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Abstract. A result of Soare and Stob asserts that for any non-recursive r.e. set C, 
there exists a r.e.[C] set A such that A • C  is not of r.e. degree. A set Y is called [of] 
m - R E A  (m-REA[C])  [degree] iff it is [Turing equivalent to] the result of  applying 
m-many iterated 'hops '  to the empty set (to C), where a hop is any function of  the 
form X ~ X �9 W x . The cited result is the special case m = 0, n = 1 of  our 
Theorem. For m = 0, 1, and any (m + 1)-REA set C, if C is not of  m-REA degree, 
then for all n there exists a n-r.e.[C] set A such that A | C is not of  (m + n)-REA 
degree. We conjecture that this holds also for m > 2. 

1 Introduction and summary 

This paper is in the recent tradition of studying sets (of natural numbers) and (Turing) 
degrees which although not recursively enumerable (r~e.) are closely related to r.e. 
sets and degrees. Our starting point is the following pair of  results. 

1.1 Theorem(Cooper-Epstein-Lachlan, unpublished) There exists a 2-r. e. set which is 
not o f  r.e. degree. 

1.2 Theorem[SoSt]  For any non-recursive r.e. set C, there exists an REA[C] set which 
is not o f  r.e. degree. 

We recall that a set A is 2-r.e. (or d.r.e) iff there exist r.e. sets A0 and A1 such that 
A is their set difference, A = A0 ~ A1. A set A is r.e.[C] (recursively enumerable in 
C) iff for some r.e. set U, 

A : u  c:{x- y(x,C r y) e u}. 
* German speakers should not be unduely influenced by the acronym for this title 
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Here C [ y denotes the number which codes the initial segment of the characteristic 
function of C of length y. We say that ( z, C r Y ) is an axiom that is satisfied by C 
and witnesses that z E A. A is REA[C] (recursively enumerable in and above C) iff 
A is r.e.[C] and also C --<T A. Note that if A is r.e.[C], then the recursive join A | C 
is REA[C]. Hence, up to degree, every REA[C] set is of the form C (9 U c for some 
r.e. set U. 

We shall review in the next section the proofs of these theorems. The basic idea is 
that in either case the set A may "change its mind" twice about the membership status 
of any number z; this flexibility enables a diagonalization procedure for constructing 
A not Turing equivalent with any r.e. set. 

Our goal here is to establish some natural generalizations of these results. The 
notion of a set which may "change its mind" any finite number of times is well-known; 
we give the relativized version: 

1.3 Definition. For any sets A and C and any n, 
(i) A is 0-r.e.[C] iff A --<T C; 
(ii) A is (n + 1)-r.e.[C] iff A = A0 ~ B for some r.e.[C] 

set A0 and some n-r.e.[C] set B; 
(iii) A is n-r.e, iff A is n-r.e.[0]. 

For this and other properties defined below, a degree has the property iff it con- 
tains at least one set with the property. Now a first candidate for a generalization of 
Theorems 1.1 and 1.2 is 

1.4 Theorem. For all n, 
(i) there exists an (n + 1)-r.e. set which is not o f  n-r.e, degree; 
(ii) for  any non-recursive r.e. set C, there exists a set A which is n-r.e.[C] such 

that A @ C is not o f  n-r.e, degree. 
A strengthening of part (i) is proved in [JoSh2] and will be discussed further 

below; the analogous strengthening of part (ii) will follow from some of our results 
below. In both cases the strengthening consists in replacing n-r.e, by n-REA: 

1.5 Definition. For any sets A and C and all n, 
(i) A is 0-REA[C] iff A --T C; 
(ii) A is (n + 1)-REA[C] iff A is REA[B] for some B which is n-REA[C]; 
(iii) A is n-REA iff A is n-REAl0]. 

This notion was introduced and studied by Joekusch and Shore [JoSh2], who 
proved in particular 

1.6 Theorem. [JoSh2, Theorem 1.4] For all sets A and C and all n, 
(i) i r A  is n-r.e.[C], then A | C is o f  n-REAIC] degree; 
(ii) there exists an (n + 1)-r.e.[C] set A such that A |  is not o f  n-REAIC] degree. 

These clearly imply part (i) of Theorem 1.4 and suggest the following strength- 
ening of (ii), which we shall prove in Sect. 3: 

1.7 Theorem. For any non-recursive r.e. set C and any n, there exists an n-r.e.[C] 
set A such that A G C is not o f  n-REA degree. Hence, there exists a set which is 
n-REA[C] but not o f  n-REA degree. 

Of course, Theorem 1.2 is exactly the case n = 1 of this. Soare [So, p.l16] 
introduced the term hop for any mapping of the form C ~ C | U c for an r.e. set U. 
The Turing jump C ~ G" is (up to degree) a hop and for every hop, C |  c <--T C'.  
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V 
If  we represent a given hop by > and one we construct by 
clause of  this theorem may be represented by the diagram 

0 

o ~ c ~  3 3 Do ~ " ' "  ~ Dn-1  = A. 

323 

3 
>, then the second 

In words, for any C which is reachable from 0 by one hop but not fewer, there 
exists a set A reachable from C in n hops but not reachable from 0 in n hops. This 
perspective suggests the following question - if for some m > O, C is reachable from 
0 in m + 1 hops but not in m hops, is there a set reachable from C in n hops which 
is not reachable from 0 in m + n hops. More precisely, 

1.8 Conjecture.  For any set C and any m and n, if C is (ra+ 1)-REA but not o f  m-REA 
degree, then there exists an n-r.e.[C] set A such that A | C is not o f  (m  + n)-REA 
degree. Hence there exists a set which is n-REA[C], hence (ra + n + 1)-REA, but not 
o f  (m  + n)-REA degree. 

The second clause may be represented by the diagram: 

i ~,1 l 

�9 " ' "  - - - - - *  " ' "  - - - - ~ D n - 1  = A .  

At one point in the work on this paper we believed that we had proved this 
conjecture and announced it in [Chili]. Unfortunately, our "proof" contained a gap 
that we have been unable to fill and we are currently able to prove only 

1.9 Main  Theorem.  The Conjecture holds for  all n for  m = 0 and m = 1. 

We shall refer to Case (m, n) of the Conjecture with the obvious meaning. Note 
that Theorem 1.2 is the case (0, 1), Theorem 1.7 comprises all cases (0, n) and that 
all cases (m, 0) are trivial. Where not otherwise specified, our notation conforms with 
that of  [So]. 

2 Background 

To facilitate understanding of the somewhat complex proofs in the following sections, 
we sketch here in a compatible notation and style proofs of some of the known results 
mentioned in Sect. 1. We begin with a 

Proof  (of Theorem 1.1). To construct a 2-r.e. set A = A0 ~ A1 which is not of  r.e. 
degree, it suffices to satisfy all requirements of the form 

(1) A 7~ ~5 E or E r k~ A, 

where �9 and k~ are any recursive functionals and E is any r.e. set. We describe 
a strategy to satisfy a single instance of  (1) while imposing at most finitely much 
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restraint; it is then a standard exercise in the finite injury priority method to combine 
these strategies for all instances of (1). 

Suppose that (1) fails, so that in particular for any fixed number x 

A(x)  = ~E(x )  and E I U(X) = ~A [ U(X)~ 

where u(x)  is the E-use  of  the computation ~E(x) .  Let v(x)  denote the maximum of 
x + 1 and the A-use of ~A r u ( x )  - that is, the combined A-use of ~pA(y) for y _< x. 
The key to the strategy is that the potential failure of (1) can be recognized at a finite 
stage of the construction and evasive action taken to avoid it. Let r x) denote the 
condition 

As(x )  = ~E~(x) and Es r u(s , x )  = ~pA~ I u (s ,x ) ,  

where u(s, x) is the Es-use  of the computation ~5 E" (x); ~hs, tPs and Es refer to standard 
enumerations, and As is the s-th stage of the set we are constructing: As = A0,s 
Al,s. Let v(s, x) denote the maximum of x + 1 and the As-use of  the computations 
~pA, r u(s,  x). By increasing them if necessary, we may assume that u(s, x) and 
v(s, x) are monotone non-decreasing with respect to both s and x. 

We say that r  x) holds correctly iff r x) holds, Es I u(s, x) = E I u(s, x), 
and As r v(s, x) = A r v(s, x). Since A0, A1, and E are r.e. sets, if (1) fails, then for 
all sufficiently large s we have Es I u(x)  = E I u(x), and As r v(x)  = A r v(x),  from 
which it follows that u(s, x)  = u(x), v(s, x) = v(x) and r x) holds correctly. Thus, 

(1.1) (Recognition) if (1) fails, then for all x and all sufficiently large s, r x) holds 
correctly. 

Note that r x) alone is a recursive condition, whereas its correctness is not. 
In the construction we shall search for stages where r x) holds without regard for 
correctness; in fact, it is crucial that some instances are not correct. 

The strategy now goes as follows. Choose x ~ Ao, A1 and wait for a stage so 
such that r x). If  there is none, then (1) is satisfied by (1.1); otherwise enumerate 
x into Ao,so+t and restrain As0+1 [ v(so, x) - -  that is, ensure that no x r < v(so, x)  is 
enumerated into either A0 or At at any stage s > so + 1 at which this restraint is in 
effect. Recall that x < V(So, x). Now wait for a stage s] > So such that r  x). If  
there is none, then (1) is satisfied by (1.1); otherwise enumerate x into Al,sl+t and 
continue the restraint of  A [ V(So, x). Let uo = u(so, x) and Vo = V(So, x). Since 

~hE~0 E~I so (x) = Aso(X) = 0 r 1 = As~(x) = ~ ,  (x), 

it follows that Eso r uo ~ E~, r uo. But for all t > sl clearly At(x)  = 0 = Aso(X), 
whence by the restraint imposed, At I Vo = Aso r vo so that 

ipA8 0 
E~ r uo # Eso r Uo = so r Uo = g "A' r uo. 

