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We consider the control of a batch processing machine which is part of a larger manufacturing network of machines. Systems
consisting of a batch processing machine and one or more unit-capacity machines in tandem are considered. The objective is to
minimize the average time that jobs spend in the entire system. We present algorithms to determine the optimal policies for certain
finite horizon, deterministic problems. We then discuss the structure of the optimal policies for infinite horizon, stochastic
problems, and investigate the benefit of utilizing information about upstream and downstream unit-capacity machines in the
control of the batch machine. We develop a simple heuristic scheduling policy to control the batch machine which takes into
account the state of other machines in the network. Computational results demonstrate the effectiveness of our heuristic over a
wide range of problem instances.

1. Introduction

A batch processing machine is a single machine that can
process up to a certain number of jobs (the capacity of the
machine) at the same time. This type of machine is found
in many manufacturing and service environments. The
most commonly cited examples are diffusion tubes and
burn-in ovens in semiconductor manufacturing, but other
examples include plating baths, heat-treating furnaces in
the metalworking industries, kilns for drying lumber,
material handling and transportation vehicles, oven and
metallization steps in flat panel display manufacturing,
and bus, subway, and elevator operations (Deb and Serf-
ozo, 1973; Glassey and Weng, 1991; Powell and Humblet,
1986). The control of a single batch processing machine
has received significant attention in the recent production
literature. However, in most practical applications a batch
machine is part of a larger network of machines respon-
sible for manufacturing a product. While the analysis of a
single batch machine in isolation is useful for providing
methods which serve as subprocedures in a global control
methodology, it is necessary to study the entire network to
understand the interactions between machines.
In this paper we consider the control of a batch pro-

cessing machine that is part of a larger network of ma-
chines. We consider networks that consist of a batch
processing machine and one or more unit-capacity ma-
chines in a series arrangement. A unit-capacity machine is
one which processes a single job at a time. Ahmadi et al.

(1992) and Gurnani et al. (1992) describe many examples
of manufacturing systems that contain both batch and
unit-capacity machines. One example is semiconductor
wafer fabrication, in which a photolithography expose
operation (unit-capacity) is followed by the operation of
diffusion in a furnace (batch).
We consider both finite horizon, deterministic prob-

lems and infinite horizon, stochastic problems. We as-
sume that all jobs belong to the same job family (i.e., have
the same processing requirements). The processing time
of a batch is independent of the number of jobs in the
batch. Once processing on a machine is initiated, it can-
not be interrupted. We further assume that the jobs arrive
to the first machine in the network dynamically over time.
The buffers in front of each machine are assumed to be
unlimited. If the batch processing machine is available
and the number of jobs ready to be processed on it is less
than its capacity, a non-trivial control decision must be
made to either process a partial batch immediately or
wait for additional jobs to arrive. The tradeoff involved is
utilization of the batch capacity versus delay of jobs
currently in the queue. The objective considered in this
work is to minimize the average time that jobs spend in
the entire system, or equivalently to minimize the average
number of jobs in the system. This objective is desirable
because long production cycle times can have an adverse
effect on product yield, meeting promised delivery dates,
responsiveness to changes in market demand, and in-
ventory holding costs. In highly competitive industries
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like the semiconductor industry, short production cycle
times represent a significant competitive advantage.
To be able to refer to the problems under study in this

paper in a concise manner, we will use the notation of
Ahmadi et al. (1992) to describe the networks. Let b
denote a batch processing machine, d a unit-capacity
machine (which they refer to as a discrete processor), and
! denote the system configuration. For example, b ! d
represents a two-machine system with a batch processing
machine feeding a unit-capacity machine, and d ! d ! b
represents a three-machine system with a unit-capacity
machine feeding another unit-capacity machine feeding a
batch processing machine.
In the next section we present a review of previous re-

lated work. In Section 3 we present algorithms to deter-
mine the optimal policies for certain finite horizon,
deterministic problems. We discuss the structure of the
optimal policies for infinite horizon, stochastic problems in
Section 4, and investigate the benefit of information about
upstream and downstream unit-capacity machines in the
control of the batch machine. We also develop a simple
heuristic scheduling policy to control the batch machine
that takes into account the state of other machines in the
network. Finally, Section 5 contains some concluding
remarks and identifies future research directions.

2. Related work

The control of a manufacturing network that contains a
batch processing machine does not seem to have been
examined extensively in the production literature to date.
To the best of our knowledge only two papers have
considered this topic. Ahmadi et al. (1992) examine the
static problems of minimizing the makespan and the sum
of job completion times in two-machine flowshops con-
taining batch and unit-capacity machines. They analyze
problem complexity, present polynomial time procedures
for some problems, and propose a heuristic for the NP-
complete problem of minimizing

P
Cj for a b ! d sys-

tem. Unlike our work in Section 3, they do not consider
non-zero job release dates. They do, however, allow job-
dependent processing times on the unit-capacity machine.
Gurnani et al. (1992) consider a two-stage system con-
sisting of multiple unit-capacity machines in parallel
feeding a single batch processing machine. Their objective
is to minimize the sum of a delay cost, a fixed service cost,
and a capacity utilization cost at the batch machine. They
assume a control limit policy for loading the batch ma-
chine and use a renewal approximation to compute an
approximately optimal control limit. This control limit
policy does not take into account the current state of the
upstream unit-capacity machines.
While the problem of controlling a network that con-

tains a batch machine has not received significant atten-
tion, many authors have considered batch processing

machines in isolation. A server capable of processing
several customers simultaneously is called a bulk server in
queueing terminology, and there is extensive literature in
queueing theory on bulk processing. Most of this litera-
ture, however, focuses on performance evaluation rather
than control. Chaudhary and Templeton (1983) devote
an entire book to bulk arrival and bulk service queues.
Neuts (1967) studies the characteristics of a bulk service
queue with Poisson arrivals of a single job family. He
proposes a control limit policy for controlling this queue.
Deb and Serfozo (1973) and Barnett and Kleitman (1978)
prove that a control limit policy minimizes the sum of the
holding costs and the service costs for this system. Medhi
(1975) derives the waiting time distribution for this sys-
tem under a control limit policy and exponential service
times. Powell and Humblet (1986) consider this system in
the context of less-than-truckload trucking networks and
develop efficient computational procedures to describe
the characteristics of the queue. Makis (1985) considers
the case where the waiting time of any job cannot exceed
a constant T .
The problem of scheduling a single batch processing

machine has received attention recently in the determin-
istic scheduling literature. This work is largely motivated
by the operations of diffusion and burn-in in semicon-
ductor manufacturing (Uzsoy et al., 1992, 1994) provide
a comprehensive review of production planning and
scheduling models in the semiconductor industry). These
papers consider three cases. In the first case, all jobs be-
long to the same job family. Ikura and Gimple (1986),
Lee et al. (1992), and Li and Lee (1997) consider different
performance measures for this case in the presence of
release dates and dues dates. The second case considered
is multiple, incompatible job families. In this case jobs
have different processing requirements on the batch ma-
chine and only jobs with the same processing require-
ments can be served together in a batch. This case models
the operation of diffusion. Uzsoy (1995) and Mehta and
Uzsoy (1998) consider the problems of minimizing the
makespan, the maximum lateness, and the total tardiness
on batch machines with incompatible families. The third
case considered is multiple, compatible job families. In
this case jobs with different processing requirements can
be mixed together in the same batch, with the processing
time of that batch being determined by the job in the
batch with the longest processing time. This case models
the operation of burn-in. Lee et al. (1992) and Lee and
Uzsoy (1999) present optimal algorithms and heuristics
for a number of scheduling criteria for the case of com-
patible families. Chandru et al. (1993a, 1993b) and
Hochbaum and Landy (1997) address the problem of
minimizing the total completion time. Uzsoy and Yang
(1997) extend this to the total weighted completion time.
Uzsoy (1994) considers jobs with non-identical capacity
requirements. Brucker et al. (1998) consider regular per-
formance measures for bounded and unbounded models
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and present several results on the complexity of batch
machine scheduling problems.
The highly stochastic environment of semiconductor

