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Integrated design of run-to-run PID controller and SPC
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An integrated design methodology has been developed for a run-to-run PID controller and SPC monitoring for the purpose of
process disturbance rejection. In the paper, the process disturbance is assumed to be an ARMA (1,1) process. A detailed procedure
is developed to design a PID controller which minimizes process variability. The performance of the PID controller is also
discussed. A joint monitoring of input and output, using Bonferroni’s approach, is then designed for the controlled process. The
ARL performance is studied. One major contribution of the paper is to develop a complete procedure and design plots, which serve
as tools to conduct all the aforementioned tasks. An example is provided to illustrate the integrated design approach.

1. Introduction

The concept of integrating the Automatic Process Con-
trol (APC) and Statistical Process Control (SPC) tech-
niques was introduced approximately ten years ago [1-3],
and since these initial papers a considerable amount of
progress has been repored in the literature.

MacGregor [1] and also Box and Kramer [2] have
presented overview descriptions of the concepts associ-
ated with APC/SPC integration by assuming a first-order
Integrated Moving Average (IMA(0,1,1)) disturbance
process. Both of these papers have suggested the use of a
minimum-cost strategy. They used SPC charts as dead
bands for feedback-controlled processes, and adjusted the
processes at the signal of Exponentially Weighted Mov-
ing Average (EWMA) charts. Del Castillo [4] has ex-
tended the dead-band idea to multivariate situations.
English and Case [5] used SPC charts as filters for feed-
back controllers. They also considered the effect of a
trend or ramp disturbance on a feedback-controlled
process [6].

In addition, Run-To-Run (RTR) process control
techniques that combine APC and SPC concepts have
been developed and applied to the disturbance rejection
of semiconductor manufacturing processes [7-9]. An
RTR process refers to a process, such as a wafer-etching
process or an auto-body stamping process, in which a
control action, e.g., a change in a process parameter, can
only be implemented between runs instead of during a
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run. The objective of RTR control is to reject various
disturbances frequently found in RTR processes, such as
shifts and trends, as well as autocorrelated disturbances.
SPC acts as a supervisor indicating the need for RTR
control action. A recent review of RTR control can be
found in Del Castillo and Hurwitz [10].

This paper builds on previous work [11-13] and places
a different emphasis on APC/SPC integration by using
APC and SPC to perform the separate functions of
control and monitoring respectively. Van der Wiel et al.
[11] have proposed an algorithmic statistical process
control (ASPC) scheme whose goal is to reduce predict-
able quality variations using APC and then monitor the
system to detect and remove unpredictable variations
using SPC. A batch polymerization example was used to
illustrate the ASPC scheme, where an Auto Regressive
Moving Average (ARMA(1,1)) disturbance process was
assumed and a Minimum-Mean-Squared-Error (MMSE)
control scheme as well as a CUSUM chart monitoring the
process output were applied.

Although the concept of integrating APC and SPC has
been proposed and discussed for years, little literature can
be found to demonstrate the integrated design procedures
of APC and SPC for process disturbance rejection. This
paper proposes a framework and methodology to develop
an integrated design of a Proportional-Integral-Deriva-
tive (PID) controller and its associated SPC charts for
process disturbance rejection. In this paper, a PID con-
troller, rather than MMSE, is used as the basic automatic
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process control strategy to minimize process variability.
This effort is motivated by the fact that in industrial
practice, the PID controller is by far the most common
controller [14], and many process control devices in in-
dustry are only equipped with a PID controller rather
than an MMSE controller. Also, a PID controller is more
robust with regard to process models [15] and can handle
non-minimum phase processes. A non-minimum phase
process is a process that has zeros outside the unit disc
[16]. The application of control theory to this situation
suggests that the PID controller is superior to the MMSE
controller since the MMSE controller will have unstable
modes and therefore can not be used in practice [16].
Therefore, we focus on the problem of minimizing
process variability under the constraint of using a PID
control strategy.

It is reported in the SPC literature that an in-control
process is stable and predictable over time, whereas an
out-of-control process has an unpredictable amount of
variation [17]. In this research, an in-control process is
defined as being stable and predictable by a stationary
model, such as an ARMA model, of which an 1.1.d. model
is a special case. A process that is shown to be unstable
and unpredictable by the model is an out-of-control
process. Thus, type I error (concluding the process is out
of control when it is really in control) and type II error
(concluding the process is in control when it is really out
of control) are still useful under our generalised defini-
tions.

