 0 0 0 0 30 – 100
No. particles 0 0 0 0 0 0 6 1.5 –

Rule 1 IF Gas is N2 THEN Temperature is 2867.06 [2826, 2915]
P = 48.8%, Q = 98.33%, C = 44.17%, QTY = 530

Rule 2 IF Current = 200 AND Gas is N2 THEN Temperature is 2867.06 [2826, 2915]
P = 51.93%, Q = 94.99%, C = 42.67%, QTY = 512

Rule 3 IF Current = 200 AND Flow = 50 AND Gas is N2 THEN Temperature is 2867.06 [2826, 2915]
P = 51.94%, Q = 91.84%, C = 41.25%, QTY = 495

Rule 4 IF Current = 200 AND Wire is Solid AND Flow = 50 AND Cap Dia. is 0.375 AND Gas is N2
THEN Temperature is 2867.06 [2826, 2915]
P = 59.73%, Q = 66.05%, C = 29.67%, QTY = 356

Rule 5 IF Current = 200 AND Wire is Solid AND Flow = 50 AND Cap Dia. is 0.375 AND Voltage = 32 AND Gas is Arc Jet
THEN Temperature is 2963.79 [2916, 3000]
P = 100%, Q = 20.35%, C = 3.83%, QTY = 46

Rule 6 IF Wire is Cored AND Gas is N2 THEN Temperature is 2587.59 [2500, 2684]
P = 95.05%, Q = 96%, C = 8%, QTY = 96

Rule 7 IF Current = 200 AND Wire is Cored AND Flow = 50 AND Cap Dia. is 0.375 AND Gas is N2
THEN Temperature is 2587.59 [2500, 2684]
P = 94.37%, Q = 67%, C = 5.58%, QTY = 67

Fig. 6. Decision rules for the process output temperature

process parameters. The best decision rules obtained from the
rule generation algorithm for the control of the average particle
temperature of the spray process are shown in Fig. 6.

Rule 1 is the strongest rule in Fig. 6 (i.e. it has the highest
value of (P +Q+C)). According to this rule, when N2-type gas
is used in spray process, 48.8% of the time the average particle
temperature was between the required 2826 K and 2915 K (i.e.,
rule confidence P = 48.8%). Also, 98.33% (Q = 98.33%) of de-
cision outcomes that have a process temperature between 2826 K
and 2915 K had N2 gas used in the process, and 44.17% of the
records (i.e. rule support C = 44.17%) in the dataset are cov-
ered by this rule. Compared to Rule 1, Rules 2 and 3 have similar
values for the parameters P, Q and C. However, Rules 2 and 3
enable the analyst to control process output temperature with
two (i.e. current and gas type) and three (i.e. current, flow and
gas type) input variables, respectively. From the process control
stand point, these two rules may be preferable over Rule 1 as they
provide more control over the process. Examinations of Rules 1,
2, 3 and 4 indicate that when a new condition attribute is added to
the rule, the rule confidence (i.e. parameter P) increases and the
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values of parameters Q and C decrease. Adding another condi-
tion attribute to the rule (i.e. Rule 1 versus Rule 2, Rule 2 versus
Rule 3, Rule 3 versus Rule 4) makes the rule unique and there-
fore parameter P (rule confidence) increases. Clearly, the values
of Q and C of the rule are decreasing when the rule is extended
to include a new condition parameter. Rule 4 in Fig. 6 may also
be considered a strong rule. The condition (i.e.“if”) part of this
rule includes all the input parameters of the spray deposition
process, and the process output temperature is in the required
2826 K ∼ 2915 K range. The confidence level of Rule 4 is al-
most 60% ( P = 59.73%), which means that when the process
input parameters assume values similar to the ones that appear
in the “if” portion of this rule, then 60% of the time a process
temperature is between 2826 K and 2915 K. However, only 66%
percent of the data records (Q = 66.05%) that have a temperature
between 2826 K and 2915 K have the values of input parame-
ters outlined in Rule 4, and only 29.67% (C = 29.67%) of the
records of the entire dataset are covered by this rule. Rule 5 is
the only rule in which the value of process output temperature
is between 1916 and 3000 K. The P value of Rule 5 is 100%
(i.e. when the process had input parameters shown in the “if”
portion of this rule, the process temperature always fell between
1916 and 3000 K), and it provides the most desirable (highest)
outcome for the average particle temperature. However, both the
rule support (C = 3.83%) and the Q = 20.35% value of this rule
is very low which implies that the rule is not reliable. Similarly,
Rules 6 and 7 have a high confidence (P value), however, due to
low support (C value), these rules may not be considered as being
reliable for the system analyst.