The inequality holds because E is an r.e. set; once it changes on an initial segment 
it will never revert to its previous value. Now we have also that for all t > st,  

E~ [ u(t, x) # ~A, [ ~(t, z), 

so that r x) does not hold and again (1) is satisfied by (1.1). [] 

The main difficulty with the generalization to Theorem 1.6(ii) (here with C = 0) 
lies in finding the appropriate condition r x) such that the analogue of (1.1) holds. 
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For example, to construct a 3-r.e. set A = A0 ~ (Al ~ A2) not of 2-REA degree it is 
necessary to satisfy requirements 

(1) A # �9 E e W s  or E # k~ A or W E # 0 A 

for all recursive functionals ~, ~P, and O and all r.e. sets E and W. In order to 
recognize the potential failure of (1) at a stage s for the purpose of taking action to 
avoid this failure, we need appropriate approximations to all the sets and functionals 
involved. The key feature in the proof of Theorem I. 1 above is that under the hypoth- 
esis that (1) (of that proof) fails, the standard approximations As, Es, ~5 y~ and gtr 
all converge on initial segments to A, E, ~E and ~pA, respectively. In the generalized 
context, however, the standard approximation W E~ does not in general converge to 
W E, since it may happen that for some y there are infinitely many s and zs such that 
(y,  Es [ z s )  E W s ,  s o y E W  Es, but for all such s, Es [ z s C E [ z s  a n d y ~ W  E . 

The solution to this problem found by Jockusch and Shore is to use O A~ itself as 
the approximation to W E and to include in r x) conditions which ensure that there 
is sufficient coherence between the approximation and the set approximated. We give 
below the details for the general case. 

2.1 Theorem. [JoSh2, Proposition 1.7] For all n, there exists an (n + 1)-r.e. set which 
is not o f  n-REA degree. 

Proof. Any n-REA set E n is determined by a sequence E l , W 1 , . . . ,  W n - I  of r.e. 
sets. For 1 < i < n, we define recursively 

F 1 E 1 ' F i+l E ~ Ei+l E i F i+l = = W~ , and = G �9 

We aim to construct r.e. sets A0 , . . . ,  A,~ such that 

A = Ao "~ (A1 "~ (A2 . . . . .  (An-1 ~., A n ) . . . ) )  

satisfies all requirements of the form 

(1) A r  E~ or V [ F i r  - 
l < i < n  

Suppose that (1) fails so that for each x, 

A(x )  = ~sE~(x) and A [ F~ r wi (x)  = oA [ wi(z) l ,  
l < i < n  

where un(x)  is the E'~-use of the computation ~ E~ (x), and recursively, for 1 < i < n, 
ui(x)  and w~(x) are chosen minimal such that for all y, 

2y < u i+1 (x) 
2y + 1 < u i+l(x) 
Y ~ Fi+l r w~+l(x) 
w l ( x )  = ul(x). 

y < ui(z) 
y < wi+l(x) 
(3z  < u i ( z ) )  ( y, E ~ F z ) ~ W~ 

These parameters, together with the analogous ones at stage s, are chosen precisely 
to guarantee the Recognition and Positive Change properties below. Let v(x) be the 
maximum of z + 1 and the total A-use for all computations for which A is an oracle. 
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For any s, let E~, Wi,s and O A~ denote the standard approximation to E 1, Wi i ts 
and O A at stage s, respectively. For 1 _< i < n, set 

F~ = oAs~,s and --sEi+l = Esi |  

This is, of  course, an abuse of notation, since oA~ (y) is defined for only finitely many 

y so F~ is not a characteristic function. In practice we shall always refer to F~ [ w, 
for some w, and we interpret this usage to imply that oA~ (y) is defined for all y < w. 

Let r  x) denote the condition that 

As(x) E~ = 4)s  ~ ( x ) ,  

and for 1 < i < n there exist ui(s, x), v(s, x), and wi(s, x), such that un(s, x) is the 
E~n-use of  this computation and 

2y < ui+l(s,x) ~ y < u~(s,x) 
2y + 1 < u i+l(s, x) ~ y < wi+l(s, x) 
yCFs/+1 [ wi+l(s,x) ~ (3z < ui(s,x)) (y, Ei~ [ z)  E Wi,s 
F~ I wl(s ,x)  = El I wl(s, ~) 
wl (s , z )  = ul(s,x),  

and v(s, x) is the maximum of x + 1 and the total As-use for all computations for 
which As is an oracle. As in the preceding proof we may assume that all of these 
functions are monotone non-decreasing with respect to s and x. We say that r x) 
holds correctly iff r x) holds; for 1 < i < n, E~ [ u~(s, x) = E i I ui( s, x); and 
As [ v(s, x) = A I v(s, x). 

We need first to establish two key properties of  these approximations: 

(1.1) (Recognition) if (1) fails, then for all x and all sufficiently large stages s, r x) 
holds correctly; 

(1.2) (Positive Change) for all x and all s < t such that both r x) and r x), 
(a) f o r l < i < n ,  

E~ [ u~(s,z) = E~ [ ~ ( s , x )  ~ F~ +~ I w~+'(s, x) c_ F[ +~ [ w~+~(s,z); 

(b) for l < i < n ,  

E~ [ ui(s, x) 7~ E l [ ui(s, x) ~ for some 1 < j < i, F~ [ wJ(s, x) C Ft ~ I wJ( s, x). 

To prove (1.1), fix x and suppose that (1) fails at x with ui(x), v(x), and wi(x) 
defined as above. Choose s 1 large enough so that for all s > s 1, 

As [ v(x) = A F v(x) = ~E~(x) and F~ [ u l (x)  = E~ [ ul(x) = E 1 [ u~(x). 

This is possible since these approximations converge. Let w I (s, x) = u I (s, x) = u 1 (x). 
Next choose s 2 _> s a such that for all s > s 2,/7s2 [ w2(x) = F 2 I w2(x), and for all y, 

y E F 2 [ w2(x) ~ (3z < ul(x)) [ (y ,E  1 [ z) E W1,s]. 

Then E 2 [ uZ(x) = E 2 t u2(x), and if we set w2(s, x) = wU(x), we have for all y, 



Iterated relat ive recurs ive  enumerabi l i ty  327 

Y ~ F2 r w2(s ,x)  .'. > y C F 2 r w2(x) 
.', > (3z < u l ( x ) ) ( y , E  1 [ z )  E W~ 
.~ :. (~z < u l ( s , x ) ) ( y ,E~  r z )  C W1,8, 

as required for r x) to hold. 
Continuing recursively, we obtain finally s n such that for all s >_ s n, E~ [ un(x) = 

E n ~ u n ( z ) ,  so 

As(x) = A(x)  = ~E~(x) = ~ 2  (x), 

and thus r x) holds correctly. 
(1.2)(a) is immediate from the definition of r  if y E F~ +1 F wi+l(s,x), then 

for some z < ui(s, x), (y ,  E~ [ z )  c Wi,8 C_ W~,t. By hypothesis, E~ [ z = E~ [ z, 
so also y E Ft/+1. 

(1.2)(b) is immediate for i = 1 and we proceed by induction; assume the result 
for i and E~ +1 [ ui+l(s,x) 7~ E[+l I ui+l(s,x) �9 If  Eis I ui(s, x) e E~ I ui (s ,x) ,  then 
the conclusion for some j < i follows from the induction hypothesis. Otherwise, by 
(a), Fs ~+1 [ ~/)i+1 (8, X) C /~-nt~+l I wi+l (8, X) and for some y with 2y + 1 < u i+l (s, x) 
we have F~+l(y)# F{+l(y). Thus y < w~(s,x) and this inclusion is proper, so the 
conclusion holds for j = i + 1. 

Now, the strategy for satisfying a single requirement (1) while imposing finite re- 
straint is as follows. Choose a witness x which belongs to none of the sets A 0 , . . . ,  A~ 
and wait for a stage So such that r If there is none, (1) is satisfied by (1.1); 
otherwise, enumerate x into Ao,so+l, restrain Aso+I [ v(so, x), and wait for a stage 
sl > So such that r  I f  there is none, (1) is satisfied by (1.1); otherwise enu- 
merate x into Al,s~+t, restrain As~+l r v(sl ,  x), and wait for a stage s2 > sx such that 
r x). If  (1) is not satisfied at any stage of this process by (1.1), then we generate 
a sequence so < sl < . . .  < sn such that for j <_ n, r  

= wi(s j , x ) .  We establish first the i = u i ( s j , x ) ,  Vj = V(Sj ,X) ,  and wj Let uj 
following fact: for all 1 < i < n and j < (n - 1), 
( , )  

i+1 _,/. Ei+l o i+1 E h  I E i+l [ uj  , 8j+~ [ ~ for some h < i, E h u h h 8j 

By the hypothesis of  this implication and (1.2)(b), for some h < i, F h+l ~ w h+l C 

Fh+l I ~ h+l On the other hand, since enumerating x in both Aj  and Aj+I has no net sj+l 'wj . 
effect, by the restraint imposed we have As~ I vj = As j+: I vj, so 

F h + l  ~ h+l  A~j 
~ I = 0h+1,8~ t" h+l = 0%+~ I @+1 = Fh+l I h+l "wj "wj h+l,sj+2 s j+2 Wj  . 

and it follows that 

Fh+.: r'wh+' ~= Fh+~ [ w h+' hence also Fh+: [ wh:] fL Fh+~ r wh++]. 

The desired conclusion follows by (1.2)(a). 
N o w  

E ~ E ,~ 
~8o'~ = Aso(x) = 0 # 1 = As,(x)  = ~8~ ~' (x), 

and thus Es~o [ u~ # E n [ u~. Using (*) it follows by induction that there exist 
81 

hj hs 4. Eho hj n = ho > . "  > h,~-i such that for j < n, E8r [ uj  7- 8~+~ [ uj , so in fact 
hj = n - j and in particular, E18~_~ [ u=_~ ~ E ~  [ u~_~.l But then for all t > s~ we 
have A~ ~ v~ = As,_~ f v .  and thus 
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1 E l 1 1A:: •At E l l  qAn--I r s . - I  I O ~_: [ I 1 Un--1 Un--1 1,$ [ : : Un_ 1 

and hence r  does not hold and (1) is satisfied by (1.1). [] 

Theorem 1.6(i) is less germane to our methods here, but the following short proof 
seems not to have appeared in print, so we include it. 

2.2 L e m m a .  For any sets A and C and all n, i rA  is (n + 1)-r.e.[C], then A |  is of 
REA[D | C] degree for some n-r.e.[C] set D. 