In this paper, the process disturbance is modeled as an
ARMA (1,1) process. A PID controller is designed to
minimize the process variation. Then, based on the model
parameters, an SPC control chart is designed to monitor
the PID-controlled process. Performance measures of
both the PID controller and the SPC charts, using the
Absolute Efficiency (AE), Relative Efficiency (RE) and
the Average Run Length (ARL), are presented. A general
framework of the proposed integrated design approach is
shown in Fig. 1.

2. Process model

The process is shown in Fig. 2. In the figure, G is the
process dynamics, H is the RTR controller, K is the dis-
turbance generator, and M is the SPC monitoring
scheme.

RTR processes differ from conventional control
schemes used within runs. The RTR control responds to
post-process measurements of certain quality character-
istics by modeling the disturbance process between runs,
and then providing new set-points for use in the next run
of the process. Consider a process under RTR feedback
control, and assume without loss of generality that the
target value is zero. The process output ¢;, which can then
be viewed as the deviation from the target, is the sum of
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three components: the output from the process dynamics
Y;, the process disturbance D,, and the mean shift y,. Let
X, denote the control action, that is, the run-to-run ad-
justment of the process set-point, with the initial input
assumed to be zero. Also, let B be the usual backward
shift operator, i.e., Ba, = a,_1. Throughout the paper, a
dynamic model G = B for process output will be consid-
ered: Y, = X;_;, which means that the output at run ¢
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depends on the input variables at the end of run ¢ — 1, or
equivalently, at the start of run ¢ This implies that the
control action immediately has its full effect on the pro-
cess output in one run or one batch, which is reasonable
in discrete part manufacturing and is widely used in the
RTR control literature [10].

The output e, can be written as:

ee=Yr+ D+, =X+ D + 1y (1)

where p, can be any type of mean shift such as a step,
ramping, or cyclical change.

It is known that most of the process disturbances can
be modeled as a stationary time-series process, which is
stable and invertible in general. In this situation, both an
AR model and an ARMA model can be used to describe
the process. In many cases, an ARMA model is more
efficient (needs less parameters) compared with an AR
model in describing a stationery process [18]. Also an
ARMA (1, 1) model can be used to approximate a broad
class of disturbances with different ¢ and 0. In particular,
MacGregor [19] has pointed out that an AR(1) distur-
bance process with white noise measurement error is
equivalent to an ARMA(1,1) process. In this paper, the
disturbance process assumes D, to be a stationary
ARMAC(1,1) process, i.e., K = (1 —0B)/(1 — ¢B):

1-0B
:1_¢Bat7 (2)

where a, represents white noise. It is assumed that the
parameters ¢ and 6 of the ARMA(1,1) processes satisfy
the conditions |¢| < 1 and |0] < 1. Although some of the
following results can be extended to other situations, for
simplicity, attention in this paper will be restricted to the
ARMAC(1,1) stationary disturbance process.

Note that in this paper, the disturbance process is
modeled as a stationary stochastic process. This distur-
bance is part of the inherent process, which is the cu-
mulative effect of many small, essentially unavoidable
causes called “‘common causes”. Here the ‘“‘in-control”
condition of a run-to-run process is defined as having no
mean shift or variance changes in the disturbance model.
The impacts of those disturbances can be reduced by
using the run-to-run control strategy, which is why a PID
control is needed.

Other kinds of variability, such as the mean shifts p,,
may also occasionally be present. These are called ““spe-
cial causes”. Thus, the “out-of-control” condition is de-
fined as having a mean shift or variance change in the
disturbance model. Although in this situation the run-to-
run feedback control can partially compensate for the
mean shift on the output, SPC monitoring is desired to
detect this mean shift, and eventually eliminate the root
cause of this mean shift. Here the definitions of “in-
control” and ‘‘out-of-control” conditions for a run-to-
run process are of more practical use than conventional
SPC definitions, where an ‘“‘in-control” process is usually
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assumed to be an independent and identically distributed
(i.i.d.) process [20].

The purpose of the following research is to develop an
integrated design approach to: (1) design a PID controller
(H) to minimize the process variation due to the process
disturbance; and (2) design a SPC chart (M) to monitor
the PID-controlled process.