manufacturing has led to recent work in the semicon-
ductor manufacturing literature to address batch pro-
cessing under stochastic assumptions. Avramidis et al.
(1998) develop computational procedures to determine
optimal threshold policies for a batch machine subject to
uncertain job arrivals and processing times. Glassey and
Weng (1991), Fowler et al. (1992), and Weng and
Leachman (1993) develop heuristics that use information
about future arrivals to minimize waiting time in queue
for the single and multiple incompatible family cases.
Duenyas and Neale (1997) partially characterize the op-
timal policies and develop heuristics for a stochastic
batch machine with incompatible job families. Neale and
Duenyas (1997) do the same for the compatible job
families case.
In a recent paper, Robinson et al. (1995) address the

issue of the use of upstream and downstream information
in scheduling semiconductor batch operations. Their ap-
proach to the problem is different than ours. In particu-
lar, they develop heuristics that use information on the
times when jobs will arrive from the upstream machines
to the batch machine and the time when the downstream
machine will be starved. However, they assume that ar-
rival times to the batch machine from the upstream ma-
chine are known (although they allow for some prediction
errors) and also that the time when the downstream
machine is starved is predicted with no error. In contrast,
we assume that we only have information on the number
of jobs at each machine. This permits us to compare the
effect of information from upstream and downstream
machines on the optimal objective function. Our results
on the optimal objective value function also confirm
Robinson et al.’s observation (which they obtained using
their heuristic) that information on upstream machines
result in much greater improvements in time spent in
system than information on downstream machines.

3. Finite horizon, deterministic problems

In this section, we examine the problem of minimizing the
sum of completion times (or equivalently the average
completion time) over a finite time horizon for networks
containing a batch processing machine. We assume that
there are N jobs to be processed through the network and
that each job j arrives to the first machine in the network
at time rj. In addition, we arrange the rj’s in ascending
order so that rj � rjþ1 for j ¼ 1; . . . ;N � 1. All jobs be-
long to the same family and require a deterministic pro-
cessing time pB on the batch machine and a deterministic
processing time pUi on the ith unit-capacity machine in
the network (when there is only one unit-capacity ma-
chine in the network, we will drop the subscript i). The

buffers in front of each machine are assumed to be un-
limited. We let K denote the capacity of the batch ma-
chine and ðxÞþ represent maxfx; 0g. When there is more
than one unit-capacity machine in the network, we will
refer to the ith unit-capacity machine as di.

3.1. A d ! b system

It is easy to show with a simple interchange argument
that it is optimal to process each job on the unit-capacity
machine at the first time when the machine is available
after that job’s arrival time. Inserted idle time on d will
never produce a benefit. If more than one job is waiting
when the machine becomes available, we assume the job
to be processed is selected by the First-In-First-Out
(FIFO) rule. Note that the FIFO rule is not required for
optimality. Any waiting job could be selected. The FIFO
assumption, however, reduces the complexity of the
problem while still producing an optimal schedule. Let aj
denote the time at which job j completes processing at d
and is thus available for processing at b. Then a1 ¼
r1 þ pU , and the remaining aj’s can be determined by the
recursive equation:

aj ¼ maxfrj; aj�1g þ pU for j ¼ 2; . . . ;N : ð1Þ
Given the aj’s it remains to determine an optimal

schedule at the batch machine so that the sum of the
completion times is minimized. When the number of jobs
available for processing at b is less than the machine’s
capacity, a non-trivial decision must be made to either
process the partial batch immediately or wait for addi-
tional arrivals. We note that the OðN3Þ dynamic pro-
gramming algorithm developed by Ahmadi et al. (1992)
for the ‘‘batch dispatching problem’’ could be used to
determine an optimal schedule at b for this problem.
However, we present an alternative dynamic program-
ming algorithm of similar time complexity which is
slightly less complex to describe and implement. Our
dynamic programming algorithm is based on the fol-
lowing two observations:

1. Decisions are only required when a job arrives and
the batch machine is available or when the batch
machine completes service and there are jobs waiting.

2. If the decision to serve a batch is made, the number
of jobs served in that batch is the minimum of the
number of jobs waiting and the capacity of the
machine. If all waiting jobs cannot be served in
the batch, then the jobs to be served can be selected
arbitrarily.

Algorithm DP1

Let t represent the current time (decision epoch) and nðtÞ
the number of jobs that have been processed on d but are
waiting to be processed on b at time t. The pair ðt; nðtÞÞ
constitutes the state of our dynamic program. By obser-
vation 1, it follows that the only times at which a decision
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is necessary are either when a job has arrived to the batch
machine or when the batch machine has just completed a
service. Thus, we need only consider values of t of the
form aj þ kpB for j ¼ 1; . . . ;N and k ¼ 0; . . . ;N � 1.
These N2 times represent all possible arrival times and
service completion times. Clearly N 
 nðtÞ 
 0, so the
total number of states is OðN3Þ.
For each state, the decision is whether to serve a batch

of the available jobs or idle until the next arrival to the
batch machine. Let f ðt; nðtÞÞ denote the minimum sum of
completion times from time t until the end of the horizon
(i.e., until all jobs have been completed) given that nðtÞ
jobs are waiting at the batch machine. Then

f ðt; nðtÞÞ ¼ min

f ðminfaj : aj > tg; nðtÞ þ 1Þ;
minfnðtÞ;Kgðt þ pBÞ
þ f t þ pB; ðnðtÞ � KÞþ

�
þ fj : t < aj � t þ pBg
�� ���;

8>><
>>:

where jfj : t < aj � t þ pBgj represents the number of jobs
that arrive to the batch machine during the batch service
time. The first term in the minimization represents the
decision to idle until the next arrival, while the second
term represents the decision to serve a batch of the
waiting jobs. Since there are OðN3Þ states and a com-
parison of two values is considered for each state, the
complexity of the algorithm is OðN3Þ. We feel that this
formulation is slightly more intuitive than the dynamic
programming formulation of Ahmadi et al. (1992).
Rather than simply deciding whether to idle or to serve,
their recurrence relation decides the number of continu-
ous batches to be served without any idle time. Our for-
mulation also avoids the side calculations required by
Ahmadi et al.’s formulation to determine the number of
jobs that would be served in each batch.
The boundary conditions

minfaj : aj > tg ¼ 1 for t 
 aN ;
f ð1; 
Þ ¼ 1;

f ð
; nðtÞÞ ¼ 1 for nðtÞ > N ;

f ðt; nðtÞÞ

¼ 0 if nðtÞ ¼ 0 for 1 > t 6¼ aj þ kpB;
1 if nðtÞ 
 1 j ¼ 1; . . . ;N ; k ¼ 0; . . . ;N � 1,

	

are required to start our backward DP algorithm. The
minimum total completion time for the d ! b system is
given by f ða1; 1Þ.

3.2. A b ! d system

Again, when the number of jobs available for processing
at the batch machine is less than the machine’s capacity, a
non-trivial decision must be made to either process the
partial batch immediately or wait for additional arrivals.
However, for this system a job’s completion time on the
batch machine is not the job’s completion time for the
entire system. The state of the downstream unit-capacity

machine must be considered when controlling the batch
machine. Ahmadi et al. (1992) show that the problem of
minimizing the sum of completion times for a b ! d
system without release times (rj ¼ 0 for all j) but with
job-dependent processing times on d is NP-complete in
the strong sense. We develop a pseudo-polynomial time
algorithm for a b ! d system operating under our as-
sumptions by modifying Algorithm DP1.
It is easy to show that inserted idle time at the unit-

capacity machine is never optimal. As a result, the unit-
capacity machine is kept busy as long as there are jobs
available to be processed. Since all jobs have the same
processing time at d, the order in which the available jobs
are processed on d does not affect the sum of completion
times. The following dynamic programming algorithm
will minimize the sum of completion times for a b ! d
system. Without loss of generality, we assume that the
release times rj and the processing times pB and pU are
integer values.

