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The Moment Problem in a Certain Function Space of G. G. LORENTZ

By

M. S. RAMANUJAN

In this paper I obtain necessary and sufficient conditions for the existence of
a function f(x), belonging to a suitable function space, so that a given sequence of
(real) constants {u»} may be the sequence of moment constants of the function f(x);
ie. in order that u, may have the representation

1
(1) ,un———(_)fx"f(x) dx

with f(x) belonging to the specified space of functions. In particular the above
problem is solved here for the space X (C) of LoreNnTZ [2], the definition of which
follows in the sequel. For this space, LORENTZ has given a solution and we obtain
here a different set of conditions in order that (1) may hold, with f(z) & X(C).
Let C denote a class of positive integrable functions on [0,1] and let C have the
following properties:
(i) 1eC;
(11) C is mormal in the sense that if ¢;(x) € C and ca(x) is a measurable function
such that 0 = c2(x) < c1(®) p.p. on [0,1], then ¢a(x) € C;

1
(iii) the integrals [c(x)dw, ceC, are bounded.
0

Evidently, all bounded measurable functions on [0, 1] belong to C. Now, in re-
lation to C the class X (C) is defined to be the class of all measurable functions f(x)
for which

171 = sup flf(x c(@) dz < oo

It may easily be verified that X (C) is a Banach space (with the above indicated
norm) and that X (C) is normal in the sense stated earlier. A suitable choice of ¢
will yield the spaces L?(p > 1), A(p,p) and M (p, p), defined by LoreNTz [2].
The following definitions are required in the sequel.
Two measurable functions f(z) and g(z), on [0,1], are called rearrangements of
each other if, for each real a, the sets [f(x) = a] and [g(z) = a] have equal measures.
We shall say that the space X (C) has the property of rearrangement invariant norm

if | f[] = | f|| for each rearrangement f (w) of f(x). (The spaces L?, A(p, p) ete. cited
earlier have this property.)
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We shall, for our investigation, focus our attention on the spaces X (C) which are
endowed with the property that the integrals

(2) F(e)=[f(=)dx

are such that for each ¢ > 0, there exists a positive J in such a manner that (measure
of e) £ ¢ implies |F(e)] < ¢, for all f(x) e X(C) with |f| =< 1. This fact will be
briefly denoted by the statement that “the integrals in (2) have the property of uni-
form absolute continuity”.

For the space X (C), which has the property of rearrangement invariant norm and
for which the integrals in (2) are uniformly absolutely continuous, LorENTz [2] has
shown that u, will have the representation in (1) with fe X(C) and |f| = M if
and only if the norms of the functions

: n +1
(3) falx) = (n + 1)(1,) A7 u,, n_”H Sr< :H—l ,1=0,1,2,...,n

satisfy the condition [[f»| =M, n=0,1,2,....

Lorextz’s proof of the above solution rests, among other lemmas, on the uniform
approximation of the function f(x), which is continuous in [0,1], by the sequence of
Bernstein polynomials { B (z)},

n
Bl (z) = Z fl=) (7;) (1 —z)nrar.
»=0
We shall also employ the same technique as LORENTZ’s; however, our starting point
is the following lemma, due in substance to MEYER-KONI1G and ZELLER [3].

Lemma 11), Let f(x) defined in [0,1] be continuous there. Then the sequence {P] (x)}
of Bernstein power series defined by

(=]

Pl =) (ﬁ) R P},(0) = (0)

k=n

uniformly approximates f(x) in [0, 1], any 6 > 0.
We need also the following three lemmas.
Lemma 2. Let the space X (C) have the rearrangement invariont norm property. Then

1
each transformation F(x) = _fK (z, £) {(2) dt, with the properties
0

1 1
[|B@t|dt<Ad and [|K(xt)|dz=<4
0 i

is a continuous linear operator of norm not exceeding A, which maps X (C) into itself.

1) MevER-KONIG and ZELLER [3] do not state lemma 1 in exactly this form. But the content
of the lemma follows from a stronger result they prove in Satz 1 of their paper.
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Lemma 3. If the functions Fp(x), 0 < 2 < 1, have uniformly absolutely continuous
wntegrals, then there exists a subsequence Fy (x) and an integrable function F(x) such
that for each bounded integrable g, and gy (x) — g (x) uniformly

1 1
Oank(x)gk (z) dx _>6fF(x)g(x) dx.

Also, if the Fy(x) all belong to X(C) and |Fp|| < 1, then F(x) e X (C) and |F| < 1.
Lemmas 2 and 3 are due to LoreNTZ ([2], pp. 79—80).