3. Design of a PID controller

The PID control schemes studied in this paper are of the
form:

X, = —kpe, — kg e — kD(l - B>et7 (3)

1
1-B
where kp, k;, and kp are constants. Here kp determines
the amount of proportional adjustment, k; determines the
amount of integral adjustment, and kp determines the
amount of derivative adjustment [21].

The purpose of PID control is to manipulate the pro-
cess input so as to minimize the process variation due to
process disturbance. Thus, the concept of the PID con-
troller design used in this paper is different to conven-
tional PID controller design [14,22], in which the
performance of the servo system is the primary focus and
the disturbance is usually considered as white noise.

3.1. PID controller design

The primary objective in quality improvement is to re-
duce process variation and the Mean-Squared-Error
(MSE) of the process outputs is used as an optimization
index to serve this objective. Also, optimizing the process
MSE is equivalent to minimizing the quality loss of this
process since the MSE criterion can meaningfully ap-
proximate the quality loss of most industrial processes
[23]. A study has been performed by Tsung [24] in which
he derived the relationship between the PID control
parameters and the process MSE for an ARMA (1,1)
process. The relationship can be described as:

MSE (kp, kp, ki, ¢, 0) = (I + 2p,(I +II1))a5,  (4)

where /, II, and III are functions of the PID parameters
and disturbance parameters and can be calculated by
substituting into either Equation (A10) or (A14), that are
discussed in Appendix A. Also, p, is the first-order au-
tocorrelation of {D,} and ¢3, is the variance of {D,}, both
of which can be easily obtained during disturbance pro-
cess modeling [21]. Note that both disturbance process
modeling and parameter estimation are required for this
design and they can be obtained by open loop data col-
lection and time series model fitting. The model fitting of
an ARMA process by a three-stage iterative procedure
based on identification, estimation, and diagnostic
checking is described extensively in Box et al. [21].
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Based on the optimization index, PID controllers have
been designed for operation across the entire parameter
domain of the ARMA (1, 1) model. The design of the PID
parameters kp, k;, and kp are obtained by minimizing
MSE within the stability region:

kr >0,

kp+k[/2+2kD < 1,
—1<kp <1,

—kD(l +kp+k1) —kp < 1.

where, to ensure process stationarity, the stability region
is based on the results in Box et al. [21] and Tsung [24].
The MSE in (4) is a complicated function of the param-
eters, so numerical methods are used for its optimization.
Because the regions of stability for kp, k;, and kp are
reasonably small, a grid search method is used to deter-
mine the optimum values.

To present the choices of kp, k;, and kp in a two-
dimensional parameter space, contour plots are used to
show the computational results. The contour plots are
graphic representations with lines (as on a map) con-
necting the points on a response surface that have the
same elevation or response value. Here, the vertical axis is
the disturbance parameter ¢, and the horizontal axis is
the disturbance parameter 0. The response value is the
corresponding control parameter, which is labeled on
each contour line.

The PID parameters and their relationships are sum-
marized in the PID design maps shown in Fig. 3(a—). As
an illustration, if a process disturbance model is given as
¢ =0.86 and 0 =0.16, the PID parameters can be ob-
tained from the design maps as kp = 0.24, k; = 0.58, and
kp = —0.1. This process model will be further used to
demonstrate the integrated design procedure. Note from
Fig. 3b that, if ¢ < 0.5 or if ¢ <0, the value of &; is
essentially zero for the PID schemes. In this region, PID
control coincides with PD control. Only in the comple-

(kp, ki, kp) = (5)
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mentary region are the PID and PD schemes different. In
control theory, when ¢ < 0 the transfer function of a
control system has its pole closer to the image axis than
zero. In this situation, Integral (/) control action is not
needed [16]. Near the region ¢ = 6, the choices of kp, k;
and kp are close to zero. This is because when ¢ = 0, the
ARMAC(1,1) model in (2) becomes a white noise process,
and under this situation the best control strategy is to not
adjust the process. This is consistent with Deming’s
philosophy [25].

3.2. PID controller performance evaluation

The traditional control settings can be selected with dif-
ferent emphasis, such as stability margin, robustness to
model error, smaller transient time period, or high gain
for disturbance rejection, etc. It is hard to make a com-
prehensive performance comparison with traditional
control settings. This research emphasizes the minimiza-
tion of process variation using a PID controller. Thus, we
compare the proposed PID control scheme with no-con-
trol and MMSE control, as measures of lower and upper
bounds. Thus, two criteria are used to assess the efficiency
of the proposed control scheme. The first is the Relative
Efficiency (RE) defined by

— MSENO—Control

RE = 6
MSEwp (6)

a comparison of the variability of the control scheme of
interest with the variability of the no-control strategy.
Because the no-control strategy is a special case of the
PID scheme with kp = k; = kp = 0, it is clear that RE > 1.
The values of RE give us a measure of the improvement
over the no-control strategy, i.e., the lower bound of the
control performance.