Proof Let A be ( n +  1)-r.e.[C], so A = A0 ~ B for some r.e.[C] set A0 and some n- 
r.e.[C] set B.  Fix a C-recursive function f such that Ao = I ra( f )  and let D = f - l ( B ) .  
Easily D is n-r.e.[C] and it suffices to observe that 

D ~ T  A, since for all x, x c D .: :. f ( x )  ~ A; 

and 

A i s r . e . [ D ] ,  since for a l l x ,  x E A  ~ 3 y [ y ~ D A f ( y ) = x ] .  [] 

2.3 Corol lary .  For any sets A and C and all n, i rA  is n-r.e.[C], then A • C is of 
n-REA[C] degree. 

Proof We proceed by induction. For n = 0, the result is clear. If  A is (n + 1)-r.e.[C], 
choose D as in the Lemma. By the induction hypothesis, D �9 C ----T E for some 
n-REA[C]  set E ,  and A G C is of REA[E]-degree,  hence of (n + 1)-REA[C] degree. 
[] 

Before we turn to an exposition of the proof of Theorem 1.2, we have to dispose 
of a technical point, which is nonetheless of  great importance in that proof and others 
to follow. It concerns the fact that the results relative to an arbitrary non-recursive 
set are necessarily non-uniform - that is, an index for the set constructed cannot be 
computed recursively from the indices of  the given sets. To formulate this precisely, 
fix an enumeration ( We : e E w ) of the r.e. sets and set X (e) = X @ W  x ,  X(  ) = X ,  
and 

X(eO ..... ~m) = (.X(~O ..... ~m-l)) (~'~). 

We call a sequence ( e o , . . . ,  em) of (indices of) m + 1 many hops non-degenerate 
iff r ..... r is not of  m - R E A  degree. The second clause of our Conjecture 1.8 
may be reformulated as follows: for all m,  n, and bo , . . . , b ,~ ,  if ( b o , . . . , b m )  is 
non-degenerate, then there exist do , . . . ,  dn-1 such that ( bo , . . . ,  bin, do , . . . ,  dn- | )  is 
non-degenerate. Then we have the following generalization of [SoSt, Corollary 4.3]. 

2.4 Proposi t ion.  For all m and n, there do not exist recursive functions 9o, . . .  , 9n 
such that for all b o , . . . ,  bin, if (bo,.. ., bin) is non-degenerate, then also 

( b o ,  . . . , b i n ,  9 o ( b o ,  . . . , b i n ) , . . . ,  9 n ( b o ,  . . . , b i n ) )  

is non-degenerate. 

Proof By the relativized version of [JoShl, Theorem 3.1] there exists a recursive 
function h such that for all sets X and indices e, 

X ~T x(h(e)) and z(h(e)'e) ~T Xt.  
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Now, given m,  n, and recursive g o , . . .  , g n ,  let b0 . . . . .  b m - I  be indices for the 
Turing jump and choose bm by the Recursion Theorem such that for all X ,  

X 
Wh(go(bo ..... bm-I ,bm)) ~ Y X  bm" 

Then by the first property of  h, for any X ,  X < T  X (bm), so 

o(bo ..... b.,~_,) = o(m) < T  O (b~ ..... b.~_,,b~} 

and thus O(bo ..... b,~_,,b~) is not of ra-REA degree - that is, ( b o , . . . , b m )  is non- 
degenerate. But by the second property of h, 

~){bo ..... b~-t,b.~,go(bo ..... b.~.)} ~ T  (~)(bo ..... b.~_,)),,  

is of  m + 1-REA degree, from which it follows that 

•(bo ..... b,~,go(bo,...,bm) ..... gn(bo,...,b,,)) 

is of  m + n + 1-REA degree - that is, 

(bo, . . . , bm,  go(bo, . . . , b,~), . . . , gn(bo,  . . . , bin))  

is degenerate. 

Finally, we sketch 

P r o o f  o f  T h e o r e m  1.2. Let C be a given non-recursive r.e. set. We aim to construct 
an r.e. set U, such that if A = U e ,  then A | C is not of  r.e. degree. In view of the 
preceding proposition, we shall in fact construct two r.e. sets U0 and U1 such that 
Ak = U ff (k = 0, 1) satisfy the family of requirements 

V CE~ Ek r A ~ C  (1) [Ak r or ~Ps ] ,  
k=0,1 

for all sextuples (~o, ~1, Oo, O1, E0, E l )  of four recursive functionals and two r.e. sets. 
It follows that at least one of the sets A0 G C, A1 �9 C is not of r.e. degree as desired; 
the non-uniformity arises in that we can not determine effectively which one. 

If  (1) fails, then for any x, 

A [ A k  I x + l =  qsEk I X + I  and Ek [ u ( x ) =  kO Ak~C I u (x ) ] ,  
k=O, t 

where u ( x )  is the combined use of qsoE~ and ~51El(y) for y < x. The difficulty in 
recognizing this potential failure is somewhat similar to that in Theorem 2.1 - the 
standard approximations for the r.e. sets E k  and C converge, but the approximations 
Ak,s = U ~  do not generally converge to Ak. In this case we shall invoke a standard 
device, the method of t rue  s t a g e s .  Fix an enumeration /Cs  : s E w } of C such that 
C~+1 ~ C~ r 0 for all s and let C~+1 denote the smallest element of this set. A stage 
s is C - t r u e  iff C~ [ cs = C [ c~. It is clear that there are infinitely many C-true stages 
and we shall arrange the construction to ensure that at any C-true stage s, w.e have 
Ak,~ _ Ak so that for any v, for sufficiently large C-true stages, Ak,~ [ v = Ak [ v 
- in other words, Ak ,~  converges to Ak on C-true stages. 

Let r  s) denote the condition 
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Ek,8 t u(s, x) = 'r'Ak"$C~ ] k,8 [ u(s ,  x)  , 

/~k s where u(s, z) is the combined use of the computations ~k 8' (Y) for k = 0, 1 and 
y _< z. We assume that u(s, z)  is monotone non-decreasing in' both s and :c. Note that 

Ek ~ r 11 < we now require agreement of  Ak,s and ~k 8' fo a y _ x instead of  merely at z ;  this 
is a minor change required by the use of 'multiple witnesses as described below. Let 
v(s, x) denote the maximum of x + 1 and the Ak,8 and C8 uses in these computations 
and say that qS(s, x) holds correctly iff for k = 0, 1, Etc,s [ u(s, x) = Ek [ u(s, x), 
Ak,8 [ v(s, x) = Ak  [ v(s, x), and C8 [ v(s, x) = C [ v(s, x). Then much as above, 
we have 

(1.1) (Recognition) if (1) fails, then for all a: and all sufficiently large C-true stages 
s, qS(s, z )  holds correctly. 

The mechanism for ensuring convergence on C-true stages is simple: at each stage 
t + 1 of  the construction we enumerate into Uk,t+l certain axioms ( z,  Ct [ v ), with 
v < ct+l; thus z E Ak,t+l. If  c8 < v for some s > t, then C8 I v 7~ Ct [ v, so generally 
x r A~,8. If  s is C-true and x E Ak,~, then v _< c8, so Ct [ v = Cs [ v = C [ v, and 
thus also x c Ak. 

The strategy for satisfying a single instance of (1) is complicated in two ways 
(relative to Theorem 1.1) by the replacement of  the 2-r.e. set A by A @ C with 
A = U C. First, the set A | C is subject to unpredictable changes due to changes in 
C. Second, at the point in the proof of Theorem 1.1 when we enumerate x into A1 
to remove it from A, we can now only wait for a change in some C [ v, which may 
or may not ever occur, to remove x from A = U c.  

The solution to both of  these problems consists in assigning to (1) not a sin- 
gle witness but a (potentially) infinite sequence (xt  : l E w ) of  witnesses. Success 
with any one of  the witnesses xz suffices to satisfy (1) and we show that failure 
of  all the witnesses leads to an algorithm for computing C, contrary to its assumed 
non-recursiveness. Roughly, the failure of a witness x~-i is due to the fact that the 
corresponding C [ vt does not change to remove xz-1 from A and thus C [ vl has 
its final value at a predictable stage. 

Before giving the formal construction, we describe it informally. We define the 
sequence of  witnesses as we go along; xt will be a candidate for enumeration into 
A~r(0, where 7r(l) = 0, if l is even; 1, if l is odd. Let xo = 0. We take no action 
until we arrive at a stage so for which r  holds. If  there is no such stage, 
then (1) holds by (1.1) (since there are infinitely many C-true stages); otherwise we 
define xl larger than any number mentioned so far, in particular, Xl > vo := V(So, Xo), 
restrain A0,8o+1 I vo, and wait for a stage sl > So at which r  holds. If  there 
is none, then again (1) holds by (1.1); otherwise enumerate xo into A0,8~+1 with use 
vl = v(s~,xl )  - that is, enumerate the axiom (zo, Cs~ [ vl ) into U0,8~+i - restrain 
Al,8,+l [ vl, and choose x2 > vl. Similarly, we wait for a stage s2 > sa at which 
r x2) holes, enumerate xl into A1,82+1 with use v2, restrain A0,8~+1 1 v2, and 
choose x3 > v2. At s3, x2 is enumerated into Ao, and so on. 

The following diagram may be helpful in following this argument. 
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0 . . s0 s0+l . . s_..L ~t+l 
p_--4J p--0 p=t p=l p=2 

r Z0) r  
xo = 0 xl def 

sz ~ ~ st+l 
p=2 p=3 "'" p=l p=/+l 

r  x2) ~ ~(s2 + 1 ,x2)  r  ~ r + 1, Xt) 
x3 def  xl+ 1 def 

Xl C AI  X l - I  C A~( /_I )  

"n (~(Sl + l , x l )  
x2 def 

xo E Ao 

Each instance of r xl) is dependent on the value of Cs~ [ vl; if this is not the 
correct value C [ vz, the agreement recorded by r xt) may be destroyed at some 
later stage. Let us assume temporarily that this never happens, although in the end 
we shall show that it must happen. 

Let ut = u(st,  xD; by our conventions, uz is monotone non-decreasing in I. Since 

Ao, o rvo=Ao, , rvo, r xo), and r  

we have 

ffz A~ ~o @ C~o ffz A~ ~ l OC~ l 
EO,~o r u o :  ~ O,8o f uo : ~ o,~, r ~o  : Eo,~ ,  r uo ,  

and U(Sl,XO) = uo. On the other hand, since r r and Xo < xl < x2, 
we have 

Eo ~2 ~b E~ (Xo) = Ao,~,(Xo) = 0 # 1 = Ao,~(xo) = ~o,;~ (xo). 

Hence Eo,s~ [ uo ~ Eo,s2 [ uo, and if we set 

to = least t > so[Eo,so f uo r Eo,t [ u0], 

t h e n  S 1 < t 0 ~.~ 82.  Furthermore, 

Sl = least s < to[r x l )  A C~ [ Vl = C t  o [ Vl]. 