Lemma 4. Let u, be a sequence of real constants. Then

Z(ﬁ)lﬁ’“‘”#nﬂl =M (n=0,1,2,...)
k=n

if and only if
Z(Z)]A""“#kléN n=0,1,2,...).
k=0

Lemma 4 is a consequence of two known theorems, one due to the present author
([4], Theorem 1) and another due to Hauspor¥F ([2], Theorem 3.3.1); a direct proof
of lemma 4 is due to KuTTNER [1].

Let {ux}, as before, be a sequence of real constants. We now define a sequence of
functions as follows:

E+DE+2) [k 3 n 41 n+1 k=
o= QTR () 4, iy <es T,

With this definition, we are now in a position to prove our main result.

Theorem. Let the space X (C) have the property of rearrangement invariant norm and
let the integrals in (2) be uniformly absolutely continuous. Then in order that the sequence
pn (n=1,2,...) may have the representation

1
(1) n =anf(w) dx

with fe X(0) and | f| = M i is necessary and sufficient that for each n, | f¥ | < M.
. 1

Proof of the necessity. Let u, have the representation fx”f(x) de, n =1, 2,
3,.... Then 0

1
Iz (x) =0fo (@, ) f(2) at

where
(k+1)(k+2) [k _ n+1 n 41
Ko () = 'W(n) (L—pmninsd, oy <s=331-
k=n,n-1,....

It may easily be verified that

_fllK;f(x,t)[dt= 1 and fllK:(x,t)]dx= 1.
0 0
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The proof of the necessity is now complete after Lemma 2.

Proof of the sufficiency. Let f(x) be any continuous function in [0,1] and
let PL (x) have the meaning defined in Lemma 1. We shall define PL,, (x) for n, m =
=0,1,2,... by

NI

Pl (@)= Z (fj) (1 —a)nant (1)
k=n

with the understanding that P{W (0) = 7(0), for all n, m. We make the following
preliminary comments.

(i) For each fixed » and m, PL,, (z) is a polynomial in z;

(ii) Pflm (x) converges uniformly to Pﬁb(x), as m — oo, for x {4, 1],
(1ii) P{L (x) converges uniformly to f(x) in [4, 1].
Let us now assume that | f*| < M, for each n. Then since 1 € C and

1
il =sup [|1¥@)]c(z)dx
ceC 0

it follows that | ff || < M implies

k
() s s 2 2
k=n

and therefore by Lemma 4, also, that

Z(Z)IA""“WI =N,
=0

for each n.
Now the polynomials

pE)=ag+ar1x+ "+ apa™

with {a,} real and z ¢ [0,1] form a linear subspace P[0,1] of the space C[0,1] of
continuous functions in [0,1]. Then when the {u,} satisfies the above condition, we
have, as shown by LoreNTz ([2], pp. 58—59), that

L(p) = Ao o -+ + Am fom
is a linear form over P[0,1], which can be extended to C[0,1] by setting, for

feCl0,1], L(f) =lm L(fs),

where fg(x) is any sequence of polynomials uniformly approximating f(x) in [0,1];
also such an extended linear form is continuous over C. The same result holds for
[4, 1] instead of [0,1], for any & > 0.

Thus it follows from the observations made above and from the. comments (i) — (iii)
that for z &[4, 1], whatever be 8 > 0, that L(P],) — L(PL) as m — oo and that
L(PL) = L(f) as n — co. Taking f(z) = z?, p = 0, 1, 2, ... we obtain, after a brief
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calculation, that
- 1\»
E (Zj}-—l) (n)Ak‘"yn+1——>yp as n-—>oo.

1 .
But the expression on the left hand side above is J' 1% (%) gn(z) dx where
¢

n+1>20 f n-1 n+1

gn(x)=(m m<x§m, Ek=nn-+1,....

1
By an application of Lemma 3 it follows that u, = f z? f(x) de with fe X (C), [ f| = M.
0
This completes the proof of the theorem.

Application. In the special case of the space L? (p > 1), for example, the con-
dition that ||f¥| =< M can be expressed in the form

o0

Z [(k+1)(k+2>}p-1
n+1)

k=n

k\ . b2
" Ak-rpy, | =M, n=20,1,...
!

while LoreENTZ’s condition for the same space is

Dl (Z)A”"‘,uk ’

=0
Similar conditions for various other special cases of the space X (C) can be derived
from the expression that |[/X[| < M.
It will be interesting to know whether a direct equivalence of the two conditions
Ifnll £ M and [ f¥| < M, without any appeal to the theory of moment sequences,
can be given.

=M, n=20,1,....
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