The second criterion is the Absolute Efficiency (AE)
measured by
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Fig. 3. PID design maps for ARMAC(1, 1) disturbance processes.
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MSE
AE = —2"MMSE (7)
MSEpip

which compares the performance of a given control
scheme with the MMSE scheme. Harris [26] was the first
to suggest the use of this ratio to assess control perfor-
mance. The use of this criterion has subsequently at-
tracted considerable attention [27]. Note that AE <1 as
the MMSE scheme minimizes the mean squared error
(under the assumed model and when the model parame-
ters are known). Although this may not be achievable in
practice, AFE still provides a benchmark in terms of how
close one can come to the best possible performance in
terms of variation reduction, i.e., the upper bound of the
control performance.

Here the contour plots are used again to present the AF
and RE in a two-dimensional parameter space. The re-
sponse value is the corresponding AE or RE, which is
labeled on each contour line. Figure 4(a and b) contains
the AE and RE contour plots for different values of the
ARMAC(1,1) parameters.

As seen from Fig. 4(a and b), the PID schemes perform
well. The absolute efficiency is greater than 90% for most
of the ARMA(1,1) parameter space. Only when ¢ is close
to —1 is the AF not as good, but the RE is still much
larger than 1.

4. Design of SPC charts for the associated
PID-controlled process

In general, data from a PID-controlled process are
autocorrelated. Various research has been performed on

Phi

0.0

Theta

a. RE plot

Fig. 4. PID performance evaluation plots.

521

the topic of autocorrelated SPC [28-31]. However, a PID-
controlled process has its unique features, especially when
the integral (/) control mode takes action. It is known
from the control theory literature that if there is an in-
tegral control involved in the controlled process, a steady-
state mean shift of the process outputs will be eliminated
immediately after a transient time period occurring im-
mediately after a process change. Thus, there is only a
limited “window of opportunity” during which the pro-
cess change must be detected [32]. All conventional SPC
control charts suffer from this problem. One possible
solution for this is to monitor the inputs along with the
outputs as the mean shifts may lead to some unusually
large inputs created by feedback.

Therefore, we propose to jointly monitor both the
output and input using bivariate SPC to improve the ef-
ficiency of detection. Note that the proposed joint mon-
itoring strategy can be implemented using any bivariate
SPC scheme [33]. However, for the purpose of demon-
stration, Bonferroni’s approach is investigated.

Bonferroni’s approach is known to be a conservative
procedure, which has been recommended by Alt [34] be-
cause of its simplicity in determining which variables are
responsible for an out-of-control condition. This ap-
proach is applied to monitor multiple characteristics si-
multaneously, while using Bonferroni’s inequity to
control the overall error probabilities. This approach,
unlike most of the multivariate SPC techniques, does not
need to assume a known covariance structure among
process variables. Thus, it is a popular and simple
charting method for use in multivariate processes where
covariance information is either missing or is uncertain.
As opposed to conventional SPC chart design, where the

1.0
oés
0.5 _Og’/ 9
0
£ 00 1.0
9
-05 4095 0.
1.0 4
I ] 1 1 T
-1.0 -0.5 0.0 0.5 1.0
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process mean and standard deviation are obtained from
process observations, the proposed SPC chart design is
directly based on the PID-controlled process model.

4.1. Joint monitoving of the output and input
of a PID-controlled process

From control theory and selected PID control parame-
ters, the standard deviation of the output after process
control can be described as

Ge =1+ 2p,(Il +1)op. (8)

Similarly, the standard deviation of the manipulated in-
put can be described as

ox =\/I' + 2p,(II' + III'op, 9)

where I’, II', and III' are also functions of PID parameters
and disturbance parameters, and can be calculated by
substituting into Equation (A20) or (A23), provided in
Appendix B.