Rule 1 IF Flow = 50 THEN Velocity is 209.6 [208.41, 211.04]
P = 51.1%, Q = 92.97%, C = 45.75%, QTY = 549

Rule 2 IF Current = 200 THEN Velocity is 209.6 [208.41, 211.04]
P = 50.47%, Q = 91.71%, C = 47%, QTY = 564

Rule 3 IF Current = 200 AND Flow = 50 AND Voltage = 32 THEN Velocity is 209.6 [208.41, 211.04]
P = 55.39%, Q = 85.15%, C = 40%, QTY = 480

Rule 4 IF Current = 200 AND Wire is Solid AND Flow = 50 AND Cap Dia. is 0.375 AND Voltage = 32 AND Gas is N2
THEN Velocity is 209.6 [208.41, 211.04]
P = 38.09%, Q = 53.79%, C = 18.92%, QTY = 227

Fig. 7. Decision rules for the process output velocity

Rule 1 IF Voltage = 32 AND Gas is N2 THEN Velocity is 209.6 [208.41, 211.04] AND Temperature is 2867.06 [2826, 2915]
P = 33.78%, Q = 96.53%, C = 38.25%, QTY = 459

Rule 2 IF Current = 200 AND Flow = 50 AND Voltage = 32 AND Gas is N2
THEN Velocity is 209.6 [208.41, 211.04] AND Temperature is 2867.06 [2826, 2915]
P = 38.78%, Q = 88.53%, C = 36.25%, QTY = 432

Rule 3 IF Current = 200 AND Gas is N2 THEN Velocity is 209.6 [208.41, 211.04] AND Temperature is 2867.06 [2826, 2915]
P = 19.78%, Q = 96.53%, C = 16.25%, QTY = 195

Rule 4 IF Current = 200 AND Voltage = 32 THEN Velocity is 209.6 [208.41, 211.04] AND Temperature is 2867.06 [2826, 2915]
P = 17.97%, Q = 97.03%, C = 16.33%, QTY = 196

Fig. 8. Decision rules for the process output temperature and velocity

Similar analyses are performed for the process output at-
tribute of velocity. Figure 7 shows the best decision rules ob-
tained from the rule generation algorithm controlling spray pro-
cess velocity to be above the desired 200 m/s. Rules 1 and 2
in Fig. 7 provide control of the process velocity with a sin-
gle input parameter and have the highest value of (P + Q +
C). However, Rule 3 may be more preferable for the control
spray process velocity at levels above 200 m/s. This rule has
a higher P value (confidence), an acceptable Q value and the
support level is adequate. What is more important is that this
rule controls the output velocity of the process with the three
different input parameters (current, flow and voltage). Finally,
Rule 4 is the best rule for controlling process output velocity
with all the input parameters. However, one may see from P,
Q, and C values that both the confidence and the support level
of this rule is low and as such, the rule cannot be considered
reliable.

Figure 8 shows the best four rules that relate the spray pro-
cess input parameters to the average particle temperature and
velocity. Rules 1 and 2 in Fig. 8 have acceptable levels of confi-
dence (P value) and support (C value). Rule 1 provides control
of process output with two input parameters (i.e. voltage and
gas). However, by examining the rules in figures 6 and 7 one can
see that these two input parameters do not appear in any of the
strong rules generated by the algorithm for separately controlling
the spray process temperature and velocity (see figures 6 and 7).
Similar examinations of Rule 2 in Fig. 8 reveal that the input and
output conditions of this rule are consistent with Rule 3 in Fig. 6
and Rule 3 in Fig. 7.
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The analysis presented above suggests that to control average
particle temperature of the spray process, Rule 3 in Fig. 6 should
be used. According to this rule, when the current is set to 200 A,
flow is 50 cfm and N2 gas type is used. In this case, the average
particle temperature is above 2700 K. To control average particle
velocity, Rule 3 in Fig. 7 should be used. According to this rule, to
obtain the average particle velocity above 200 m/s current should
be set at 200 A, the flow at 50 cfm and the voltage at 32 V. Finally,
if the analyst wants to control both the temperature and the vel-
ocity of the spray forming process, then Rule 2 in Fig. 8 should
be used. According to this rule, when the current is set to 200 A,
flow is 50 cfm, voltage is 32 V and N2-type gas is used. Here, the
average particle temperature is above the required 2700 K and the
average particle velocity is above the required 200 m/s. One can
also see that the input and output parameters of this rule are con-
sistent with those of Rule 3 in Fig. 6 and Rule 3 in Fig. 7.

There are two different ways that the knowledge obtained
from the data mining algorithm can be used in process control.
First, the knowledge (decision rules) can be used by the process
analyst to manipulate the spray forming process input attributes
to achieve the desired output. It should be noted that when new
process data become available, the rules used for process con-
trol must be examined for their accuracy and an attempt should
always be made to develop new knowledge using this new in-
formation. Second, the more desirable approach is the automated
process control using the decision rules obtained from the data
mining algorithm. Under the scheme of data mining, knowledge
generation, and process control, tasks are done automatically.
Data obtained from the thermal imaging system is automatically
stored in the database and data mining algorithms are used to ex-
tract useful knowledge from the dataset. Control software inter-
prets the knowledge obtained from the algorithm and automati-
cally controls the process input. To implement such an automated
control scheme, one needs to develop statistical approaches to ex-
amine the validity of each rule generated by the algorithm and to
identify the best set of rules for process control. Future research
should concentrate both on the development of automated con-
trol software and statistical methods that would allow automated
process control using the rules generated by the algorithm.

4 Conclusion

In this paper, a new data mining algorithm based on the RS
theory was presented for manufacturing process control. The al-
gorithm extracts useful knowledge from large datasets obtained
from the manufacturing process and represents this knowledge
using “if/then” decision rules. An application of the data min-
ing algorithm was presented with the industrial example of rapid
tool making (RTM). A detailed discussion on how to control
manufacturing process output using the results obtained from the
data mining algorithm was also presented. Compare to other data
mining methods such as decision trees and neural networks, the
advantage of the proposed approach is its accuracy, computa-
tional efficiency, and ease of use.
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