Algorithm DP2

Again, let t represent the current time (decision epoch)
and nðtÞ represent the number of jobs available to be
processed on b at time t. For a b ! d system we must also
keep track of the amount of work waiting to be per-
formed at d. Let wðtÞ be the total remaining processing
time of all jobs waiting to be processed at d at time t. The
three values ðt; nðtÞ;wðtÞÞ constitute the state of our dy-
namic program. Once again decisions are only necessary
at b at either a job arrival or service completion time, so
we need only consider the N2 values of t of the form
rj þ kpB for j ¼ 1; . . . ;N and k ¼ 0; . . . ;N � 1. Clearly
N 
 nðtÞ 
 0 and NpU 
 wðtÞ 
 0, so the total number of
states is OðN4pU Þ.
For each state, the decision is again whether to serve a

batch of the available jobs or idle until the next arrival to
the batch machine. Let f ðt; nðtÞ;wðtÞÞ denote the mini-
mum sum of completion times from time t until the end of
the horizon for all jobs not yet served at b given that nðtÞ
jobs are waiting at b and wðtÞ time units of processing are
waiting at d. Then

f ðt; nðtÞ;wðtÞÞ

¼ min

f ðrðtÞ; nðtÞ þ jfj : rj ¼ rðtÞgj;
ðwðtÞ � rðtÞ þ tÞþÞ;

Sðt; nðtÞ;wðtÞÞ þ f ðt þ pB; ðnðtÞ � KÞþ þ aðtÞ;
ðwðtÞ � pBÞþ þ BðnðtÞÞpU Þ;

8>>><
>>>:

where

rðtÞ ¼ minfrj : rj > tg;
BðnðtÞÞ ¼ minfnðtÞ;Kg;

Sðt; nðtÞ;wðtÞÞ ¼
XBðnðtÞÞ
i¼1

ðt þmaxfpB;wðtÞg þ ipU Þ; and

aðtÞ ¼ jfj : t < rj � t þ pBgj:
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Notice that rðtÞ represents the time of the next arrival to
b, BðnðtÞÞ represents the number of jobs that would be
served at b, Sðt; nðtÞ;wðtÞÞ represents the sum of com-
pletion times for the BðnðtÞÞ jobs served at b, and aðtÞ
represents the number of jobs that arrive to b during b’s
service time. The first term in the minimization again
represents the decision to idle until the next arrival, while
the second term represents the decision to serve a batch of
the waiting jobs. Since there are OðN4pU Þ states and a
comparison of two values is considered for each state, the
complexity of the algorithm is OðN4pU Þ.
The boundary conditions

minfrj : rj > tg ¼ 1 for t 
 rN ;
f ð1; 
; 
Þ ¼ 1;

f ð
; nðtÞ; 
Þ ¼ 1 for nðtÞ > N ;
f ð
; 
;wðtÞÞ ¼ 1 for wðtÞ > NpU ;

f ðt; nðtÞ; 
Þ ¼
0 if nðtÞ ¼ 0 for 1 > t 6¼ rj þ kpB;

j ¼ 1; . . . ;N ;
1 if nðtÞ 
 1 k ¼ 0; . . . ;N � 1;

8<
:

are required to start our backward DP algorithm. The
minimum total completion time for the b ! d system is
given by f ðr1; 1Þ.

3.3. Systems with multiple unit-capacity machines

Consider a d ! b ! d system. As for the d ! b system, it
is easy to show that it is optimal to process each job on d1
at the first time when the machine is available after that
job’s arrival to the system. Since all jobs have identical
processing requirements on each machine, it does not
matter in which order the jobs are processed if there is
more than one job waiting at d1 (we will assume a FIFO
order). Thus, Equation (1) can again be used to determine
the times at which each job is available for processing at
the batch machine. Given the aj’s, the remaining task is to
determine the schedule for b and d2 that minimizes the
sum of the completion times for the entire system. Notice
that this remaining problem is equivalent to the problem
of minimizing the total completion time for a b ! d
system and Algorithm DP2 can be used (with the rj’s
replaced by the aj’s) to solve this remaining problem.
Consequently, the problem of minimizing the sum of
completion times for a d ! b ! d network can be solved
in OðN4pU2Þ operations.
For networks with multiple upstream unit-capacity

machines feeding a single downstream batch machine, it
is easy to show that the optimal policy at each of the
upstream unit-capacity machines is to process a job
whenever one is available. As a result, Equation (1) can
be used for each unit-capacity machine di to determine
the release time of each job to the next unit-capacity
machine diþ1. This process will eventually produce the
arrival time for each job to the batch machine, and as we
saw in Section 3.1 the problem of scheduling jobs on the

batch machine can be solved in OðN3Þ operations. Thus, a
fixed number of additional upstream unit-capacity ma-
chines does not add complexity to the problem of mini-
mizing the sum of completion times.
This is not the case, however, for networks withmultiple

downstream unit-capacity machines. As we saw in Sec-
tion 3.2, the amount of processing time at a downstream
unit-capacity machine must be taken into account when
scheduling jobs on the batch machine. The work at each
additional downstream unit-capacity machine must be
included as part of the state for a dynamic programming
algorithm, and thus each additional downstream machine
di increases the complexity of the problem by NpUi .

4. Infinite horizon, stochastic problems

In this section, we examine the problem of minimizing the
long-run average number of jobs in the system (or
equivalently the long-run average time that jobs spend in
the system) over an infinite time horizon for networks
containing a batch processing machine. We assume that
jobs arrive to the first machine in the network according
to a Poisson process with rate k. All jobs belong to the
same job family and require an exponentially distributed
processing time with mean 1=lB on the batch machine
and an exponentially distributed processing time with
mean 1=lUi

on the ith unit-capacity machine in the net-
work. All processing and interarrival times are assumed
to be independent and the buffers in front of each ma-
chine are assumed to be unlimited. Again we let K denote
the capacity of the batch processing machine and ðxÞþ
represent maxfx; 0g. We define the traffic intensity at the
batch machine (TIB) to be k=KlB. Note that this is the
traffic intensity or utilization of the batch machine when
jobs are served in batches of size K. Because we may serve
partial batches, the ‘‘effective’’ traffic intensity will likely
be higher. Similarly, the traffic intensity at the ith unit-
capacity machine (TIUi) is defined to be k=lUi

. As a
necessary condition for stability, we assume that the
traffic intensities at all machines are less than one.
The following notation will be used throughout this

section to describe the current state of the system:

nUi = the total number of jobs at the ith unit-capacity
machine (includes all jobs waiting for service plus
any job currently being served);

nB = the number of jobs waiting in queue to be pro-
cessed at the batch machine;

nS = the number of jobs currently being processed at the
batch machine (nS ¼ 0 if the batch machine is
currently idle).

4.1. A d ! b system

Clearly it is never optimal to idle at the unit-capacity
machine when jobs are available for processing. Addi-
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tionally, since all jobs have the same processing require-
ments on each of the machines, the order in which jobs
are served does not affect the objective. Consequently, no
control decisions are necessary at the unit-capacity ma-
chine. d is simply kept busy whenever jobs are available
and jobs are served according to the FIFO rule. The
control of the batch processing machine, however, is not
so simple. When the number of jobs available for pro-
cessing at b is less than the machine’s capacity, a non-
trivial control decision must be made to either process the
partial batch immediately or wait for additional arrivals.
We formulate the problem of controlling the batch ma-
chine to minimize the long-run average number of jobs in
the entire system as a Markov Decision Process (MDP).
The process is reviewed at those points in time when a

job arrives to the network or a machine completes a
service. As a result of the memoryless property of the
exponential distribution, the time between consecutive
review points is the minimum of exponential random
variables which is itself an exponential random variable.
As in Lippmann (1975), we define the uniform rate
K ¼ k þ lU þ lB so that the time between review points is
exponentially distributed with constant parameter K and
the probability of the next review point being an arrival is
k=K, the probability of the next review point being a d
service completion is lU=K, and the probability of the
next review point being a b service completion is lB=K.
The optimal long-run average number of jobs per period
in the system, g, and the relative values of the various
starting states, V ðnU ; nB; nSÞ, must satisfy the following
dynamic programming equations:

V ðnU ; nB; 0Þ þ g

¼ min

1=K½nU þ nB þ kV ðnU þ 1; ðnB � KÞþ;

minfnB;KgÞ þ lUV ððnU � 1Þþ; ðnB � KÞþ

þminfnU ; 1g;minfnB;KgÞ

þ lBV ðnU ; ðnB � KÞþ; 0Þ�;

1=K½nU þ nB þ kV ðnU þ 1; nB; 0Þ

þ lUV ððnU � 1Þþ; nB þminfnU ; 1g; 0Þ

þ lBV ðnU ; nB; 0Þ�;

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð2Þ
for nU 
 0 and nB 
 0, and

V ðnU ; nB; nSÞ þ g

¼ 1

K
½nU þ nB þ nS þ kV ðnU þ 1; nB; nSÞ

þ lUV ððnU � 1Þþ; nB þminfnU ; 1g; nSÞ
þ lBV ðnU ; nB; 0Þ�; ð3Þ

for nU 
 0, nB 
 0, and K 
 nS 
 1.
Note that equation (2) applies when the batch machine

is currently empty and Equation (3) applies when the

batch machine is currently processing a batch. When the
batch machine is empty, two actions are possible. The
first term in the minimization in Equation (2) represents
the decision to serve at the batch machine. If this action is
selected, b will serve a batch of size minfnB;Kg and all
jobs will remain in the system until the next event which
changes the state of the system (an expected time of 1=K).
At the next event the system will be in one of three dif-
ferent states, and the relative value of each of these states
is weighted by the probability of a transition to that state.
Similarly, the second term in the minimization in Equa-
tion (2) represents the decision to idle at the batch ma-
chine until the next event. Note that if this action is
selected, our formulation allows for a fictitious service
completion at the batch machine so that the time until the
next event remains exponentially distributed with pa-
rameter K. This fictitious service completion, however,
does not change the state of the system.
A value iteration algorithm can be used to solve the

above Markov decision process for specific values of the
problem parameters k, K, lU , and lB. We used such an
algorithm to solve a number of sample problems and
can draw some conclusions about the structure of the
optimal policies for a d ! b system from these numeri-
cally solved examples. We initially conjectured that the
optimal policy at the batch machine would have the
following form: for each nU , a control limit lðnU Þ exists
such that it is optimal to serve if nB 
 lðnU Þ and to idle
if nB < lðnU Þ; furthermore, the control limits lðnU Þ are
increasing in nU . While many of the numerous examples
we solved had this intuitively appealing structure, we
found counter-examples to the conjecture of monotonic
control limit values.
For example, the optimal policy for controlling the

batch machine when k ¼ 1:00, K ¼ 7, lU ¼ 2:50, and
lB ¼ 0:48 consists of non-monotonic control limits as
shown in Fig. 1. Note that as nU increases from one to
two the optimal control limit decreases from seven to five.
While this result is at first surprising, we believe that an
intuitive explanation exists. When nU ¼ 1, the queue in
front of the unit-capacity machine is empty. The job j
that is currently in service at d will be available for pro-
cessing at b after its service is completed (an expected
time of 0:4 for this example). Before the next job (jþ 1)
becomes available for processing at b, two events must
happen: an arrival to d and a service completion at d. The
expected time for this to occur is 1:4. When nU 
 2, on
the other hand, job j still becomes available for process-
ing at b after an expected time of 0:4, but job jþ 1 now
becomes available at b after an expected time of only 0:8.
Thus the interarrival time at b between jobs j and jþ 1 is
significantly larger for nU ¼ 1 than it is for nU ¼ 2. We
believe that this difference is responsible for the decrease
in control limits. There is more incentive to delay service
until the arrival of job j when nU ¼ 1 since job j will have
to wait a longer time for the following batch to form if it
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is not included in the next batch served at b. This results
in a greater control limit for nU ¼ 1 than for nU ¼ 2.
Since most of the work to date on the control of a

batch processing machine has considered the problem of
a batch machine in isolation, it is of considerable interest
to know how much can be gained by taking into account
information about other machines in the network when
controlling a batch machine that is in reality part of a
larger manufacturing network. For a d ! b system, we
use the above Markov decision process formulation to
determine the optimal long-run average number of jobs in
the system. We then compare this value to the long-run
average number of jobs that results if the optimal policy
for a batch machine in isolation is used to control b. The
difference between these two values represents the benefit
of utilizing the current state of d when controlling b in a
d ! b network.
To determine the optimal policy for b in isolation, we

note that since the arrivals to d are Poisson with rate k
and the processing time at d is exponential, the arrival
process at b is Poisson with rate k (Wolff, 1989). We can
then use the result of Deb and Serfozo (1973) that the
optimal policy for a batch machine with Poisson arrivals
is a control limit policy. In order to compare the per-
formance of this myopic control limit policy with the
performance of the globally optimal control policy for a
d ! b system, we tested both policies on a number of
sample problems.
To generate a sample problem, we must specify four

parameters: the arrival rate; the batch capacity; and the
service rate at each of the two machines. We generated
sample problems by selecting a set of values for each of
these four parameters that covers the range of values of
interest. Rather than specifying the service rates directly,

we found it more intuitive to select different levels for the
traffic intensity at each machine. We then solved for the
service rates using TIB ¼ k=KlB and TIU ¼ k=lU . For
TIU we selected the levels of 0:2, 0:4, 0:6, and 0:8. These
levels evenly cover the possible space from low to high
traffic intensity. For TIB we selected the levels of 0:3, 0:4,
0:5, and 0:6. We selected more moderate values for TIB
since extreme values are not of much interest (for large
values the optimal policy is to always serve a batch of size
K, and for small values there is very little waiting time
regardless of the policy employed). For the batch ca-
pacity, we selected the levels of four and seven. These
values were selected to study the impact of differing batch
capacities. We were not able to consider batch sizes larger
than seven since the size of the state space in the value
iteration algorithm is directly proportional to the batch
capacity. Capacities larger than seven result in a state
space too large for efficient numerical solution. For all
sample problems we set the arrival rate equal to one. Only
one level of k was tested because changing k while keeping
K, TIU , and TIB the same does not affect the optimal
policy. This is because the service rates are automatically
adjusted up or down with the arrival rate when the traffic
intensities are kept the same. Consequently the system
behaves exactly the same except that jobs move through it
more quickly or more slowly. The 32 different combina-
tions of these levels represent a wide variety of possible
scenarios over which to test the performance of the dif-
ferent control policies. The data for the 32 different
sample problems are displayed in Table 1.
For each sample problem, we used the Markov deci-

sion process formulation of Equations (2) and (3) to
calculate the optimal long-run average number of jobs in
the d ! b system. To avoid the difficulties of an infinite
state space, an upper limit was placed on the number of
jobs allowed in each queue. Consequently, the value it-
eration algorithm’s solution is a lower bound on the ac-
tual optimal long-run average number of jobs in the
system. We note that the upper limit on each queue size
was very large and as a result the lower bounds are very
tight. For each sample problem we also calculated the
long-run average number of jobs that results when the
optimal control limit policy for the batch machine in
isolation is used to control b in the d ! b network. We
used a Markov decision process formulation to determine
the optimal control limit value for the batch machine in
isolation, and used a value iteration algorithm to calcu-
late the long-run average number of jobs in the Markov
chain which results when b is controlled according to this
control limit policy. The same upper limit was placed on
each machine’s queue size, so the resulting long-run av-
erage number of jobs is again a lower bound on the true
value.
Table 1 summarizes the results that we obtained for a

d ! b system. It contains the lower bound on the truly
optimal average number of jobs in the system (LB(OPT)),

Fig. 1. Optimal policy for a d ! b system with k ¼ 1:00, K ¼ 7,
lU ¼ 2:50, and lB ¼ 0:48.