Based on (8) and (9), joint charts can be designed using
Bonferroni’s approach. Note that the center lines of the
joint charts are the means of ¢; and X;, which are assumed
to be zero. The control limits are set at the value of the
constants L, and Ly time standard deviations (¢, and gy)
above and below the center lines. Here the constants are
chosen as:

Le = Ly = z(1_y/a)- (10)
Note that the process data is assumed to be normally
distributed, and the constants are modified from z(;_ /)
to z(1_,4) using Bonferroni’s inequity to control the
overall type I error probabilities [34]. The control limits
of the joint charts (CL, and CLy) can then be written as

CL, = +L,a,,

(11)
CLX = :':L/\'G)(.

The joint decision rule suggests that the controlled pro-
cess is out of control when either the controlled output or
the manipulated input is outside the control limits.

From (8), (9), and (11), we can see that the control
limits are a function of PID control parameters and thus
the original ARMA (1,1) parameters. As a result, for a
given ARMA (1,1) model, PID control parameters can be
selected using methods proposed in the last section. As-
sociated SPC chart parameters can then be determined
using (11).

4.2. Performance analysis of the developed SPC charts

A performance measure study using the ARL is presented
in this section. In order to more effectively compare the
performance of the monitoring strategy, the control limits
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of the control charts are manipulated so that the ARL,
when there is no shift in the mean, is the same for all
charts (for example, an in-control ARL = 370 is used in
this study). Thus the chart with the lowest out-of-control
ARL when a shift in the mean has occurred is considered
superior. This is analogous to matching the type I errors
so that the type II errors can be compared in a more
meaningful way. Also, the ARL is determined via Monte
Carlo simulation. The simulation procedure is similar to
that reported by Wardell et al. [31]: disturbance processes
are generated according to (2), with a step change in the
mean introduced at time zero. The observed control in-
puts and outputs are calculated by (3) and (1). The
number of time periods is then measured until the first
out-of-control condition is signaled for each chart. Our
simulation data shows that the geometric assumption of
the run-length distribution is acceptable. If the run length
is geometrically distributed with a mean and a standard
deviation equal to the ARL, then 10000 replications
produce an estimated ARL with a standard error within
1%, which is reasonably precise. Thus, for each distur-
bance model parameter set, the process is simulated
10000 times in order to obtain the ARL value.

SPC performance plots in Fig. 5(a—) contain the
contour plots of the ARL of joint monitoring.
Bonferroni’s approach was used for the PID-controlled
processes. The plots lead to the following conclusions: (1)
for large mean shifts (e.g., u, = 20p), Figure 5a shows
that Bonferroni’s approach for the PID-controlled
processes performs quite well (ARL < 10) for most of the
parameter space. Especially when ¢ < 6, most of the
ARL are less than 3; (2) for medium mean shifts (e.g.,
u, = lop). Figure 5b indicates that Bonferroni’s approach
performs well when ¢ < 6, but it does not perform well
(ARL > 50) when ¢ > 0; (3) for small mean shifts (e.g.,
U, = 0.50p) as shown in Fig. 5c, it performs well only
when near the region of ¢ close to —1 and 0 close to 1.
It is known that Shewhart-type charts including
Bonferroni’s approach are not sensitive to small mean
shifts. However, the power of small-shift detection of the
proposed SPC monitoring strategy can be improved by
replacing Bonferroni’s approach with a more advanced
multivariate SPC scheme such as multivariate CUSUM
charts [35] and multivariate EWMA charts [36].

Note that Bonferroni’s approach should not be used for
the pure Proportional (P) controlled processes. For a pure
P-controlled process, the manipulated inputs are propor-
tional to the controlled outputs, so the simultaneous
monitoring of the inputs and outputs are redundant. In
this situation, the performance of joint monitoring de-
grades as the control limits and the corresponding type I
error are wrongly designed by Bonferroni’s inequity.
Thus, when ¢ is close to zero and where the best choices of
k; and kp are close to zero (see Fig. 3(a—c)), the joint
monitoring approach is not recommended.
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Fig. 5. SPC performance evaluation plots.