This means that from So we can effectively determine sl. Extending this argument we 
obtain an algorithm for the function 1 H sz, which is therefore recursive. But clearly 
vt > l, so by our temporary assumption that Cs~ r vt = C r vl we have C(l) = C~ (1) 
and we conclude, contrary to hypothesis, that C is recursive. 

Thus our temporary hypothesis is untenable, and it is exactly this fact that 
guarantees that (1) is satisfied. To see how this works, suppose that for j _< l, 
C~j [ vj = C [ vj but C~+~ [ Vl+l r C [ Vl+ 1 . Since xt is enumerated into A~(~)m+~+l 
with the axiom ( x l ,  Csl+ 1 [ v/+l ), if at some later t > sz+l, Ct r vl+a # C~z+, [ Vl+l,  

then xl ~ A,r(t),t so by the restraint imposed, A,~(z),t [ vt = A,~(1),s~ [ vz. Now if also 
E~(z),t [ ul r E~(t),~ [ut,  then for all s >_ t we have 

= ~ vA~(~)'~ec~z [u t  = [ uz, 

so r xt)  fails and (1) is satisfied by (I . t ) .  On the other hand, if E~r(t),t I ut = 
E~(z),~ [ uz, then there may be a stage s~+ 1 > t such that r ) with use 
V~+I t = v(sz+ 1 , xz+l) - whence also r 1 , xz). At this point we re-enumerate xl into 

P and wait for a stage st+, such that redefine xl+2 > vl+ 1, Arr(l),S~+l+! with use vl+ 1, 
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r xt+2). Again C8~,~ [ v[+ 1 may or may not be correct. Thus there are three 
possibilities: 

(a) for some l, from some point on, r xz) never holds; 
(b) for some l, for infinitely many s, r xl) holds with use v(s, xt), but Cs [ 

v(s, zl) # C F v(s, zz); 
(c) for all l there is eventually a stage st such that r xt) with use vt = v(~t, xl) 

and C~ I ~t = C [ Yr. 

In cases (a) and (b), requirement (1) is satisfied by (1.1); note that in case (b) it 
is the correctness of  r Xl) which is infinitely often violated. By a variant of the 
argument given above, case (c) cannot hold, and thus (1) is satisfied. 

The rest of the machinery of  the proof consists in bookkeeping to keep track of  
the situation at stage s. We set p(s) = 1 if at stage s are defined witnesses xj (s )  for 
j < 1 and uses uj(s)  and vj(s)  for j < 1. Here xj(s)  is the current value of xj  and the 
uses are those of  the most recent instance of r xj) .  At stage s we take action only 
if either case 1:c8+1 < vj(s) for some j < l, or case 2: r xt(s)) via computations 
with use < cs+l. I f  neither ever occurs, then xz = xz(s) is a successful witness. I f  
case 1 occurs, then the earlier agreements up to x j ( s ) , . . . ,  xl(s) have been injured 
and we reduce our list of  potential witnesses to Xo(S + 1 ) , . . . ,  x j ( s  + 1); the witnesses 
x j+ l ( s ) , . . . ,  xt(s) are discarded with new values possibly to be chosen at later stages. 
If  case 2 occurs, then we set ut(s + l) and vz(s + l) to be the associated uses, choose 
a new witness xz+l(s + 1) larger than any number mentioned so far, and (if 1 > 0) 
enumerate xl-1(s)  into A~(t-1),s+l with use vt(s + 1). The formal proof that (1) is 
satisfied now proceeds by establishing the following two facts: 

(1.3) If  (1) fails, then lim inf~ p(s)= oc. 

(1.4) If  lim inf~ p(s) = c~, then C is recursive, contrary to hypothesis. 

Now if we set 
st = least s(Vt > s)[p(t) > l+ 1], 

then the condition lim infs p(s) = oc is exactly the condition that all st exist, which 
is essentially the temporary hypothesis of  our sketch above. Note that when st exists, 
C I vt has its final value at stage st, and to compute C it suffices to compute the 
function I ~-~ st. 

We now give the precise construction and a series of  lemmas which formalize the 
preceding argument. Set p(0) = 0 and x0(0) = x0 = 0. At stage s + 1 we have one of 
three cases as follows. Any parameter not mentioned is assigned the same value at 
s + 1 as at s. 

Case 1. If  p(s) > 0 and for some (least) k < p(s), c~+1 < vk(s), then p(s + 1) := k; 
uj(s  + 1), and vj(s + 1) are undefined for all j > k; and x j ( s  + 1) is undefined for all 
j > k ;  

Case 2. otherwise, if p(s) = I and r xt(s)) holds, with associated uses u(s, xt(s)) 
and v(s, xl(s)) <_ cs+t, then 

(a) p(s + 1) := l + 1, ul(s + 1) = u(s, xl(s)), and vl(s + 1) = v(s, xt(s)); 
(b) if l > 0, then x t - l ( s )  is enumerated into A~(t-1),~+l with use vt(s + 1); 
(c) xz+l(s + 1) is chosen greater than any number used so far; 

Case 3. otherwise, p(s + 1) := p(s). 
We note first 
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(2) For all s, i, and j ,  
(a) x j ( s )  is defined for (exactly) j <_ p(s); u j (s )  and vj(s)  are defined for 

(exactly) j < p(s) - 1; 
(b) i < j <_ p(s) ~ vi(s) < xj(s);  
(c) j < p(s+  1) ~ vj(s)  < c~+1; 
(d) for (exactly) j < p(s) - 2, x j ( s )  �9 A~(j),~ with use _< c~; 
(e) for all t < s, if x j ( t )  is defined but x j ( s )  is either undefined or r xj( t ) ,  then 

for all s t > s, x j ( t )  ~ A~(j),~,. In particular, this holds when p(s) < j < p(t). 

Proof  Parts (a)-(d) are straightforward to verify by induction, for (e), suppose that 
x j ( t )  is enumerated into A~(j),t with use vj+l(t). In either of  the cases of  the hy- 
pothesis, for some t ~ with t <_ t ~ < s, x j  becomes undefined at stage t '  + 1 because 
ct,+l < vj(t~). I f  vj+l ( t ' )  = vj+l(t), then also ct,+l < vj+l (t) and x j ( t )  is removed from 
A~(j),t,+l; otherwise it was already removed at an earlier stage. Now the number xj ( t )  
will never again be used as a witness so is never again enumerated into A,~(j). [] 

(3) 
For each 1 ~_ O, if st exists, then 
(a) p(sz) =l ,  r  and p(sz + 1) = / +  1; 
(b) for all s > st, p ( s ) > l + l ;  
(c) for all j < I, xj+l(t), u j ( t )  and vj( t)  have the same values for all t > st 

(which we denote by xj+l, uj,  and vj); 
(d) CsL I v l = C I v l ;  
(e) for all j _< (l - 2), z j  �9 A,~(j),~ for all s _> st; 
(f) if t > 1, then xl-1 ~ A~(z-1),~L, but for all s > sl, x t - i  �9 A~(~-I),~. 

Proof  (a) is immediate from the minimality of st and (b) is merely a restatement of  
the definition. Now by the condition v l (s+l )  < cs+l in case 2, Cs, [ v l ( s+ l )  = Csz+l [ 
vt(s+ 1). Then for (c) and (d) we prove by induction that for all t > sz, Xj+l(t), uj(t),  
and Vj(t) have the same values as at stage Sl + 1 and that Ct ~ vl(t) = Ct+l I vz(t). 
The key point is that case 1 will never apply at any stage t + 1 > st + 1 with k < l, 
since then p(t + l) = k < l contrary to the definition of sl. Parts (e) and (f) follow 
from (a), (b), (d) and (2)(e). [] 

We have also the converse to (3)(d) 

(4) For any l and s, if p(s) _> l + 1 and Ca [ vz(s) = C [ Vl(S), then sl exists and 
S > S l .  

Proof. Here, again, the point is that case 1 will never apply at any stage t >_ s + I 
with k < I [] 

(5) For each l > 0, if st+l exists, then A.(1),s.1 [ vt = A~(t),s~ I vt. 

Proof. It suffices to verify that for all j and all t < SI+l such that xj ( t )  < vt we have 

A~(O,~, (xj( t))  = A~(O,~,I (xj(t)) .  

For h > l + 1, this follows from (2)(e): xj ( t )  belongs to neither set. No value Xt+x(t) 
belongs to either set because 7r(l + 1) r 7r(1). For j < l, x j ( s )  = xj  := x j (s t )  for all 
s > st, so again by (2)(e), if for some t < st, x j ( t )  (: xj ,  then xj ( t )  belongs to neither 
set. Hence we are left with the the numbers x j  for j _< t. Of  these, only those such 
that 7r(j) = 7r(l) - that is, h ~ 1 (mod 2) - belong to either set and by (3)(e) and (f), 
for such j ,  



334 P.A. Cholak and P.G. Hinman 

h < l - 2 ~ (Ys >_ s t )x j  E A~.q),s 

x~ ~ A~q),~, and xt ~ A~(t),~,+,. [] 

(6) For each 1 > 0, 

(a) if 81+1 exists, then, E,~(z),~+~ [u t  = E~(1),~z [u t ;  
(b) if sL+2 exists, then, (3s > sD[E,~q),~ f uz # E~(t),,, [ ul], and if h denotes the 

least such s, then sz+l < tl. 

Proo f  For (a), since both ~b(Sl+l, Xl) and r xt) hold, by (5) and the definition of 
Vl, 

_ ffiA~q),~z+l $C~t+l fflA,~(z),~l @C~ l 

For (b), since both qS(st,xt) and r , if equality holds for s = sz+2, we have 
the contradiction 

Ar, E ~ r ( t ) , s l  / - -  x ti)E'r(t),~l+~ 
0 = A~q),~ z (xt)  = ~'~(z),~ ~:ct) = ~:(t),~+~ (xl)  = A~(z),~,+~(xz) = 1. 

The last clause is now immediate from (a). [] 

We can now establish (1.3) and (1.4). 

(1.3) If  (1) fails, then liminf~ p ( s ) =  co. 

Proof. Suppose that (1) fails but liminf~ p(s)  = I < oc. Thus sz-1 exists, but for 
infinitely many s, p(s)  = l (so sz does not exist). For s > sz - l ,  zz(s)  has the constant 
value xt. By (1.1) there exists g > st-1 such that O(s, xt) holds correctly. Then either 
p(g) > l+ 1 and p(g+ 1) > l+ 1, or p(g) = l, case 2 holds at stage g and p(g+ 1) = l+ 1. 
In either case, by (4), st exists, contrary to hypothesis. [] 

(1.4) Only finitely many sl exist; in other words, lim inf~ p(s)  < c~. 