Control of manufacturing networks 1033



the optimal control limit for the batch machine in isola-
tion (CL), and the lower bound on the average number of
jobs that results when this myopic control limit policy is
used for the d ! b system (LB(CL)). On average, the
number of jobs in the system was reduced by 3.25% by
utilizing the current state of d when controlling b. In some
examples, the reduction was larger than 7%. These
numbers clearly indicate that taking into account the
current state of an upstream unit-capacity machine in the
control of a batch processing machine can make a sig-
nificant difference, especially in industries with high in-
ventory holding costs.
The results in Table 1 also indicate the situations in

which it is most important to take into account infor-
mation about an upstream unit-capacity machine when
controlling a batch machine. The greatest differences
between LB(OPT) and LB(CL) occur when the traffic
intensity at the upstream unit-capacity machine is small
(0:2 or 0:4). In these cases d is rarely busy and knowledge
of when there are jobs at d is most useful in predicting the
timing of arrivals to b. When the traffic intensity at d is

high (0:8), d is almost always processing jobs and the state
of d is not as useful in predicting the timing of arrivals to
b. The difference between LB(OPT) and LB(CL) is also
larger for smaller values of TIB. This is because as the
traffic intensity at the batch machine increases, the opti-
mal policy for the d ! b network becomes more and
more similar to the optimal policy for the batch machine
in isolation: only serve a batch at b when there are at least
K jobs waiting.

4.2. A b ! d system

It is clearly never optimal to idle at the unit-capacity
machine when there are jobs available, and once again the
problem of controlling the batch machine to minimize the
long-run average number of jobs in the system can be
formulated as a Markov decision process. The formula-
tion for a b ! d system is similar to the previous for-
mulation of Equations (2) and (3) for a d ! b system. We
again used a value iteration algorithm to solve the MDP
for a number of sample problems and can make some

Table 1. Sample problems for a d ! b system

Example k K TIB TIU LB(OPT ) CL LB(CL) LB(CL)/LB(OPT )

1 1.0 4 0.3 0.2 2.2767 1 2.4430 1.0730
2 1.0 4 0.3 0.4 2.6713 1 2.8597 1.0705
3 1.0 4 0.3 0.6 3.5674 1 3.6930 1.0352
4 1.0 4 0.3 0.8 6.1193 1 6.1930 1.0120
5 1.0 4 0.4 0.2 3.2040 2 3.3522 1.0463
6 1.0 4 0.4 0.4 3.5873 2 3.7688 1.0506
7 1.0 4 0.4 0.6 4.4603 2 4.6022 1.0318
8 1.0 4 0.4 0.8 7.0470 2 7.1022 1.0078
9 1.0 4 0.5 0.2 4.3340 3 4.4808 1.0339
10 1.0 4 0.5 0.4 4.6525 3 4.8975 1.0527
11 1.0 4 0.5 0.6 5.5152 3 5.7308 1.0391
12 1.0 4 0.5 0.8 8.1224 3 8.2308 1.0133
13 1.0 4 0.6 0.2 5.7813 4 5.8996 1.0205
14 1.0 4 0.6 0.4 6.1326 4 6.3162 1.0299
15 1.0 4 0.6 0.6 6.9362 4 7.1496 1.0308
16 1.0 4 0.6 0.8 9.4989 4 9.6496 1.0159
17 1.0 7 0.3 0.2 3.9837 2 4.1644 1.0454
18 1.0 7 0.3 0.4 4.3607 2 4.5810 1.0505
19 1.0 7 0.3 0.6 5.2779 2 5.4144 1.0259
20 1.0 7 0.3 0.8 7.8431 2 7.9144 1.0091
21 1.0 7 0.4 0.2 5.5731 3 5.7659 1.0346
22 1.0 7 0.4 0.4 5.9024 3 6.1826 1.0475
23 1.0 7 0.4 0.6 6.7890 3 7.0159 1.0334
24 1.0 7 0.4 0.8 9.4118 3 9.5159 1.0111
25 1.0 7 0.5 0.2 7.4516 4 7.6576 1.0276
26 1.0 7 0.5 0.4 7.7424 4 8.0743 1.0429
27 1.0 7 0.5 0.6 8.5710 4 8.9076 1.0393
28 1.0 7 0.5 0.8 11.2348 4 11.4076 1.0154
29 1.0 7 0.6 0.2 9.8628 6 10.0218 1.0161
30 1.0 7 0.6 0.4 10.1424 6 10.4384 1.0292
31 1.0 7 0.6 0.6 10.9282 6 11.2718 1.0314
32 1.0 7 0.6 0.8 13.5264 6 13.7718 1.0181
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observations about the structure of the optimal policies.
For each of the numerous problems that we solved, the
optimal policy had the following form: for each nU , there
exists a control limit lðnU Þ such that it is optimal to serve
if nB 
 lðnU Þ and to idle if nB < lðnU Þ; furthermore, the
control limits lðnU Þ are increasing in nU . This type of
policy is easy to describe and is intuitive. As the amount
of work at the downstream unit-capacity machine in-
creases, it becomes less desirable to serve a batch at b
since the completed jobs will only wait in the queue at d.
As a result, the control limits increase with nU (unlike the
optimal policy for a d ! b system). We have found,
however, that the submodularity conditions sufficient to
prove that this form of policy is optimal do not neces-
sarily hold. Consequently, we are unable to prove that
this structure holds for all cases.
To investigate the benefit of taking into account the

state of a downstream unit-capacity machine in the con-
trol of the batch machine, we compared the average
number of jobs that results from the globally optimal
policy for a b ! d system with the average number of

jobs that results when the optimal policy for b in isolation
is used for a b ! d system. We used the input data from
the 32 sample problems of Section 4.1 to test the per-
formance of these two different control strategies for a
b ! d network. A value iteration algorithm was again
used to calculate a lower bound on the optimal long-run
average number of jobs in the system (LB(OPT)). We
then compared this value to a lower bound on the long-
run average number of jobs that results when the optimal
policy for the batch machine in isolation is used to con-
trol b (LB(CL)). The difference between these two values
represents the gain that can be achieved by utilizing in-
formation about the downstream unit-capacity machine
in the control of the batch machine.
Table 2 presents the results that we obtained. On av-

erage, the number of jobs in the b ! d system was re-
duced by 0:38% by taking into account the current state
of d when controlling b. The largest reduction achieved
was 1:21%. Note that the average and maximum percent
differences between LB(OPT) and LB(CL) are signifi-
cantly smaller for the b ! d network than they were for

Table 2. Sample problems for a b ! d system

Example k K TIB TIU LB(OPT ) CL LB(CL) LB(CL)/LB(OPT )

