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Abstract We introduce a simple anisotropic modifica-
tion of Floater’s shape-preserving parameterization
scheme. The original scheme is formulated as a discrete
energy minimization and the modification is performed
by introducing an additional stretching term. Results
and example applications to anisotropic regular surface
meshing are presented.
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1 Introduction

Surface meshes are widely used in manufacturing,
medical and scientific applications. Acquired with shape-
acquisition techniques, these meshes are often resampled
into more regular representations [1, 2] to become more
amenable for further usage. Creation of such regular
representations is called remeshing, and it often involves
patchwise parameterization of original mesh data onto
simple planar regions. Recently, there has been a bout of
interest in surface mesh parameterization algorithms
targeting surface texturing [3, 4], geometry approxima-
tion with semiregular approximations [5, 6], as well as
general mesh parameterization techniques [7, 8].

In this paper we introduce a modification to a well-
known shape-preserving parameterization scheme of
Floater [9]. We work in a setting useful to traditional
remeshing algorithms that split the original surface mesh
into topologically simple patches, and map each patch
onto a simple planar region. We therefore restrict our
attention to the case of a single mesh region mapped
onto a square.

The goal of this paper is to introduce more control
over the sampling of the remeshed model. In particular,
our method creates rarefied sampling according to a
given direction field. Since the parametric region (a unit
square) is fixed, that will incur a denser sampling in
other regions of the surface. We can therefore adjust
surface sampling in a desired way. An example of a
controlled stretching of the parameterization away from
a corner of the Rockerarm mesh patch is shown in
Fig. 1.

This research originated from the desire to have more
control over parameterization without introduction of
rigid constraints on the parameterization. This can be
useful in applications where the regular mesh density
needs to be adjusted: instead of specifying the regions
where the mesh needs to be denser, we specify the re-
gions where the regular sampling can be sparser in a
certain direction.

A possible application of our scheme can produce
better surface approximations by optimizing the direc-
tion field to sparsify regions with low curvature to pull
the sampling of the reconstructed regular meshes
towards the areas with higher curvature. An alternative
approach to this problem was recently presented by
Sander et al. [4].

In the following sections we formulate a variant of
Floater’s scheme in terms of second difference minimi-
zation similar to that in [10]. This allows us to incor-
porate anisotropic stretching modification in a natural
way by adding another term to the minimization func-
tional. Our work is similar to the approach of [11].

2 Mesh parameterization

Notation: We consider a triangular manifold mesh
M¼ V; Tð Þ with the vertex set V and the face set T ,
and a ‘‘coordinate’’ function x : V ! R3. When using a
local parameterization on a small neighborhood of the
mesh, we shall reserve n=(n1,n2) for such parame-
terization. A typical local parameterization of the
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‘‘umbrella’’ of faces adjacent to a given vertex can be
obtained by flattening such a neighborhood via a ‘‘polar
map’’ as described in [9, 12].

Parameterization bijectively maps a mesh region onto
a planar region. In remeshing applications a regularly
sampled mesh is the goal, and it is therefore typical that
the boundary of a mesh patch is mapped onto the
boundary of a simple plane region (e.g., a square) in a
fixed way. The parameterization scheme is then often
specified by per-inner-vertex relations: both linear [1, 9]
and nonlinear [7] approaches are employed in practice.
When linear equations are used, the bijectivity of the
parametric mapping can be ensured by introducing a
convexity condition.

Formally, the goal of parameterization is to find a
parametric function U : V ! R2 such that it maps the
boundary vertices of the meshM onto the boundary of
a simple planar region (we shall use a unit square in this
paper), while the inner vertices are mapped inside the
square with the condition that the corresponding
piecewise linear map based on U and T is injective (there
are no flipped triangles in the parametric region). See
[13] for more details. Technicalities aside, a sufficient
condition for having a bijection between the planar
square and the original mesh is that the parameteric
function U=(U1,U2) satisfies a convex relation at every

inner vertex of the mesh, so that for every inner vertex �v
and every vertex v in its one-ring x(�v) there exist real
weights a�vv such that

a�vv > 0 positivityð Þ;P

v2x �vð Þ
a�vv ¼ 1 affinenessð Þ;

and
X

v2x �vð Þ
a�vvU vð Þ ¼ U �vð Þ:

Such parameterization is called a convex combination
map [13].

Hence, one approach to parameterization will be to
specify a collection of weights satisfying the previously
mentioned condition, and then find the parameterization
inside the mesh region by solving the resulting linear
system. As we shall see later, the affineness condition is
easy to ensure by restricting ourselves to a certain class
of schemes, while the positivity condition is harder to
achieve.