Proo f  Suppose to the contrary that all st exist. Then by (6)(b) and (4) for all l, tz 
exists and 

st+l = least s < tt [r xt+l) A C~ [ vz+l(s) = Ct~ [ vz+1(h)]. 

Since tz and xl+ 1 are recursively calculable from sz, this shows that the function 
l ~-+ st is recursive. But then since l < vz, C(1) = Cs, (1) and C is recursive, contrary 
to hypothesis. [] 

The remainder of  the proof  consists in combining the strategies for all requirements 
(1) on a tree. The outcome of a requirement (1) is the value I of liminf8 p(s). We 
shall not take space here to do this in detail for Theorem 1.2, as the techniques are 
well illustrated by the Theorem of the next section. 
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3 The main theorem 

In this section we shall give the proof of  the cases (1, n) of the Conjecture; the cases 
(0, n) have a similar but slightly simpler proof which is easily derivable from the one 
here. That is, we prove 

3.1 Theorem.  For any set C and any n, if C is 2-REA but not of r.e. degree, then 
there exists an n-r.e.[C] set A such that A | C is not of (n + 1)-REA degree. 

Proof Fix n ='2 0 and let C be a fixed 2-REA set, say C = B @ V B for r.e. sets V and 
B,  such that C is not of  r.e. degree. By Proposition 2.4 we must construct at least 
two n-r.e.[C] sets A0 aJad A1; in fact, for reasons which will become clear during the 
proof we construct (n + 2) such sets Ak for k < n + 2. For each k < n + 2 we attempt 
to ensure that Ak | C is not Turing equivalent to any (n + 1)-REA set pn+l which 
is characterized in terms of r.e. sets E l ,  Wk,a , . . . ,  Wk,n by setting for 1 < i < n, 

= +' = E +I: �9 +1 

Each Ak will be of  the form 

Ak = Ak,o ~ (Ak,l ~ (Ak,2 . . . . .  (Ak,n-2 ~ Ak,n-1)'" ")), 

where each Ak,j is C-r.e. To guarantee that at least one such Ak is not of  (n+ 1)-REA 
degree, we aim to satisfy all requirements of  the form 

o r  7- "-" k,i J J " 

We consider first one such requirement. If  it fails, then for all x, 

A Ak [ x + 1 =  ~b k [ x + 1 and A F~ I w i ( x )  = o A k * C  k,i r w~(x) , 
k < n + 2  l < i < n + l  

E n+l 
where u n+l(x) is the combined E~ +l-uses of  the computations q5 k k (y) for y < x 
and k < n + 2, and for 1 < i < n, u~(x) and w~(x) are chosen minimal such that for 
all y and all k < n + 2, 

2y < u i+l(x) ~ y < ui(x) 

2y + 1 < ui+l(x) ~ y < wi+l(x) 
i[?i+1 E i Y " - ~ k  [W~+~(X) ~ (3Z<Ui (X) ) ( y ,  k l z }  EW~ 

wl(z )  = d ( z ) .  

Let v(x) be the maximum of x + 1 and the Ak and C-uses for all computations for 
which Ak | C is an oracle. 

As in the proof of  Theorem 1.2 we shall construct each C-r.e. se t  Ak, j as  uCT. 
However, we note that it suffices for Uk,j to be B-r.e. rather than outright r.e. q-his 
fact allow us to use B freely as an oracle during the construction; in particular we 
may assume that C is given via a B-recursive enumeration (C~ : s c w ) and in 
effect treat C as an r.e. set. We define c~ and the set of  C-true stages relative to this 
enumeration as before. 
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t:}Ak,s| c~ E 1 Wk#,s, and vk,~, s Let Ak,j,s = U~,j, s, k,s, be the standard approx- 
imations, and for 1 < i < n, set 

iwi fz)Ak,s ~Cs ltTi+l = E i L:~i+I 
k,s = V k , i , s  and ~k,s k,s �9 1 k,s, 

�9 Au ~ C ~  
with the convention as before that when we write F~, 8 I w, we imply that 69k#is (y) 
is defined for all y < w. Let r x) denote the condition that for all k < n + 2 

Ak,~ F x + l = ~ k E :  '~ p x + l ,  

and for 1 < i < n + 1 there exist ui(s, x), v(s, x), and wi(s, x) all monotone non- 
decreasing in both arguments such that u n+l(s, x) is the combined n+l Ek, s -use of these 
computations for y < x, and for k < n + 2 and all y, 

2y < ui+l(s,x) ~ y < ui(s,x) 
2 y + l  < ui+l(s,x) ~ y < wi+l(s,x) 

i+1  i + l  y E F ~ , ~  [ w  ( s , z )  r  ( 3 z < u i ( s , x ) ) [ ( y , E ~ , ~  I z )  EWk,i,s] 
1 l _ l F~,~ [ w (s,x) - Ek, ~ I wl(s ,z)  

wl(s, z) = ul(s,x), 

and v(s, x) is the maximum Qf x + 1 and the combined Ak,s and Cs-uses for all 
k < n + 2 and all computations for which Ak,s | C~ is an oracle. We say that 
r  holds correctly iff r  holds and for k < n + 2 and 1 _< i < n + 1, 

i i _ i E/r [ u (s, x) - E k I C(s,  x) and Ak,s I v(s, x) = Ak I v(s, x). 
The Recognition and Positive Change properties may be proved exactly as before: 

(1.1) (Recognition) if (1) fails, then for all x and all sufficiently large C-true stages 
s, r x) holds correctly; 

(1.2) (Positive Change) for all x, all k < n + 2, and all s < t such that both r x) 
and r x), 

(a) for 1 < i < n, 

_ i ] 7 i + 1  ~ i + 1  E~,~ I u i ( s , z ) -  Ek,t I ui(s,z) ~ ~k,~ I w~+l(s,z) C_ k,~ I wi+l(s,x); 

(b) for l < i < n + l ,  

E i E ~ k,s I u~( s ,x)  # k,t [ ui(s,x) ~ for some l < j < i ,  

EZ,~ I ~J(s, ~) c ~Z,, r ~J(~, x). 

Before giving the formal construction of sets Ak which satisfy a single instance 
of  (1) we describe it informally�9 As in the proof of Theorem 1.2 we use a potentially 
infinite sequence ( xt : I E w ) of  witnesses; xt is a witness for A~(l), where 7r(I) = 
l mod (n + 2). For this sketch let us assume that n = 2 so that we are constructing 
2-r.e[C] sets Ak = Ak,o ~ Ak,1 (k < 4) with the goal that for at least one k, 
Ak | C is not of 3-REA degree - -  in particular, Ak | C is not Turing equivalent to 
Ek 3. Our overall strategy is to show that if (1) fails, then C is Turing equivalent to 
B �9 Eo 1 0 - .  �9 �9 E 1 and is hence of r.e. degree, contrary to hypothesis. 

Let xo = 0 and wait for a stage so such that r xo) holds. In contrast to the proof 
of  Theorem 1.2 we immediately enumerate Xo into Ao,o,so+l with use vo = v(so, xo) 
and as before choose Xl > vo, restrain Ao r vo, and wait for sl such that r  
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We again make the (untenable) assuption that for each l, Csz [ vl = C [ vl, or 
more generally that this is true for some eventual sl for each xt. At stage st we 
enumerate xl into Aa,0,81+1 with use v~ but we do not enumerate Xo into Ao, a; this 
delay corresponds to the fact that in the proof of Theorem 1.2 we made no enumeration 
at stage so. At stage s2 where r z2) holds with use v2 = v(s2, x2) we enumerate 
xo into Ao, a,s2+l and x2 into A2,0,82+a, each with use re. At stage s3 where (~(83,X3) 
holds we enumerate xa into AI,I,s3+I and x3 into A3,0,83+a with use v3. Finally, at 
stage s4 we return to Ao by enumerating 374 into Ao,o,s4+a. 

i = ui(sj, xj). As in the proof of  Theorem 1.2, E 3 E 3 L e t u j  o,so r u3 r o,8~ r u3. By 
the Positive Change property (1.2)(b), for some 1 < h < 3, E h O,8o r"wo  c FLI I 
Since xo is removed from Ao at stage s2 + 1, we have Ao,83 I vo = Ao,8o [ Vo and by 
r xo), 

Foh,,so I "who t~ A~ I ZOho r176 _ Fh .WHO, vo,h,8o vo,h,8, F ~ho r ~--- = _ " 0 ,83  

so 

F~8 ' ["wo h ~ Fob83 r"wo h, whence also F~81 I w~ ~ F~83 r"w~, 

and hence by Positive Change (1.2)(a), E 2 0,sl I u2 CEo,s312 u 2. On the other hand, 
since we made no enumeration into Ao at stage st,  Ao,81 I vj = Ao,82 I vl so 
.~2 2 _  2 2 o,81 I u l -  E6,82 Iua. 

By analogy with Theorem 1.2, we hope to use this information to compute s2 
from Sl by looking for changes in E 2 I u~. However, Eo 2 is 2-REA rather than r.e. 
and it is consistent with the above conditions that there are changes between Sl and 
s2 which are undone at s2. There can be no such change in the r.e. part E 1 I u~ and 
any such change in F 2 I w~ at a stage Sl < t < s2 must consist in the acquisition of 
some new elements with axioms satisfied by a value of Eol,t [ u I (t, xa) which changes 
by stage 8 2 to remove these elements. In particular, since no correct initial segment 
of  an approximation to an r.e. set ever changes, 

Eol,t [ ua(/7, Xl) r E1 [ ul(Is, Xl)" 

Thus, if  we set 

to = least t > sa[r xl) A E 2 E 2 o,t Iu~ r 0,~1 [u2AE~),t tul(t ,  xl)=E~) Iu~(t, Xl)], 

then if to exists, it is greater than s2 and we can compute s2 from sl by 

s2 = least s < to[r x2) A C~ [ v(s, x2) = Cto I v(s, x2)]. 