1 1.0 4 0.3 0.2 2.5954 1 2.6027 1.0028
2 1.0 4 0.3 0.4 3.2029 1 3.2283 1.0079
3 1.0 4 0.3 0.6 4.2616 1 4.3128 1.0120
4 1.0 4 0.3 0.8 7.0231 1 7.1083 1.0121
5 1.0 4 0.4 0.2 3.5608 2 3.5610 1.0001
6 1.0 4 0.4 0.4 4.2504 2 4.2528 1.0006
7 1.0 4 0.4 0.6 5.4331 2 5.4411 1.0015
8 1.0 4 0.4 0.8 8.3858 2 8.4045 1.0022
9 1.0 4 0.5 0.2 4.7512 3 4.7513 1.0000
10 1.0 4 0.5 0.4 5.5084 3 5.5173 1.0016
11 1.0 4 0.5 0.6 6.7998 3 6.8187 1.0028
12 1.0 4 0.5 0.8 9.9601 3 9.9827 1.0023
13 1.0 4 0.6 0.2 6.2262 4 6.2328 1.0011
14 1.0 4 0.6 0.4 7.0372 4 7.0732 1.0051
15 1.0 4 0.6 0.6 8.4459 4 8.4915 1.0054
16 1.0 4 0.6 0.8 11.8620 4 11.8949 1.0028
17 1.0 7 0.3 0.2 4.4947 2 4.4980 1.0007
18 1.0 7 0.3 0.4 5.3352 2 5.3539 1.0035
19 1.0 7 0.3 0.6 6.7114 2 6.7585 1.0070
20 1.0 7 0.3 0.8 9.9379 2 10.0342 1.0097
21 1.0 7 0.4 0.2 6.1921 3 6.1943 1.0004
22 1.0 7 0.4 0.4 7.1791 3 7.1931 1.0020
23 1.0 7 0.4 0.6 8.7899 3 8.8302 1.0046
24 1.0 7 0.4 0.8 12.4268 3 12.5222 1.0077
25 1.0 7 0.5 0.2 8.1676 4 8.1717 1.0005
26 1.0 7 0.5 0.4 9.2819 4 9.3017 1.0021
27 1.0 7 0.5 0.6 11.1133 4 11.1688 1.0050
28 1.0 7 0.5 0.8 15.1885 4 15.3272 1.0091
29 1.0 7 0.6 0.2 10.6433 6 10.6448 1.0001
30 1.0 7 0.6 0.4 11.8741 6 11.8995 1.0021
31 1.0 7 0.6 0.6 13.9143 6 13.9627 1.0035
32 1.0 7 0.6 0.8 18.4842 6 18.5669 1.0045
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the d ! b network. Thus, the benefit of utilizing infor-
mation about the state of an upstream unit-capacity
machine appears to be an order of magnitude larger than
that of utilizing information about the state of a down-
stream unit-capacity machine. For a b ! d system, sim-
ply operating the batch machine as if it were alone results
in an average number of jobs that is within 1% of optimal
for almost all examples. Our results are consistent with
those of Robinson et al. (1995).
The results in Table 2 also indicate the situations in

which it is most important to take into account infor-
mation about a downstream unit-capacity machine when
controlling a batch machine. The greatest differences
between LB(OPT) and LB(CL) occur when the traffic
intensity at the downstream unit-capacity machine is
large and the traffic intensity at the batch machine is
small. In these cases, the unit-capacity machine is fre-
quently busy and it is most important to consider the
amount of work waiting at d when deciding whether to
process a batch at b. If there is a large queue at d, then it
is best to idle at b and serve a fuller batch in the future
since a batch served at the present time would only join
the queue at d. Note that it is most important to utilize
the state of a downstream unit-capacity machine when its
traffic intensity is high, while from Section 4.1 it is most
important to utilize the state of an upstream unit-capacity
machine when its traffic intensity is low.

4.3. Systems with multiple unit-capacity machines

For networks that contain more than one unit-capacity
machine, it is of interest to know how much additional
gain can be achieved by taking into account the current
state of additional unit-capacity machines in the network.
To examine this, we consider a d ! d ! b network. For a
d ! d ! b system , we again formulated the problem of
minimizing the long-run average number of jobs in the
entire system as a Markov decision process. A value it-
eration algorithm was used to calculate a lower bound on
the optimal long-run average number of jobs in the sys-
tem (LB(OPT)). This value was compared to a lower
bound on the long-run average number of jobs that re-
sults when the optimal policy for the d ! b system is used
to control the d ! d ! b system (LB(d ! b)). The dif-
ference between these two values represents the benefit of
taking into account the states of both the upstream unit-
capacity machines (d1 and d2) rather than just the im-
mediately upstream unit-capacity machine (d2). We also
compared LB(d ! b) to a lower bound on the long-run
average number of jobs that results when the optimal
control limit policy for the batch machine in isolation is
used to control the d ! d ! b system (LB(CL)). The
difference between these two values represents the benefit
of taking into account the state of the immediately up-
stream unit-capacity machine (d2) rather than controlling
the batch machine as if it were in isolation.

We generated 27 sample problems over which to cal-
culate these values. The levels of 0.2, 0.5, and 0.8 were
used for the traffic intensities at the unit-capacity ma-
chines, while the levels of 0.3, 0.45, and 0.6 were used for
the traffic intensity at the batch machine. The capacity of
the batch machine was set equal to four and the arrival
rate was set equal to one. The 27 different combinations
of these parameter levels and the results that we obtained
for each sample problem are presented in Table 3.
On average, LB(d ! b) was 0:75% greater than

LB(OPT), with the greatest percent difference being
3:43%. LB(CL) averaged 2:60% greater than LB(d ! b),
with a maximum percent difference of 6:58%. Note that
the average and maximum percent differences between
LB(OPT) and LB(d ! b) are significantly smaller than
the average and maximum percent differences between
LB(d ! b) and LB(CL). Thus, the greatest gains result
from considering the immediately upstream unit-capacity
machine, with much smaller gains achieved by looking
one more unit-capacity machine upstream. Consequently,
it seems that there are diminishing returns from taking
into account additional upstream unit-capacity machines
in the control of the batch machine. The largest differ-
ences between LB(OPT) and LB(d ! b) occur when the
traffic intensities at the unit-capacity machines are small.
It is most important to consider the current state of the
additional upstream unit-capacity machine (d1) when the
traffic intensity at d2 is small (0:2). In this case d2 is rarely
busy and the state of d1 is most useful for predicting the
timing of arrivals to d2 which can in turn be used to
predict the timing of arrivals to b.
We also investigated the benefits of taking into account

the number of jobs at more than one unit-capacity ma-
chine downstream from the batch processing machine.
However, since the benefits from looking at even a single
downstream machine were fairly modest, we found that
considering the number of jobs in two downstream ma-
chines had very minor effects in all of our examples.
Therefore, based on our numerical examples, we can
conclude that the greatest benefit can be obtained by
using information on the number of jobs at a single up-
stream machine.

4.4. A heuristic policy

As discussed in the previous subsections, it is most critical
to take into account the current state of an immediately
upstream unit-capacity machine when controlling a batch
processing machine that is part of a larger manufacturing
network. However, the optimal policies for a d ! b net-
work can be quite complicated (for example, see Fig. 1).
They are also computationally expensive. The number of
iterations required by the value iteration algorithm to find
the optimal policy is problem dependent, so we cannot
provide a general rule for the computation time required.
The number of iterations, however, typically increases
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when the number of states becomes larger. Consequently
the computation time is sensitive to the size of the batch
capacity, the number of machines, and the upper limits
placed on the queue sizes. We solved the relatively small
problems in Table 1 using the Pascal programming lan-
guage on a Sun SPARC II workstation. Each problem
typically required a number of minutes of CPU time.
Since the batch capacity in applications such as semi-
conductor burn-in operations can number in the thou-
sands (Hochbaum and Landy, 1997), this approach is
not practical for many real-world applications. Conse-
quently, in this subsection we propose a simple heuristic
policy to control the batch machine which utilizes the
current state of the immediately upstream unit-capacity
machine.
Our heuristic is motivated by the structure of the op-

timal policies for a d ! b network. As discussed in Sec-
tion 4.1, the optimal policies for this network have the
following form: for each nU , there exists a control limit
lðnU Þ such that it is optimal to idle at the batch machine if
nB < lðnU Þ and to serve if nB 
 lðnU Þ. The control limits
lðnU Þ are not necessarily increasing in nU . However, we
can make the following observation about the control
limit values. For each of the sample problems considered
in Section 4.1, the greatest jump in the control limit val-
ues occurs when nU increases from zero to one (i.e.,

jlð1Þ � lð0Þj 
 jlðjþ 1Þ � lðjÞj for all j 
 0). Moreover,
in over 70% of the sample problems, the only jump in the
control limit values occurs when nU increases from zero
to one (i.e., lðjþ 1Þ ¼ lðjÞ for all j 
 1). Thus, for nU > 1
the control limits rarely change, and when they do the
change is relatively small. This motivates the development
of a heuristic policy which consists of two control limit
values: one for nU ¼ 0 and the other for nU 
 1.
Given the current state of the d ! b system, when the

batch machine is available a heuristic policy must decide
whether to serve a batch of size minfnB;Kg or idle until
the next event which changes the state of the system. We
note that when nB ¼ 0 serving is not an option, and when
nB 
 K idling will never produce a benefit. Consequently,
a decision is only necessary when K > nB > 0. Our heu-
ristic uses the following logic to make this control deci-
sion. We approximate the benefit of idling until the next
arrival to the batch machine, and compare this value to
the cost of idling until the next arrival. If the cost of idling
exceeds the benefit, the decision is to serve the nB jobs at b
immediately; otherwise, the decision is to idle at b until
the next event which changes the state of the system, at
which time the decision process begins all over again.
This logic is similar to the Next Arrival Control Heuristic
(NACH) of Fowler et al. (1992) for a batch processing
machine in isolation.