3 Second differences

Consider a real function f : V ! R (think of f=U1 or
f=U2). Given an assignment of the local neighborhood
parameterizations we treat f as samples of a function
from R2 to R. More precisely, let W be a neighborhood
submesh where the local parameterization n is esta-
blished. The parameterization n is thus defined on the
vertex set VX of W (e.g., VX ¼ x �vð Þ [ �v for some vertex v).

Given a triple of vertices v1; v2; v3 2 VX we define the
first divided difference D½1�fv1;v2;v3gf of f on the D[1] stencil

{v1,v2,v3} as the slope of the linear interpolant passing
through these three sample values; thus

D 1½ �
v1;v2;v3f gf ¼ V�1Df ;

where Df=[f2)f1, f3)f1]
T and the matrix V is given as

V ¼ n12 � n11 n22 � n21
n13 � n11 n23 � n21

" #

;

where ni
k :¼ ni vkð Þ.

Given two D[1] stencils that share a pair of vertices it
is easy to see that the difference between the corre-
sponding first divided differences is always orthogonal to
the line connecting the two common points. Thus, a
scalar quantity measuring closeness of first derivatives of
a sampled function can be introduced as a projection of
the previously mentioned difference onto the corre-
sponding normal direction. More precisely, let {v1,v2,v3}
and {v2,v3,v4} be the D[1] stencils under consideration.
We define the unit vector orthogonal to the edge
[n(v2),n(v3)] as

n23 ¼ n23 � n22
� ��

n3 � n2k k; n12 � n13
� ��

n3 � n2k k
� �

:

Fig. 1 Floater’s original isotropic and our anisotropic parameter-
izations of a patch of the Rockerarm mesh. Top: original mesh and
a direction field. Middle: parameterizations. Bottom: resulting
regular remeshes
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The second difference D 2½ �
v1;v2;v3;v4ð Þf is then defined via

D 2½ �
v1;v2;v3;v4ð Þf ¼ n23 � D 1½ �

v1;v2;v3f gf � D 1½ �
v2;v3;v4f gf

� �

¼ c1f v1ð Þ þ c2f v2ð Þ þ c3f v3ð Þ þ c4f v4ð Þ;

where

c1 ¼ n v2ð Þ�n v3ð Þk k
S123

; c2 ¼ � n v2ð Þ�n v3ð Þk kS314
S123 S432

;

c3 ¼ � n v2ð Þ�n v3ð Þk kS241
S123 S432

; c4 ¼ n v2ð Þ�n v3ð Þk k
S432

;

and the signed areas Sijk are given as

Sijk :¼ det
1 n1 við Þ n2 við Þ
1 n1 vj

� �
n2 vj
� �

1 n1 vkð Þ n2 vkð Þ

2

4

3

5:

Put simply the second difference characterizes the
change of slope across an edge shared by two triangles.

In [10] second differences were used in the construc-
tion of multiresolution subdivision filters on irregular
mesh hierarchies, and the D[1] stencils came from trian-
gles of the mesh. In the following section we show how
Floater’s shape-preserving scheme can be constructed
using second differences.

3.1 Floater’s parameterization scheme

We follow Floater [9] and consider a one-ring neigh-
borhood of a particular inner vertex of a triangular
mesh. Let �v be the center vertex of the one ring, and
x(�v)={v0,...,vn)1} be the set of its neighbors indexed
consistently in a counterclockwise order (Fig. 2). Floater
considers a vertex vk2x(�v) and finds an index l=l(k)

such that the ray n vkð Þn �vð Þ
������!

intersects the segment
conv n vlð Þ; n vlþ1ð Þf g (all indices in one ring are treated
modulo vertex valence n). This ensures that n(�v) lies in-
side the triangle conv{n(vl},n(vl+1),n(vk)}. (Fig. 2b). At
this point, we look at the second difference

g 2½ � �v; vkð Þ :¼ D 2½ �
�v;vl kð Þ;vl kð Þþ1;vkð Þf ¼

c�v;vk
�v f �vð Þ þ c�v;vk

vk
f vkð Þ þ c�v;vk

vl
f vlð Þ þ c�v;vk

lþ1f vlþ1ð Þ;

and notice that three coefficients c�v;vk
vk
; c�v;vk

vl
; c�v;vk

vlþ1
have the

same sign, while c�v;vk
�v is of the opposite sign. With a bit

more precision we claim the following is true:

c�v;vk
vk

c�v;vk
�v \0; c�v;vk

vl
c�v;vk

�v 60; c�v;vk
vlþ1

c�v;vk
�v 60: ð1Þ

Note: One of the D[1] stencils participating in g[2] is no
longer aligned with a triangle from T .