5. Integrated design procedure and an example

In this section, an example is used to demonstrate the
applicability and efficiency of the integrated design. Van
der Wiel et al. [11] have proposed an ASPC scheme and
used a batch polymerization process as an example. In
their example, an MMSE feedback control scheme was
used for an ARMA(]1,1) disturbance process with
¢ =0.86 and 0 = 0.16. Along with that, a conventional
SPC was put in place to monitor the process output. We
suggest using the PID control scheme for RTR feedback
control on the same disturbance model with simulated
data. Along with PID, joint monitoring using bivariate
SPC is implemented. The step-by-step integrated design
procedure is illustrated as follows:

(i) An ARMAC(1,1) model with ¢ = 0.86 and 0 = 0.16
is simulated for the disturbance process. In prac-
tice, an adequate disturbance model can be ob-
tained by open-loop data collection and time-series
model fitting.

(i1)) Based on the ARMA(1,1) model and using the PID

design maps in Fig. 3(a—c), a PID scheme is de-

signed with kp = 0.24, k; = 0.58, and kp = —0.08.

The corresponding control performance can be

obtained from the PID performance evaluation

plots in Fig. 4(a and b). Its AE is 0.95, very close to

1, which means it is very close to the best possible

performance. Also, its RE is 3.0, which means it is

three times better than a no-control strategy in
terms of variation reduction.

(iif)

b. ARL for mu =1.0 SD

¢. ARL for mu = 0.5 SD

(iv) Based on the model and control parameters, the
joint monitoring design using Bonferroni’s ap-
proach is determined by (11). The control limits of
the joint monitoring charts are CL, = +3.21 and
CLy = +4.83.

The corresponding ARL performances can be ob-
tained from the SPC performance evaluation plots
in Fig. 5(a—). The designed in-control ARL is
about 370. For a larger mean shift (u = 20p), the
ARL is 3. For a smaller mean shift (u= lop),
however, the performance of the Shewhart-type
joint monitoring is not very good (ARL = 50). If
the detection of a smaller mean shift is critical,
some advanced joint monitoring schemes such as
multivariate CUSUM charts [35] should be used.

The integrated design of the PID controller and SPC
charts and its performance is summarized in Table 1.
Overall, the proposed integrated design indicates that the
PID controller is highly efficient and very close to the
MMSE schemes. Furthermore, the associated joint
monitoring scheme is efficient when the process mean
shift is large.

v)

6. Conclusions

Integration of the APC and SPC techniques is an
emerging area which has attracted attention from both
academia and industry. Successful integration of the APC
and SPC approaches will provide better quality control

Table 1. The integrated design and its performance for an ARMA(1,1) disturbance process with ¢ = 0.859 and 0 = 0.164

APC SPC
PID controller Control performance Joint monitoring ARL performance
kp k; kp AE RE CL, CLy u = lop u = 20p
0.24 0.58 —-0.08 0.95 3.0 +3.21 +4.83 50 3
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and process improvements in manufacturing. However,
lack of research on the integrated design of those tools
has proven to be a barrier to the implementation of the
concept. In this paper, an integrated design procedure is
developed to design a PID controller and its associated
SPC monitoring algorithms for process disturbance re-
jection. The paper provides complete tools for the inte-
grated design: for a given process disturbance model, a set
of PID control parameters can be selected from the de-
sign maps, which minimize the process variability. PID
evaluation plots can then be used to provide an assess-
ment of the PID controller performance. After that, a
joint SPC monitoring algorithm, based on Bonferroni’s
approach, can be obtained using provided equations.
Finally, the obtained SPC performance can be evaluated
according to its ARL using the provided SPC evaluation
plots. A heuristic approach, with step-by-step procedures
and examples, has been presented in Section 5. Although
the research results are presented with the assumption
that the process disturbance is an ARMA(1,1) model,
other disturbance models can be studied following the
same procedure. Thus, the approach used in this study is
generic. The research presented in this paper is an initial
attempt to provide tools for the integrated design of APC
and SPC. There are many challenges and opportunities in
this field. More effort is needed toward eventually inte-
grating the APC and SPC approaches to produce process
improvements in manufacturing.
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Appendix A

The variance of the controlled outputs

By applying the PID scheme in (3) to the output from
model (1), we have
e = @(B)_l(l —B)D, = Z‘%‘Dt—ja

=0

(A1)

where
¢(B) =1—0B — B> —yB*, (A2)

with oo =1—kp —k; —kp, fp=kp+2kp, and y = —kp.
Hence the variance of the output error is

o, = (Z Z l/ﬁ%ﬂjﬂ) oh

=0 =0
= (Z "D? + 2¢02 Yip;+2 Z Z ‘//jlijrlpl) op.
=0 =1 =1 =1
(A3)

When the disturbance {D,} is an ARMA(1,1) model,
p1=(1—¢0)(¢ —0)/(1 + 0° —2¢0),

Pr= (15[71,01 (I=1). (A4)
By substituting (A4) into (A3),
7, = (Z '/sz + 2p, (Wo Z vt
= =1
33w ) ),
=1 =
= (I +2p,(Il + 1)o7, (A5)

where the terms 7, 11, and III will be derived in (A10) and
(A14). Let A be the discriminant of ¢(B)

A = —18ufy + o> — 4o’y + 4> — 27)°.