This computation uses oracle B | E01; extending this idea gives C _<T B �9 E 1 G 
. - . |  

It remains to argue that to does exist and that B G Eo 1 (and analogously B Q 
E 1 �9 . . .  | E~) is recursive in C. Both of these arguments depend on the device of  
constructing four (in general n + 2) rather than only two sets Ak. Of course, B _<T C 
by assumption. The key claim is that E~,83 [ u~ = E 1 I u~. On the one hand, this 
guarantees that to _< s3 and hence exists. On the other, since the function I ~ sl is 
C-recursive, this equation describes (the beginning of) an algorithm for computing 
E~ from C 

The claim follows from the fact that for all t _> s3, A0.83 I v3 -- Ao,t [ v3. This 
is true because the next witness after Xo which is used for Ao is x4, which is chosen 
> v3, so no number _< v3 is ever again added to Ao. Of  course, the restraint imposed 
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ensures that no other requirement does this either, at least on the true path. The claim 
now follows since for all I > 3, by r 

j~l r r El ul 
o,s  r u I r = - o , 1  r = o,s, r 3, 

and the fact that the approximations E l converge to E 1. 0~s 
The remainder of  the notational bookkeeping is very similar to that of Theorem 

1.2. We maintain a function p such that if p(s) = l, then there are defined witnesses 
xj(s)  for j <_ 1 and uses u~(s), vj(s), and wj(s) for j < I. The proof that (1) is 
satisfied follows from 

(1.3) if (1) fails, then liminf~ p(s) = oc; 

(1.4) if lim inf~ p(s) = oc, then C ~ T  B • E 1 | 1 . �9 . GE,~_ 1, hence, C is of r.e. degree, 
contrary to hypothesis. 

We set 
st = least s (Yt > s)[p(t) > 1 + 1]. 

By the construction, if st exists, then C~ z [ vt = C [ vz, so if all st exist, then C is 
recursive in the function I H st. 

Set p(0) = 0 and x0(0) = 0. At stage s + 1 we have one of three cases as follows. 
Any parameter not mentioned is assigned the same value at s + 1 as at s. 

Case 1. If  p(s) > 0 and for some (least) h < p(s), cs+l < Vh(S), then p(s + 1) := h; 
u}(s+ 1), vj(s+ 1), and wj(s+ 1) are undefined for all j >__ h; and Xj(S+ 1) is undefined 
for all j > h; 

Case 2. otherwise, if p(s) = l and r xz(s)) holds, with associated uses ui(s, xz(s)), 
wi(s, xz(s)), and v(s, xl(s)) <_ Cs+l, then 

(a) p(s+ 1) := l+  1, u~(s+ 1) = ui(s, xl(s)), w[(s+ 1) = wi(s, xt(s)), and vz(s+ 1) = 
v(s, xl(s)); 

(b) for j < min { l, n - 1 }, xt_j is enumerated into A~r(l-j),j,s+l with use vz(s+ 1); 
(c) if I >_ n, then xz-n  is enumerated into A~(z-n),~-l,~+l with use vz(s + 1); 
(d) xz+l(s + 1) is chosen greater than any number used so far; 

Case 3. otherwise, p(s + 1) := p(s). 

The proof now breaks into a series of  lemmas as before. In many cases the proofs 
are straightforward adaptations of the corresponding parts of Theorem 1.2 and we 
omit them. 

(2) For all s, h, 1 < i < n, and j ,  
(a) xj(s)  is defined for (exactly) j <_ p(s); u}(s), vj(s), and w}(s) are defined 

for (exactly) j <_ p(s) - 1; 
(b) h < j < p(s) ~ Vh(S) <_ xj(s);  
(c) j < p(s + 1) ~ vj(s) <_ Cs+l; 
(d) for j < (n - l) and h < p(s) - j,  Xh(S) E ATr(h),j,s with use < cs, but for 

p(s) - j < h < p(s), Xh ~ A~(h),j,~; 
(e) for h < p ( s ) -  n, Xh(S) C Ar(h),n-l,s with use <_ c~, but for p ( s ) -  n < h < 

p(s), Xh(S) ~ A~(h),,~-l,s; 
(f) for all t < s, if Xh(t ) is defined but Xh(S) is either undefined or r Xh(t), 

then for all s ~ >_ s and j < n, xh(t) ~ Ar(h),j,s,. In particular, this holds when 
p(s) < h < p(t). 
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Proof For (f), suppose that X h ( t )  is enumerated into A~(h),j,t with use Vh+j(t) (for 
j < n -- 1) or Vh+j+l(t) (for j = n -- 1). In either of the cases of the hypothesis, for 
some t '  with t < t ~ < s, Xh becomes undefined at stage t ~ + 1 because ct,+l < vh(t'). 
If Vh+j(+l)(t t) = Vh+j(+l)@), then also ct,+t < Vh+j(+l)(t), So xh(t) is removed from 
A~r(h),j,t'+l; otherwise it was already removed at an earlier stage. Now the number 
xh(t) will never again be used as a witness so it is never again enumerated into 
A~r(h),j. [] 

(3) For each 1 > 0, if st exists, then 
(a) p (s t )=l ,  r  and p ( s t + l ) = l + l ;  
(b) f o r a l l s > s t ,  p(s)>>_l+l; 
(c) for all j < l, xj+l(t), u}(t), w](t), and vj(t) have the same values for all t > st 

i i (which we denote by Xj+l, uj,  wj,  and vj); 
(d) C~ I v t = C  [vt ;  
(e) for all s > st, 

(i) f o r a l l j < ( n - 1 ) a n d h < ( l - j - 1 ) ,  xhEA~(h),j ,~; 
(ii) for all h _< (l - n - I), Xh E A~r(h),~-~,~; 

(t ~ for all s > st, 
(i) for all j < ( n -  1), xz- j  r A~(l-j),j,~, but z t - j  E A~(l-j),j,~; 
(ii) x t -~  ~ A~r(1-n),n-l,s~, but xz-n E A~q-~),r~-l,~. 

(4) For any l and s, if p(s) > l + 1 and Ca [ vl(s) = C [ vz(s), then st exists and 
s >  8 t. 

(5) For each 1 > 0, if sz+n+l exists, then 
(a) for all j < (n - 2), A~(t),~z+j F vz+j = A~(t),~z+j.2 [ vt+/; 
(b) A~(t),~z+~_~ [ Vl+n--2 = A~(1),~z+,.+~ I vt+~-2; 
(C) A~r(Z),s~+~_l [ V l + n - I  = A~(z),~+~ [ vz+~-l. 

Proof. Consider first (a) and fix j < (n - 2). Much as in the corresponding part of the 
proof of Theorem 1.2 we conclude that for each h and t _< st+j+2, with the possible 
exception Of Xh := Xh(Sz) for h < l + j  and h - =  l ( m o d n + 2 ) , w e h a v e  for all 
g < n ,  

A~(z),g,~z+j (xh(t)) = A~(t),g,~z+j.~(xh(t)). 

Then by (3)(e) and (f), for such h, 

h < _ l - ( n + 2 )  

xl ~ A~(t),g,s,+j 

Xl 6 A~r(l),g,sz+~§ 

(Vg < n)(Vs _> Sl+j)Z h E A~(z),g,~; 

for exactly g = 0, 1 , . . . ,  j - 1; 

for exactly g = 0, 1 , . . . ,  j + 1. 

Thus, the only permanent change in A~r(1) between stage st+j and stage 81+j+2 is the 
enumeration of xt into both A~q),j and ATr(1),j+l, which has no net effect. The proof 
of (b) is similar; between sl+n-2 and st+n+t, xt is enumerated into A,~q),~_2 and 
A~(t),,~-t. For (c), we may show as above that there is no permanent change in any 
A,~(t),g between 8l+n_ 1 and sl+n. [] 

(6) For each I > 0, 
(a) if st+n+t exists, then for all j _< (n - 2), 

-- " u n - - j + l  E n - J + l  n - j + l  

(b) if st+n exists, then E2(t),s,.~_, [ ut+n_12 E~q),s,+ F 2 . 
: Ul+n-- 1 ' 
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1 1 _ 1 1 . (C) if Sl+j exists for all j ,  then E~(t),s~+.+ ' I [ U/+n+l -- ~lr(l) U/+n+l' 
(d) if st+j exists for all j ,  then 

9t > SZ+n-l[r Xl+n-1)A E~(l),t2 [ 2 # 2 [ 2 Ul+n--1 E~r(1),st+~_l ~tl+n-1 
AEI(t),t  [ u l ( t ,  Xl+n-1) = El(t) [ u l ( t ,  Xl+n-1)l, 

and if tt denotes the least such t, then st+,~ < h. 

Proof  The proof of  part (a) is similar to that of  the corresponding part in the proof 
of  Theorem 1.2. Using (4) and (5)(a) show first that for i < n and j < (n - 2), 

Ei+l _ /+1 ../. Ei+l i+1 E i { i i 
v:(l),sl+j [ Ir(l),sz+~+l 

Then (a) follows by induction on j .  Part (b) follows from (5)(c). Part (c) is proved 
as in the sketch: for all j >_ (n + 1), A~(o,sz+~+~ [ Vl+n+l = Av(/),z~§ [ Vt+n+l, SO 

1 1 : oA~(o,~I+J~C~+J 1 
E~r(l),sl+j [ U/+n+l ~r(l),l,sl+j [ Ul+n+l 

oA~(z), ~t+,~+l @C~+~+1 1 1 1 

For (d), we have first by (a) for j = (n - 2), 

E~(t),~,+~_~ [ u3l-~-2 # 3 [ u 3 ETr(1),st§ l+n-2, 

so by (1.2)(b), for some 1 < h < 3, 

h W 3 F$(o,~,+._~ I w~+,~_2 c R '~ ~r(1),sz+=_l [ l+n-2" 

On the other hand, by (5)(b), 

h W3 F h 3 
: Wl+n -- 2 

whence as before 

E~(O,~,+~_ ' [ 2 E a 2 ul+n-1 # ~(l),~.~.~ [ Ul+n-1" 

Thus by ( c ) ,  t = sl+~+l satisfies the condition in square brackets and tl exists. 
Towards a contradiction, suppose that h <- st+n. If  

El(l)& [ ul  E 1 1 l+n-1 r rr(/),sz+~_l I Ul+n-l~ 

then also E 1 1 E 1 1 7r(l),sz+~ I Ul+n-I r ~(O,s.~-, [ Ul+n-l' contrary to (b). Hence the El(t) 
parts agree and by (1.2)(a), 

/~2(/),sz+~_l [ 2 2 Wl+n_ 1 < F~(o,t , [ w~§ " 

B u t  by the third condition of the definition of  h ,  

El(1),tl [ ul  1 1 l+n-1 Elr(l),st+~ [ Ul+n-I 

so also 2 2 2 2 F~(O,~,+~_I [ wl+~-I C F~(t),~,+ ~ [ wz+~-l, contrary to (b). [] 

Now (1.3) is proved exactly as for Theorem 1.2 and it remains to show 

(1.4) Only finitely many st exist; in other words, lim inf~ p(s) < ~ .  
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Proof Suppose to the contrary that all st exist. Then clearly the function 1 ~-+ st is 
recursive in C, so by 6(c) we have B @ E01 |  | Eln+l --<T C. By (4), 

sl+n = least s < tt [r Xl+n) A C s I v(8, Xl+n) = Ctz I v(8, Xl+n)] , 

so St+n can be calculated from tt and hence by 6(d) from st+n-1 using E~(z) as an 

oracle. It follows that the function 1 ~ st and hence C is recursive in B �9 E01 |  - - �9 
Thus C - T  B E0 �9 E +I so is of r.e. degree, contrary to hypothesis. 