Table 3. Sample problems for a d ! d ! b system

Example k K TIB TIU2 TIU1 LB(OPT ) LB(d ! b) LB(d ! b)/LB(OPT ) LB(CL) LB(CL)/LB(d ! b)

1 1.0 4 0.3 0.2 0.2 2.4430 2.5267 1.0343 2.6930 1.0658
2 1.0 4 0.3 0.2 0.5 3.2086 3.2767 1.0212 3.4430 1.0508
3 1.0 4 0.3 0.2 0.8 6.2152 6.2209 1.0009 6.3871 1.0267
4 1.0 4 0.3 0.5 0.2 3.2729 3.2840 1.0034 3.4430 1.0484
5 1.0 4 0.3 0.5 0.5 4.0325 4.0340 1.0004 4.1930 1.0394
6 1.0 4 0.3 0.5 0.8 6.9860 6.9870 1.0001 7.1458 1.0227
7 1.0 4 0.3 0.8 0.2 6.3232 6.3232 1.0000 6.3969 1.0117
8 1.0 4 0.3 0.8 0.5 7.0732 7.0732 1.0000 7.1469 1.0104
9 1.0 4 0.3 0.8 0.8 10.0131 10.0131 1.0000 10.0868 1.0074
10 1.0 4 0.45 0.2 0.2 3.8761 3.9765 1.0259 4.1497 1.0436
11 1.0 4 0.45 0.2 0.5 4.6226 4.7265 1.0225 4.8997 1.0366
12 1.0 4 0.45 0.2 0.8 7.6303 7.6691 1.0051 7.8420 1.0225
13 1.0 4 0.45 0.5 0.2 4.6412 4.6830 1.0090 4.8997 1.0463
14 1.0 4 0.45 0.5 0.5 5.3824 5.4330 1.0094 5.6497 1.0399
15 1.0 4 0.45 0.5 0.8 8.3558 8.3849 1.0035 8.6013 1.0258
16 1.0 4 0.45 0.8 0.2 7.7498 7.7565 1.0009 7.8523 1.0124
17 1.0 4 0.45 0.8 0.5 8.5035 8.5065 1.0004 8.6023 1.0113
18 1.0 4 0.45 0.8 0.8 11.4446 11.4454 1.0001 11.5412 1.0084
19 1.0 4 0.6 0.2 0.2 5.9092 5.9983 1.0151 6.1194 1.0202
20 1.0 4 0.6 0.2 0.5 6.6007 6.7483 1.0224 6.8694 1.0179
21 1.0 4 0.6 0.2 0.8 9.6381 9.6982 1.0062 9.8196 1.0125
22 1.0 4 0.6 0.5 0.2 6.6016 6.6636 1.0094 6.8694 1.0309
23 1.0 4 0.6 0.5 0.5 7.3506 7.4136 1.0086 7.6194 1.0278
24 1.0 4 0.6 0.5 0.8 10.3143 10.3451 1.0030 10.5519 1.0200
25 1.0 4 0.6 0.8 0.2 9.6621 9.6684 1.0007 9.8197 1.0156
26 1.0 4 0.6 0.8 0.5 10.4105 10.4184 1.0008 10.5697 1.0145
27 1.0 4 0.6 0.8 0.8 13.3488 13.3551 1.0005 13.5066 1.0113
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Let t represent the expected time until the next arrival
to the batch machine. If we idle at b until the next arrival,
each of the nB jobs currently in queue will be delayed an
expected time of t. The cost of idling is thus nBt. The
advantage of idling until the next arrival is that this ar-
rival can then be included in the same batch as the nB jobs
currently in queue. Had we not idled, this next arrival
would likely have had to wait for the nB jobs to complete
service before it could have been served. The expected
time that this next arrival would have had to wait is equal
to 1=lB � t, the difference between the expected service
time for the batch and the expected time until the next
arrival. The benefit of idling is thus the 1=lB � t time
units of waiting avoided for the next arrival.
Some simple algebra reveals that the cost of idling

exceeds the benefit when nB > 1=ðtlBÞ � 1. Consequently,
our heuristic is a control limit policy which chooses to
idle when nB < minfd1=ðtlBÞ � 1e;Kg and to serve when
nB 
 minfd1=ðtlBÞ � 1e;Kg, where dxe represents the
smallest positive integer strictly greater than x. Note that
the control limit value depends on the time until the next
arrival, t, which in turn depends on the current state of
the upstream unit-capacity machine. If nU 
 1 then
t ¼ 1=lU , the expected time until the next service com-
pletion at the unit-capacity machine. If nU ¼ 0 then
t ¼ 1=k þ 1=lU , since both an arrival and a service
completion must occur before the next arrival to b. Thus,
after inserting these values for t, our heuristic policy
consists of two control limits:

l1 ¼ min
klU

lBðlU þ kÞ � 1

� �
;K

	 

for nU ¼ 0;

and

l2 ¼ min
lU

lB
� 1

� �
;K

	 

for nU 
 1:

The full heuristic policy can be stated as follows:

if the batch machine is available then
if nU ¼ 0 then
if nB < l1 then idle until the next event which
changes the state of the system
if nB 
 l1 then serve a batch of size minfnB;Kg

if nU 
 1 then
if nB < l2 then idle until the next event which
changes the state of the system
if nB 
 l2 then serve a batch of size minfnB;Kg.

We will refer to this heuristic as the Two Control Limit
Heuristic (TCLH).
To test the performance of TCLH for a d ! b network,

we used a value iteration algorithm to calculate a lower
bound on the long-run average number of jobs that re-
sults when TCLH is used to control b. This lower bound
(LB(TCLH)) was calculated for the 32 sample problems
from Section 4.1. The results are presented in Table 4
along with the lower bounds that were calculated in

Section 4.1 for the optimal policy for the network
(LB(OPT)) and the optimal policy for the batch machine
in isolation (LB(CL)). On average, LB(TCLH) was only
1:59% greater than LB(OPT). The maximum difference
between LB(TCLH) and LB(OPT) was 4:66%. Note that
this is an improvement over LB(CL) in both average
performance and worst case performance. LB(CL) was
3:25% greater than LB(OPT) on average, with a maxi-
mum difference of 7:30%. Thus, TCLH results in a long-
run average number of jobs within 1.5% of optimal on
average and consistently outperforms the optimal policy
for the batch machine in isolation. In addition, TCLH is
easier to calculate than the optimal policy for the batch
machine in isolation which requires the solution of a
Markov decision process. TCLH simply requires the
closed-form calculation of two control limits and is thus
essentially instantaneous. TCLH’s simplicity and good
performance make it a good candidate for implementa-
tion in manufacturing networks which contain a batch
processing machine.