In order to obtain a linear predictor P�v for the
function value at the center vertex �v given the neigh-
boring values we minimize the following functional
which is quadratic in f �vð Þ (we label it Jiso for being
isotropic):

J iso
�v fð Þ ¼

Xn�1

k¼0
g½2� �v; vkð Þ
� �2

: ð2Þ

The desired value of the function at the center vertex
is then given as

P�vf ¼ argminf �vð ÞJ
iso
�v fð Þ:

One can easily check that the corresponding param-
eterization scheme is identical to the scheme of Floater
[9]. Indeed, for the optimal value of f �vð Þ we have

P

k
c�v;vk

�v

h
c�v;vk

�v f �vð Þ þ c�v;vk
�vk

f vkð Þ:

þc�v;vk
vlðkÞ

f vlðkÞ
� �

þ c�v;vk
vlðkÞþ1

f vlðkÞþ1
� �i

¼ 0:

Using the fact that the coefficients of the second
difference operator always sum up to zero, we obtain the
following linear relation

X

s

Aiso
s

 !

f �vð Þ ¼
X

s

Aiso
s f vsð Þ;

where the coefficients Aiso
s are given by

Aiso
s ¼ �c�v;vs

�v c�v;vs
vs
�

X

k:s2fl kð Þ;l kð Þþ1g
c�v;vk

�v c�v;vk
vs
:

Note that Aiso
s are guaranteed to be positive because

of Eq. (1).
Thus, introducing aisos ¼ Aiso

s

�P
s Aiso

s , we get the
center vertex function value as a convex combination of
surrounding values:

f �vð Þ ¼
X

s

aisos f vsð Þ:

3.2 General formulation

The Floater parameterization scheme described in the
previous section considers a collection of local func-
tionals that characterize certain function properties
(such as smoothness) and minimize these quantities in
the least-squares sense. In the following section we
consider a different (enlarged) set of such local func-
tionals, and it will pay off to derive the result of such a
minimization problem in the general case. For a similar
discussion, see [11].

Fig. 2 a A typical D[2] stencil from [10]; b a typical D[2] stencil used
in Floater’s scheme; c one-ring indexing for Floater’s scheme
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Let M(�v) be a collection of stencils each of which
includes a fixed vertex �v. Each stencil s from M(�v) is
provided with a set of coefficients defining a linear
functional Ls via Lsf :¼

P
v2s ks;vf vð Þ. We assume that

all Ls’s used in our constructions annihilate constants, so
X

v2s
ks;v ¼ 0:

We also assume that these stencils cover the one-ring
of the vertex �v, i.e.,
[

s2M �vð Þ
s ¼ x �vð Þ [ �vf g:

In order to find the value of the function at the center
vertex, we form J�v fð Þ :¼

P
s2M �vð Þ Lsfð Þ2 and minimize it

with respect to the value of the function at the ‘‘center ‘‘
vertex f(�v ).

Differentiating J�v with respect to f(�v ), we can easily
see that the resulting scheme should have the following
form:

X

s2M �vð Þ
ks;�vf �vð Þ þ

X

v2sn �vf g
ks;vf vð Þ

0

@

1

Aks;�v ¼ 0:

Rearranging the terms and using Eq. (2), we obtain

X

v2x �vð Þ
Av

0

@

1

Af �vð Þ ¼
X

v2x �vð Þ
Avf vð Þ;

where

Av :¼ �
X

s2M �vð Þ:sv

ks;vks;�v: ð3Þ

It is immediately clear that the affineness condition
always holds for the schemes constructed in this way. On
the other hand a sufficient condition for the scheme to
have positive coefficients is that every contributing
stencil has its coefficients for noncenter vertices of the
opposite sign to its coefficient for the center vertex. This
condition holds for Floater’s scheme construction in the
previous section.