[] 

In combining the strategies for all the requirements (1), there are several new 
problems, and we must modify the basic module. We use a priority tree T = w <w and 
assign to each a C T of  length e a strategy (r~ for satisfying the e-th requirement 
(1)e in some fixed listing. The nodes are ordered in the usual way: 

a_</3 ~ a c _ / 3 V 3 e [ a l e = / 3 [ e A a ( e ) < / ~ ( e ) ] .  

For each a which is active (to be defined in the construction) at stage s we will define 
/ s numbers p~(s), x ~ - o > ( s )  for j _< p~(s), and u~_<j,o~(s), v~-<j>(s) , and w~_<j)( ) 

for j < pa(s) and 1 < i < n, which will play the same role in the action of or, as their 
counterparts do above. Strategy ~r~ acts under the assumption that for all e < lal, 
crate has outcome a(e)  - -  that is, liminf~ p~t~(s) = a(e) - -  and only at those stages, 
called a-stages, when this assumption is predicted by the evidence gathered to that 
point in the construction. At each stage s we compute a sequence ~-(s) E T with 
I (s)l = s which represents our current prediction of  the eventual outcome of  the first 
s-many requirements. At stage s + 1, if a = ~-(s + 1) I e, then "r(s + 1)(e) will be 
the value of  p~(s + 1) computed essentially as above: either p~(s + 1) = h < p~(s) 
because Cs+l < V~--<h>(S) for some (least) h < p~(s), or p~(s+ 1) = p~(s)+ 1 because 
a new agreement is verified at s, or neither of these holds and p~(s + 1) = p~(s). A 
stage s is an a-stage iff a C T(S). Then we shall show that these values determine a 
true path f defined by 

( ,)  f (e)  = liminf~ { T(s)(e) : T(s) [ e = f I e }, 

and that crft~ satisfies the e-th requirement. More precisely, we will prove the fol- 
lowing two assertions. 

(1.5) If  C is not of  r.e. degree, then there exists a path f through T such that for all 
e, there exists g such that if a denotes f I e, then for all s > g, 

(a) g is an a-stage; 
(b) a < r(s) and a is active at s; 
(c) if s is an a-stage, then for all/3 < a,  xz(s)  is defined iff xz(g) is defined, in 

which case xz(s)  = xz(g) (which we denote by xz), and for k < (n + 2) and all t, 
Ak,~(x~(t)) = Ak,~(xp(t)); 

(d) if s is C-true, then s is an a-stage. 

Note that (b) and (d) together strengthen (,). 

(1.6) For all e, if (1)e fails, then liminf~ Pfte(s) = oo. 

As is usual in tree arguments, we need to take care that any actions taken at nodes 
fl < r(s  + l) are preserved at stage s + 1. Threats to such actions are of  two sorts: (i) 
new enumerations of  elements into some Ak below the use v~(s) of the agreement 
established at some earlier stage at/3, and (ii) changes in C which cause elements to 
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be removed from some Ak. Problem (i) will be handled simply by choosing witnesses 
large enough to ensure that 

x~(s) > max { v;~(s) :/3 < r  c~ A v~(s) is defined }. 

We note that v~(s + 1) is undefined for/3 C_ r(s + 1). 
Problem (ii) will be handled by ensuring that the uses of  elements enumerated 

into Ak at node c~ and stage s + 1, which we shall denote by p,~(s + 1), are chosen 
(possibly larger than v,~(s)) in such a way that if es+l < p~(s), then ~-(s + 1) < ce. 
These two facts are stated formally as (2)(b) and (c) below. 

The full construction now goes as follows. At stage 0 only 0 is active, p~(0) = 0, 
and x<0)(0) = 0. At stage s + 1 we proceed by induction on e < s. Any parameter 
not mentioned is assigned the same value at s + 1 as at s. Let c~ = T(s + 1) F e; there 
are four cases. We write Ce for the version of r corresponding to (1)~, but to prevent 
further degradation of readability, we will not attach this subscript to any of the other 
parameters of  (1)e. 

Case 1. I f  ~ was not active at stage s, then set p~(s+ 1) := 0 and choose x ~ - ( 0 ) ( s +  1) 
greater than any number used so far; 

Case 2. If  p~(s) > 0 and for some (least) j < pa(s), es+a < p~- ( j ) ( s ) ,  then p~(s+ l )  := 
j ;  p o ( s + l ) ,  u~ ( s+ l ) ,  v ~ ( s + l )  and w ~ ( s + l )  (1 < i < n) are undefined for/3 = ce~(j) 
and all fl _> a ~ ( j  + 1); x~(s + 1) is undefined for all/3 > a ~ ( j  + 1); 

Case 3. otherwise, if p~(s) = l, and Ce(s, xa-(t)(s)) holds with associated uses 
ui(s, xc,-(t)(s)), wi(s, x,~-(t)(s)) and v(s, x , ~  q)(s)) < c~+a, then 

(a) p a ( s + l )  :=/+1,  u ~ ( t ) ( s + l  ) = ui(s, xa~ (l)(s)), vc~  (t)(s+l) = v(s, xa-(t)(s)), 
w~ I ( s +  1) = wi (s ,x~( t ) ( s ) ) ,  and 

po,~(t)(s+ 1):= max{v ,~ ( t ) ( s+  1)} U { p p ( s ) ' c ~ ( 1 )  C_/3 and p~(s)  is defined} 

(b) for j < min {1, n -  1 }, x ~ ( t _ j ) ( s )  is enumerated into A.(z-j),j,~+l 
with use p~( z ) ( s  + 1); 

(c) if l > n, then x ~ q _ ~ ) ( s  + 1) is enumerated into A,~(z-,~),,~-l,~+l 
with use pc~-(t)(s + 1); 

(d) x ~ ( z + l )  is chosen greater than any number used so far; 

Case 4. otherwise p~(s + 1) = p,~(s). 

Set T(s+  1)(e) = p~(s+ 1). A node c~ is active at stage s +  1 iff either c~ C ~-(s+ 1) 
or c~ <L  7-(s + 1) and c~ was active at stage s. In particular, if ~-(s + 1) <L C~, then c~ 
is inactive at stage s + 1. I f /3  = 7 ~ ( J ) ,  we write 7r(/3) for 7r(j) and/3+ for 7 ~ ( J  + 1). 
We have first: 

(2) All parameters corresponding to inactive nodes are undefined. For all s, all c~ 
active at s, and all/3, 1 < i < n, and j ,  

(a) x c ~  (j) (s) is defined for (exactly) j < p~(s); P c ~  (j) (s), u i _ ~ (~) ( s ) ,  v ~ -  (j~ ( s ) ,  

and w i ~_  (j)(s) are defined for (exactly) all j _ < p~(s) - 1; 
(b)/3 < L  o~ ==~ pf~(s) < x~(s) (when both are defined); 
(C) /3 <L T(8+ l )  ~ p~(s) <_ Cs+l; 
(d) f o r j  < ( n -  1) and h < pc~(s)-j ,  xc~(h)(S) C A~(h),j,~ with use _< c~, but 

for p~(s) - j < h <_ p~(s), x ~ ( h )  ~ A,~(h),j,~; 
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(e) for h < p~(s)-n,  x~(h) (S)  E A~(h),~-l,~ with use < Cs, but for p~(s) -n  <_ 
h < p~(s), x~--(h)(S) ~ A~(h),~-l,~; 

(f) for all t < s, if xz(t) is defined but xz(s) is either undefined or r xz(t), then 
for all s t > s and j < n, xz(t) ~ Ar(~),j,~,. In particular, this holds when x~(t) is 
defined and r ( s )  < L  ft. 

Proof. For (a), by induction, note that for c~ <L r(s + 1), no changes are made in any 
of the a-parameters  at s + 1, while for a C_ r(s + 1), the construction ensures exactly 
these definitions. For (b), if fl <L a ,  then p~(s) = p~(t) for some ~-stage t < s for 
which x~(t) is undefined. Hence when x~(s) is defined, it is chosen larger than p~(s). 

Next note that when both are defined we have 

( ,)  c~ c_ Z ~ pz(s)  <_ p.(s) .  

This inequality is true at the stage s at which p~(s) is defined by case 2. Any change in 
the relevant po occurs only at an c~-stage t for which Pc~(t) is undefined, so the change 
will be incorporated into the next definition of Pc~, if any. Now, for (c), suppose that 

<L r ( s +  1), so for some 2/ and i < k, 2/~(i)  C/3  and 2/~(k + 1) C T(s+  1). Then 
by the construction and (*), 

p~(s) < pz~(i)(s) < p~(k) (s )  <_ c~+l. 

Parts (d) and (e) hold as in the single requirement case using (c). For (f), suppose 
that xz(t) is defined and is enumerated into to A~(Z),j,t with use pz(t) (or pz+(t)) but 
becomes undefined at some V + 1 with t < t '  < s. Then by the construction, there 
exists some 2/and h'  < h such that 2 /~(h ' )  C r ( t ' ) ,  2/~(h) c fl and 

ct,+l < p~(h,) ( t ' )  <_ p~(h - t ) ( t ' )  = p~(h-1)( t )  <_ xl?(t) <_ p~(t) < pz+(t), 

so xz(t) is removed from ATr(~),j at stage t ~ + 1, unless this already happened at an 
earlier stage. [] 

We begin now the proof  of  (1.5). Suppose that a = f [ e has been defined to 
satisfy (1.5); we aim to calculate f ( e )  so that f I (e + 1) also satisfies (1.5). By 
(1.5)(b), for all s > g, p=(s) is defined. For each l > - 1  for which it exists, let 

s~-(1) = least s > ~ (Vt > s)[p~(t) >_ 1 + 1]. 

Clearly when it exists, s~-(z) is an a-stage. The proof follows closely the pattern of  
the proof  of  (1.4) above and we use the same numbering for the lemmas. 