Table 4. Heuristic policy performance for a d ! b system with
exponential interarrival and service times

Example LB(TCLH ) LB(OPT ) LB(CL) LBðTCLHÞ
LBðOPT Þ

LBðCLÞ
LBðOPT Þ

1 2.2767 2.2767 2.4430 1.0000 1.0730
2 2.6756 2.6713 2.8597 1.0016 1.0705
3 3.5684 3.5674 3.6930 1.0003 1.0352
4 6.1930 6.1193 6.1930 1.0120 1.0120
5 3.2811 3.2040 3.3522 1.0241 1.0463
6 3.5873 3.5873 3.7688 1.0000 1.0506
7 4.5407 4.4603 4.6022 1.0180 1.0318
8 7.0583 7.0470 7.1022 1.0016 1.0078
9 4.5358 4.3340 4.4808 1.0466 1.0339
10 4.7581 4.6525 4.8975 1.0227 1.0527
11 5.6123 5.5152 5.7308 1.0176 1.0391
12 8.2646 8.1224 8.2308 1.0175 1.0133
13 5.9093 5.7813 5.8996 1.0221 1.0205
14 6.3604 6.1326 6.3162 1.0371 1.0299
15 7.0322 6.9362 7.1496 1.0138 1.0308
16 9.6563 9.4989 9.6496 1.0166 1.0159
17 4.1124 3.9837 4.1644 1.0323 1.0454
18 4.4221 4.3607 4.5810 1.0141 1.0505
19 5.2979 5.2779 5.4144 1.0038 1.0259
20 7.8930 7.8431 7.9144 1.0064 1.0091
21 5.6458 5.5731 5.7659 1.0130 1.0346
22 5.9076 5.9024 6.1826 1.0009 1.0475
23 6.9078 6.7890 7.0159 1.0175 1.0334
24 9.4799 9.4118 9.5159 1.0072 1.0111
25 7.7158 7.4516 7.6576 1.0355 1.0276
26 7.8689 7.7424 8.0743 1.0163 1.0429
27 8.7159 8.5710 8.9076 1.0169 1.0393
28 11.3774 11.2348 11.4076 1.0127 1.0154
29 10.1819 9.8628 10.0218 1.0324 1.0161
30 10.3006 10.1424 10.4384 1.0156 1.0292
31 11.0940 10.9282 11.2718 1.0152 1.0314
32 13.7697 13.5264 13.7718 1.0180 1.0181
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We note that TCLH can easily be modified to allow for
non-exponential interarrival or service time distributions.
In order to test the performance of our heuristic for in-
terarrival and service time distributions with less vari-
ability than the exponential distribution (coefficient of
variation = 1), in the remainder of this section we modify
TCLH for a d ! b system with uniform interarrival and
service time distributions with range ¼ mean (coefficient
of variation = 0.289). Specifically, we assume that the
time between arrivals of jobs to d is uniformly distributed
with mean and range equal to 1=k, and that jobs require a
uniformly distributed processing time on d with mean and
range 1=lU and a uniformly distributed processing time
on b with mean and range 1=lB.
TCLH can be modified for uniform interarrival and

service time distributions as follows. Let t again represent
the expected time until the next arrival to b. Because
TCLH uses only the mean of b’s service time distribution,
the cost of idling and the benefit of idling remain nBt and
1=lB � t as before. Thus, the policy again consists of
control limits which depend on the expected time until the
next arrival to b. The control limit value as a function of t
is minfd1=ðtlBÞ � 1e;Kg. However, the calculation of t is
different for uniformly distributed interarrival and service
times than it was for exponentially distributed interarrival
and service times. Because the uniform distribution does
not have the memoryless property of the exponential
distribution, when nU 
 1 we must keep track of the
elapsed time since the start of the current service on d in
order to determine the expected time until the next arrival
to b. Similarly, when nU ¼ 0 we must keep track of the
elapsed time since the last arrival to d in order to deter-
mine the expected time until the next arrival to b. This
information can be used to calculate t as follows. When
nU 
 1, the expected time until the next arrival to b given
that tS time units have elapsed since the start of the cur-
rent service at d is given by the equation

t ¼

1

lU
� tS if tS �

1

2lU
;

3

2lU
� tS

� �.
2 if tS >

1

2lU
:

8>><
>>:

ð4Þ

Similarly, when nU ¼ 0 the expected time until the next
arrival to b given that tA time units have elapsed since the
last arrival to d is given by the equation

t ¼

1

k
� tA þ

1

lU
if tA � 1

2k
;

3

2k
� tA

� �.
2þ 1

lU
if tA >

1

2k
:

8>><
>>:

ð5Þ

When the batch machine is available and K > nB > 0, the
appropriate value of t can be found from Equation (4) or
Equation (5) and substituted into the above expression
for the control limit value. If the number of jobs at the
batch machine is less than the resulting control limit

value, the decision is to idle until the next event which
changes the state of the system. Otherwise, the decision is
to serve the nB jobs immediately. Note that we will con-
tinue to refer to this heuristic as the Two Control Limit
Heuristic (TCLH) even though the heuristic policy for
uniform interarrival and service time distributions no
longer consists of just two control limit values.
To test the performance of TCLH on a d ! b system

with uniform interarrival and service time distributions,
we used the data from the 32 sample problems of Sec-
tion 4.1. Because a Markov decision process formulation
is not valid for uniform interarrival and service time
distributions, the globally optimal policy for the d ! b
system could not be determined. Instead, we used simu-
lation to compare the performance of our heuristics with
the best single control limit policy for the d ! b network
(BestCL). BestCL was found by simulating the perfor-
mance of all possible control limit values, CL ¼ 1;
2; . . . ;K, and selecting the one which resulted in the
minimum average number of jobs in the system. Note
that BestCL is the best single control limit policy for the
entire network, not just the best control limit policy for
the batch machine in isolation. Thus, by definition Best-
CL performs at least as well for a d ! b system as the
optimal control limit policy for the batch machine in
isolation. All policies were tested using a GPSS/H simu-
lation program. The simulations were run for 1 000 000
time units with the average number of jobs calculated
every 20 000 time units (with a 4000 time unit warmup
period). We report the average number of jobs in the
system for each policy as well as 95% confidence inter-
vals. Table 5 summarizes the results.
On average, the number of jobs in the systems con-

trolled by TCLH was 3:55% less than the number of jobs
in the systems controlled by the best single control limit
policy for the d ! b network. In some examples the av-
erage number of jobs resulting from TCLH was as much
as 8:91% less than the average number of jobs resulting
from BestCL. Note that the average difference between
TCLH and BestCL for uniform interarrival and service
times (3:55%) is larger than than the average difference
between LB(TCLH) and LB(CL) for exponential inter-
arrival and service times (1:65%). Thus the performance
of our heuristic (when compared to the optimal control
limit policy for the batch machine in isolation) appears to
be even stronger for uniform interarrival and service time
distributions than it was for exponential interarrival and
service time distributions.

5. Conclusion

In this paper, we have explored the control of manufac-
turing networks consisting of a batch processing machine
and one or more unit-capacity machines in tandem. This
work was motivated by the many examples of manufac-
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turing systems which contain both batch and unit-
capacity machines. We presented polynomial time dy-
namic programming algorithms which minimize the sum
of the completion times for d ! b and b ! d systems
with deterministic release times and processing times. We
showed that these algorithms can be extended to solve
systems with any number of upstream unit-capacity ma-
chines in polynomial time, but the time required to solve
systems with downstream unit-capacity machines is ex-
ponential in the number of downstream machines. We
then discussed the structure of the optimal policies for
stochastic networks containing a batch processing ma-
chine. The benefit of taking into account the current state
of an upstream unit-capacity machine was found to be an
order of magnitude larger than the benefit of taking into
account the current state of a downstream unit-capacity
machine. Utilizing the current states of additional up-
stream or downstream unit-capacity machines produced
diminishing returns. Consequently, it appears to be most
critical to consider the current state of a single upstream

unit-capacity machine when controlling a batch process-
ing machine which is part of a larger manufacturing
network. We developed a simple heuristic control policy,
TCLH, which utilizes the current state of an upstream
unit-capacity machine. TCLH was found to perform
nearly as well as the computationally expensive and
complicated optimal policies, and appears to work well
for different interarrival and service time distributions.
Our heuristic’s simplicity and good performance make it
a good candidate for implementation in manufacturing
networks which contain a batch processing machine, such
as those found in semiconductor manufacturing.
Further research should focus on the control of

manufacturing networks containing a batch processing
machine which serves multiple job families (either in-
compatible or compatible). Jobs could require different
processing times on the batch machine, on the unit-
capacity machines, or on all machines. Networks which
contain more than one batch processing machine should
also be considered, as should networks in which the
machines are not all in a series configuration. Additional
investigation is also suggested for stochastic networks
containing batch machines in which the interarrival and
service times are not exponentially or uniformly distrib-
uted.
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