Example: A simple example of a parameterization
scheme can be obtained by considering the set of func-
tionals

Dif :¼ f við Þ � f �vð Þ : i ¼ 0; . . . ; n� 1f g:

Then the corresponding stencils are si :={�v,vi} and
the coefficients k are given as

ksi;�v ¼ �1; ksi;vi ¼ 1:

Hence, Av=1 and the resulting parameterization
scheme is a simple regular umbrella:

nf �vð Þ ¼
Xn�1

i¼0
f við Þ:

4 Anisotropic modification

In this section we introduce a modification to the ori-
ginal Floater scheme that can produce anisotropic
parameterization that is stretched in a direction given by
a direction field on the surface. We shall use a direction
field specified as a vector on each face of the mesh. The
direction fields can be specified by the user or can be
created automatically. In our implementation the user
specifies a desired rough direction field, which is then
smoothed using a procedure similar to the approach
presented in [14].

4.1 A simple scheme

The direction field is given by a vector represented in the
local coordinate system of each triangle of the mesh. It
turns out that the fact that the vector field is directed
does not matter for the derivation of the anisotropic
scheme. Formally, after the local neighborhood
parameterization n is fixed, we have an assignment of
direction vectors to triangles h : T ! R that samples a
vector field H=H’¶/¶n’. The anisotropic scheme will
stretch both parametric functions Uj, j=1,2, in the
direction of H. To achieve that effect we add an extra
term representing (HUj)2 into the minimization of J(Uj).
As a result the derivative in the direction of H will get
smaller, introducing a stretch along the given direction
field. Note that the ‘‘negated’’ vector field )H will result
in the same stretch, and thus the directionality of H does
not matter at the parameterization stage (it does matter
in the vector-smoothing step that produces H, see [14]).

The discrete implementation of this approach is
straightforward: we replace the partial derivatives by the
first divided difference operator and add the sum of the
squares of the resulting quantities to the isotropic
functional. This yields an anisotropic functional Janis

J anis
�v;b f �vð Þ½ � ¼

Xn�1

k¼0
g 2½ � �v; vkð Þ
� �2 þ b f½1�;h �v; vk; vkþ1ð Þ

� �2
n o

;

where the first part of the sum is copied from the
isotropic case and the quantities in the second term are
defined for a general vertex triple t={v0,v1,v2} and an
associated direction vector ht via

f 1½ �;h v0; v1; v2ð Þ ¼ h v0; v1; v2f gð Þ � D 1½ �
v0;v1;v2f gf

¼ d0f v0ð Þ þ d1f v1ð Þ þ d2f v2ð Þ;

where

d0 ¼ 1
S012

n2 v1ð Þ � n2 v2ð Þ
� �

h1
t þ n1 v2ð Þ � n1 v1ð Þ

� �
h2

t

	 

;

d1 ¼ 1
S012

n2 v2ð Þ � n2 v0ð Þ
� �

h1
t þ n1 v0ð Þ � n1 v2ð Þ

� �
h2

t

	 

;

d2 ¼ 1
S012

n2 v0ð Þ � n2 v1ð Þ
� �

h1
t þ n1 v1ð Þ � n1 v0ð Þ

� �
h2

t

	 

:

We can then repeat the derivation of the previous
section to obtain
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X

s

Aanis
s

 !

f �vð Þ ¼
X

s

Aanis
s f vsð Þ;

with Aanis
s derived from Eq. (3).

So far we took no special care to ensure the positivity
of the coefficients Aanis

s ; hence, there is no guarantee that
the resulting linear system is well-defined. It is clear,
however, that given a bounded direction field, J anis

�v;b will
produce a convex combination map scheme for small
values of b. As we explain in the next section, clamping
the value of b to the maximum allowed by positivity

condition turns out to produce a very practical aniso-
tropic parameterization scheme.

4.2 Positivity

In this section we discuss possible approaches to making
the scheme monotone. First, we look at the stencil for
directed derivatives. The main issue is the signs of the
coefficients. Let s={�v,v1,v2} be a stencil of three vertices.
Then it will contribute monotonely to the scheme
centered at �v if the direction h splits the angle

n v1ð Þdn �vð Þn v2ð Þ. Formally, a vector h=(h1,h2) splits an

angle dngf if h’Æ(n)g) and h’Æ(f)g) are of opposite signs

[we use h’=(h2,)h1)]. Note that within a triangle, only
one of the angles is split by a given direction vector (this
angle is denoted with a filled circle in Fig. 3). The
coefficient of f[1],h for the split corner is opposite in sign
to the other two coefficients (this can be seen visually by
varying the values of the function one by one, since f[1],h
gives the slope of the function in the given direction).

One conservative way to ensure the positivity of the
scheme is to make sure that a triangle’s anisotropic term
only contributes to Janis

�v;b for the vertex �v whose corner is
split by the direction given on that triangle. This is easy
to implement; however, our experiments show that the
resulting scheme does not produce sufficient stretching
even for large values of b.