(3) For each l > 0, if s~ - ( t )  exists, then, 
(a) p~(s~-( t))=l ,  ~)e(s~-(5,x~-(z)), and p ~ ( s ~ ( 5  + l ) = l +  l; 
(b) for all s > s~ - ( t ) ,  p~(s) >_ l + 1, c~ ( I  + 1) _< r (s )  and c ~ ( l  + 1) is active 

at stage s; 
(c) for all j <_ l, u~_(j)(t), v~-(j)(t), w~_(j)(t), p~( j ) ( t ) ,  and x~-(j+l)(t) have 

the same values for all t > S~(k )  (which we denote by u i~_(j), v ~ - ( j ) ,  w i~_(j), 

p ~  (j) and s c ~  (j+t)); 
(d) C ~ ( z  ~ [ P ~ < t )  = C [P~-lt); 
(e) for all s > s ~  <l), 

(i) f o r a l l j < n - 1  and a l l h < ( 1 - j - 1 ) ,  x~<h> cA~(h),j,s; 
(ii) for all h < (l - n - 1), x~--<h> �9 ATr(h),n-l,s; 
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(f) for all s > s a ~  (t), 
(i) for all j < (n - 1), xa~(l- j )  ~ A~(1-j),j ,s~(o, but xc~(t - j )  

A~r(t-j),j,s; 
(ii) x ~ ( t _ ~ )  ~ A~(t- ,O,n-Ls~(,) ,  but Xa--(Z_n) G A~r(l-n),n-l,s; 

(g) for all j <_ l , /3  D c ~ ( j ) ,  and s >_ s ~ ( t ) ,  either both x~(s) and xf~(s~(O) 
are undefined or they are equal (denoted by xz)  and for all 9 < n, 

A~(~),a,s(xz) = A~(~),9,~,~ (~) (x~). 

Proof Part (a) follows as before and (b) follows from (1.5)(b) and the definition of 
so~-(t). Using (2)(c) we can repeat the earlier argument for (c) and (d), since by 
(b), a ~  (1) <L  "r(t). Parts (e) and (f) are proved as before. For (g), fix j < 1 and 
/3 D c ~ ( j ) .  Then for all s > so,~q), /3 <L r(s), so s is not a fl-stage, and xz  is 
neither defined nor undefined at stage s so maintains its status and value. Likewise, 
xz  := x;~(s) will not be enumerated into any A~(Z),~ at stage s. Suppose that for some 
9 < n, xz  E A~(~),g,~ ~<,) with use pz(s ,~(t))  (or p~+(sa~(z))). Then we can prove 
by induction on s > so,~(t) that also pz(s) = pt3(s,~(z)) and x~ E A~(~),g,s - -  the 
induction step uses (2)(c) (and the fact that also/3+ <L r(s)). [] 

We have also the converse to (3)(d) 

(4) For any l and s > g, if  p,~(s) >_ l + 1 and C8 I p~ ( t ) ( s )  = C I p,~(l)(s),  then 
s ~ - q )  exists and s > s ,~ ( l ) .  

Proof As for a single requirement. [] 

(5) For each 1 > 0, if s~( t+n+l )  exists, then 
(a) for all j < (n - 2), A~( t ) ,~(m)  I va~(l+j) = A~(l),~,+~+2) [ v~ (z+ j ) ;  

Proof Consider first (a) and fix j < (n - 2). It suffices to verify that for all t3 and all 
t <_ sa~(t+j+2) such that x3(t) < Pa~(l+~), 

A ~ ( t ) , ~  (.j) (xz(t)) = A ~ ( O , ~  ~+j+~> (x~(t)). 

For /3  such that a ~ ( l  + j  +2)  <L  /3 this follows from (2)(f): for all 9 < n and s = 
8a~(l+j ) o r  8 = 8a~(l+j+2), xfl(t) r A~r(l),g,s. If  c ~ ( / + j + l )  c / 3  or a ~ ( / + j + 2 )  c / 3 ,  
the same argument applies for t < s a ~  (l+j), while if s ~  (z+j) < t < s ~  (t+j+z), we 
have P~(t+j) <- x~(t) by (2)(b). If  a ~ ( h )  C/3  for some h < l+j ,  we have by (2)(f) 
(for t < s~( t+j))  and (3)(g) that for all g < n and s > s~i t+j) ,  

A~(t),~,~(xz(t)) = A~(t),g,s~ (m) (x~(t)). 

I f  fl < c~, the result follows from (1.5)(c) of the induction hypothesis. If  fl = a ~ ( h )  
for some h _< l + j  and x~(t) r  then we may again apply (2)(f). We are 
left with the numbers x ~  (h) for h _< 1 + j with 7r(h) -- 7r(1). By (3)(e) and (f), for 
such h, 

h < l - ( n + 2 )  ~ (V9 < n)(Ys > s~-(~+j)) [x~-(h)  E A~q),g,~]; 

x a - ( t )  E A~q),g,s~(~+~) for exactly 9 = 0, 1 . . . .  , j  - 1; 

x ,~-  (t) E A~(l),.q,~- ~,§247 for exactly g = 0, 1 , . . . ,  j + 1. 
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Thus the result follows as above. We leave the similar proofs of  (b) and (c) to the 
devoted reader. [] 

(6) For each l > 0, 
(a) if  s~-<t+,~+0 exists, then for all j < (n - 2), 

~n--j+l n--j+l l:i?n--j+l n--j+l 

(b) if sa-(l+n) exists, then E2(1) ,s~ (,+--,) [ ua2 ~(l+n_l) -- E2~(t),s.~<*+~) [ 

u2~(Z+n_O ; 

(c) if 8a~(l+j ) exists for all j ,  then 1 721 l ETr(l),s~(l+n+,) [ ~ ( l + n + l )  ---- E~(1) I 
ul 

o ~  (l+n+l)' 
(d) if s ~  (t+j) exists for all j ,  then 

~t  > 8ot~(l+n_l)[(~(t, Xe~(/+n-- l ) )  2 ,U,2 

# E 2 2 7r(1),Sc~(l+n-l) I Utah(/+n--l) 
1 AE~(1),$ I u l (  t,  Xc~--(l+n-1)) = El(l) [ ul( t, xc~-(l+n-t>)], 

and if tt denotes the least such t, then s a ~  (l+n) < tt. 

Proof  The computations here exactly mirror those of the corresponding part of the 
single-requirement case, with each subscript l + . . .  replaced by c ~ ( l  + . . - )  and using 
the c~-versions of  (4) and (5). [] 

(1.4) Only finitely many s~-(z)  exist; in other words, l iminfs p~(s)  < oo. 

Proof  Exactly as before, under the assumption that for all l, s a ~  <t) exists, we may 
derive from (4) and (6) that C is of r.e. degree, contrary to hypothesis. [] 

Now we may verify (1.5) for e + 1 as follows. Set f ( e )  = 1 := liminf~ p~(s),  
c~ + : f [ (e + 1) := ~ ( l ) ,  and s + = so,~<l-O + 1. By (3)(a), s + is an c~+-stage. For 
s _> s + either c~ <L  T(s) or c~ C T(s), so c ~ ( 1 )  < ~-(s) by (3)(b). In either case, 
c~ + < T(s) as required by (1.5)(b). For (c), let s _> s + be an c~+-stage and/3 _< c~ +. 
The new cases to verify are c ~ ( j )  C fl for j < 1 and /3 = c~ +. The first clause 
(concerning x~(s ) )  follows from (3)(g) when c ~ ( j )  C /3  and j < I and from (3)(c) 
when c ~ ( j )  = /3 and j < l. The second clause (concerning Ak,s (xz ( t ) ) )  follows 
from (2)(t) for t < s + and all/3, from (3)(g) when t > s +, c ~  (j) C/3 ,  and j < l, 
and from (2)(d)(e) when t > s +, c ~ ( j )  = /9 and j < I. Finally, let s > s § be 
a C-true stage. Then a C_ ~-(s), so for some 1 ~ >_ l, a ~ ( 1  ~) C_ "r(s). Suppose that 
1 ~ > I so c ~ ( 1 )  <L  ~'(s). Then by (2)(c), po,~(t)(s - 1) < c~, so since s is C-  
true, C~ I P,~-(t)(  s - 1) = C I p , ~ ( t ) ( s  - 1). But then by (4), s~ (z>  exists and 
liminf~ p,~(s) _> 1 + 1, contrary to the choice of I. Hence c~ + C ~-(s) and s is an 
c~+-stage. 

Finally, (1.6) follows as in each of the other cases. 
In conclusion, we want to explain the difficulty in extending this proof to cover 

cases of  the Conjecture for m > 2. We return to the informal description preceding 
the proof  and attempt to adapt it to the case (2,1) - -  that is, given C which is 3-REA 
but not of  2-REA degree, we want to find an r.e.[C] set A such that A |  is not of 3- 
REA degree. Since n = 1, the construction will resemble closely that of  Theorem 1.2 
except that we construct three sets Ao, At, and A2. Assuming that C~, I vl = C I vt, 
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we enumerate 950 into Ao,sl+l with use vl, 951 into Al,s2+1 with use v~, 952 into A2,s3+l 
with use v3, etc. Since 

we have 

Ao,~o(xo) = Ao,s, (Xo) r Ao,~2(xo), 

E 3 E 3 E 3 U 3 , O,so ru : o,s, ru3or o,s2 F 
and we may define 

to = least t > so [~b(t, zo) A E 3 S 3 r # 0,8~ t r u2(t, xo) = Eo t  2(t, 95o)] 

If  necessarily sl  _< to, then we could compute sl (and by extension the entire function 
l H st) recursively in B | E 2 | E~ G E22 and conclude that C is Turing equivalent to 
this set and thus of  2-REA degree, contrary to hypothesis. Unfortunately, there seems 
to be no reason to expect that sl _< to. In the earlier case we had 

.9 2 E 2 E 2 E 2 0,,o r u 2 :  0,,, r uo  2 and o,,o [ u ~ c  o,to [Uo 2. 

Elements of  F_,g,t o [ u~ are witnessed by Eol-correct axioms which never change, since 

Eo x is an r.e. set, and thus if  to < s l ,  the new elements could not be removed by stage 
s l .  Here, however,  E30,to r u 3 may differ from E3so [ u~ by both gaining and losing 
elements. I f  to < s l ,  lost elements could be restored by stage Sl and new elements 
could be removed; even though their axioms are eventually E2-correct,  since Eg is 
only a 2-REA set, they may be temporarily unsatisfied at stage sl. We see no way 
around this problem and expect that if the full conjecture is to be proved a quite 
different method will be needed. 
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