Two cases are considered:
(i) when A # 0, @(B) = 0 has the three distinct roots

(A6)

525
e=U-U/V+a/3,
(=—UR+V/QU)+a/3+iV3(U+V/U)/2,
n=—U2+V/QU)+a/3—iN3U+V/U)2, (A7)

where
U= (af/6+T/2+4 )27+ V-3A/18)"?
V=—pB/3—d/9.
When A < 0, { and 5 are complex roots. This leads to

W0:17

Y =rd ' ol + Ay (j=>1),  (A8)
where
_ 49 o C(-1+0
(e=Ole=n)" " (E=l=n)’
P A G
(=9 =0’ (A9)
and the three terms in (AS) are obtained:
I I’ N o’ N A L e
P 1-¢ 1-9* 1-€
2ra n 2041 41
l—en 1-(n 7
r % A
1= - + ,
I—¢ge 1—-¢L 1—¢n
I'e r e A
= 1 —ep <1—62+1—6C+1—e11>
n 224 ( r n ¢ n A >
1-(p\1—el 1-0 1-{p
Ay r 2) A
+1—n¢<1—en+l—én+l—n2>' (AL0)
(i) When A = 0, it has roots with multiplicity,
e=2U+a/3,
{=n=—U-+a/3, (Al1)
with U = (aB/6 + /2 + o2 /27)'?, which leads to
l/fo = 17
Y, =T +oU " +AG-1I" (j=1), (A12)
where
_E(=1+e) @_g(2e—3ec—c+2cz)
(=07 (=07
{(1-9
A= . Al3
= (A1)

It follows that the three terms in (A5) are



526

I r? e* AP+ e
71_62 I_CZ (1_C2)3 I_EC
2
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T 2] APL
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Appendix B

The variance of the manipulated inputs
From (1), (3), and (A1) we have

1
1-B

X = (ko — kg~ o1 = 8) o(&) (1~ B)D

=N"9,D, (A15)

™

Il
S

J

where ¢(B) is the same as in (A2), and ¥; will be derived
in (A18) and (A21). Thus

Ty = (Z > 19/‘191»0/'1|> -

=0 1=0

(A16)

Let the disturbance {D,} be an ARMA(1,1) model. Then
af( has the same form as in (AY), i.e.,

oy = (I' +2p,(II' + 1)), (A17)
where the terms [’, I, and I’ will be derived in (A20)
and (A23). Two cases are considered:
(1) When the discriminant A in (A6) is non-zero:
Yo = kp + ki + kp,
19/ _ I—vlejfl =+ @/ijl +A/'/’j71 (] Z 1)’
where the three roots of ¢(B): €, { and 5 are the same as in

(A7), but I, @', and A’ are different from I', @, and 4 in
(A9):

(A18)

B —& (kp + ki + kp) + €*(kp + 2kp) — €kp

"= - Oc—n) ’
o — Ukt ki + ko) + C(kp + 2kp) — Cho
(= —n) ’
/ —’13(kP +k + kp) + Wz(kP + 2kp) — nkp
_ (A
4 (m—em—=10 (A19)
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Therefore, the three terms of afY are obtained:

/e F/2 N @/2 N A/2 N 2r'e’ 2 A
Cl- 1= 1= 1-€ l-e
20'A
+ + (kp + ki + kp)?,

1-{n

I’ 04 A
I = + + kp + ki + kp),
Q—¢el—¢¢1—¢0(P 1+ ho)
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. A20
+1—n¢<1—en+l—én+l—n2> (420)
(i) When the discriminant A is zero:
Yo = kp + ki + kp,
9, =T +0U T+ AG-1)I (G>1). (A21)

Thus, 6% also has a similar form to (A5) except that

—63(kP + ki +kp) + 52(kP + 2kp) — €kp

I = > ,
(e=0)
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(e—0)
It follows that
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