We therefore adapt a less conservative and somewhat
simpler approach that is mentioned in the previous
section. Namely, for every inner vertex �v we clamp the
value of b to be less than the precomputed value bmax

Fig. 3 Left: the signs of the coefficients for the f[1],h operator.
Right: the signs of the contributions to the Astretch

s coefficients for
the given distribution of direction vectors

Fig. 4 Clamped anisotropic (left) and nonclamped anisotropic
schemes for the Mannequin model. The values of b are 100 (top),
400 (middle), and 1,600 (bottom). It is easy to see distortions and
nonconvexity for the scheme without positivity correction
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that ensures the positivity of the scheme. We can find
such bmax by noting that the coefficients Aanis

s are com-
binations of the isotropic Floater coefficients and the
‘‘stretching’’ coefficients (we can do so by splitting the
stencils of Eq. 3 into two groups). Hence, we obtain

Aanis
s ¼ Aiso

s þ bAstretch
s ;

where some of Astretch
s can be negative. We then find

bmax �vð Þ ¼ min
s

Aiso
s

�min 0;Astretch
s

� � ;

(note that we get a value of infinity if all the coefficients
Astretch

s are positive, with the meaning that there is no
restriction on b(�v).

Then the new ‘‘clamped anisotropic’’ scheme is
obtained from

J ca
�v;b fð Þ :¼ J iso

�v fð Þ þ min b; bmax �vð Þ½ �J stretch
�v fð Þ;

where J stretch
�v fð Þ ¼

Pn�1
k¼0f½1�;h �v; vk; vkþ1ð Þ½� 2.

4.3 Results

We demonstrate the performance of the schemes
described in previous sections for a number of examples.
The parameterizations produced with our scheme are
visualized in a number of ways: as the mapping of a
regular texture using the parametric functions produced,
as the resampling of the original surface, and as the pic-
ture of the original mesh in the parametric (U1,U2) plane.

The performance of the clamped scheme that guar-
antees the convexity condition is compared in Fig. 4
with that of the nonclamped scheme of Sect. 3.1. It is
clear that for the same value of parameter b the clamped
scheme will have less stretching than the nonclamped
one. Thus, a similar parameterization shift (and change
in regular sampling frequency) is achieved at different
values of b for the two schemes considered. It is also
clear that the nonclamped scheme results in some non-
injective parameterizations (note the triangles mapped
outside of the unit square in the bottom row of the right
column).

The effect of the anisotropic stretching in the para-
metric plane is illustrated in Fig. 5. The parametric

function becomes ‘‘flatter’’ in the given directions, which
results in bringing the points closer in the parametric
domain. Thus, we see a close packing of squeezed
triangles in a certain region of the triangulation. The role
of the convexity condition is therefore to keep the
triangles from flipping and riding on top of other
triangles.

Figure 6 uses the direction field to focus the sampling
onto a high-curvature feature of the Molecule model.
The direction field vectors point away from the feature
and are zero on the feature itself. This results in allowing
more samples to be placed onto the feature, resulting in
a better approximation.

A simple way to introduce a wiggle pattern for the
parameterization lines is shown in Fig. 7. Two stretching
regions push the samples of the remeshed model away
from them.

Performance note: The schemes introduced produce a
linear system of equations that is solved with a bicon-
jugate gradient method. Since the mesh sizes are small
(maximum of tens of thousands of vertices) all the
computations take a matter of seconds.

Fig. 5 Square anisotropic parameterization for b=0.800, 6,300,
and 25,600

Fig. 6 Focusing the sampling onto a high-curvature geometric
feature for a Molecule mesh patch. Top: direction field on the
original surface. Middle: isotropic remesh. Bottom: anisotropic
remesh using the given direction field for b=400
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5 Conclusions

We have introduced a simple anisotropic modification of
Floater’s shape-preserving parameterization scheme that
allows flattening of parametric mapping along a given
direction field. Future work includes the development of
algorithms for constructing direction fields that allow
better approximation of geometric features as well as
construction of unconditionally positive schemes.
Another interesting question is whether one can improve
the scheme performance via selective local mesh refine-
ment. Currently there are no estimates for the shift in the
parameterization in relation to the changes in the

anisotropic parameter b. Finding such a relation is
important for applying our scheme to automated
parameterization adjustment. Extension of our
approach to 3D parameterization is also a possibility.
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