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A b s t r a c t  A formulation that finds the optimal design of a 
controlled structure is proposed. To achieve this goal, a composite 
objective composed of structural and control objectives is intro- 
duced to be optimized, and the effect of the control weighting is 
examined. A feedback control law is defined before the structural 
optimization and then the composite objective will only become 
a function of structural design variables. As a result, optimal 
structural design and control forces in steady state are obtained. 

1 I n t r o d u c t i o n  

Before the notion of structural control was introduced, struc- 
tural design had to be conservative in practical applications 
to be safe enough against various uncertainties on material 
properties, defining loading and support conditions as well 
as variations in external excitations. During the past two 
decades, substantial effort has been made toward reducing 
the building cost of a structure, and then most modern struc- 
tures have become much lighter, less stiff, and therefore more 
vulnerable to the unexpected excessive external loads. In gen- 
eral, inherent damping of a structure is very low. Thus, once 
oscillation has started, it will continue for a period without 
any large additional energy input. A modern structural con- 
trol concept is proposed to accomplish the purpose of both 
making a structure as light as possible and keeping it away 
from the risk of external disturbances. 

The design of an efficient structural control system is 
of fundamental interest to both structural and control engi- 
neers. Systematic approaches for both structural and control 
systems are receiving increased applications. However, these 
design techniques, for the most part, have been applied inde- 
pendently within the entire design process. Bendsce and R0- 
drigues (1991), Dfaz and Kikuchi (1992), Kamat et al. (1983), 
and Rozvany and Zhou (1991) studied only the structural op- 
timization problems without considering the control system 
effect. The structure is designed subject to some prescribed 
stiffness or strength requirements, and the structural engi- 
neers have no idea what will happen if they put an actuator 
in their design. How large will the control force be? How can 
the design of the structure be modified or changed? It is not 
easy to answer these questions directly. Balas (1978, 1979), 
Rofooei and Tadjbakhsh (1993), and Yang et al. (1987) de- 
signed a control system to improve the dynamic response of 
a present structure. The control engineers must find appro- 
priate locations for actuators, and use a lot of control en- 
ergy to reduce the response of the structure. They also do 
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not know how to modify the structure which is suitable for 
control while still satisfying the structural design criterion 
(maximum stress or deformation). Thus, a simultaneous in- 
tegrated design of a structure and control system is proposed 
(see Hale et al. 1985; Kajiwara et al. 1994; Miller and Shim 
1981). These approaches are only suitable for small dimen- 
sional problems because solving two-point boundary value 
problems or the Riccati equations is too expensive. Further- 
more, if the final time of our objective function is not infinite, 
the optimal control gain will not be a constant matrix over 
time, and then we must calculate and store the control gain 
matrices at every instant of time. The cost of computing and 
storage will be tremendous. Other interesting work about 
structural control design can be found in the papers by Roz= 
vany and Zhou (1992), and Canfield and Meirovitch (1994). 

The goal of this paper is to design an optimal controlled 
structure which possesses a better response than the one 
without control, and still satisfies the structural design cri- 
terion. After the design is finished, the location for the ac- 
tuator, which is selected by control engineers and offered by 
structural designers, will be an ideal place to install the con- 
trol device. Thus the strain energy of the controlled struc- 
ture is kept low; the structure still meets some structural 
design requirements, such as von Mises stress and deforma- 
tion. This paper proposes a new approach which combines 
the controlled structural optimization with the homogeniza- 
tion design method. By setting up an appropriate composite 
objective function, the distribution of the material will tend 
to reduce the response caused by external excitations, and 
increase the control effect on the structure simultaneously. 
Three major advantages of our approach will be illustrated 
in this paper, and specified as follows. 

(1) The composite objective function, consisting of a struc- 
tural and a control objective, becomes a function of design 
variables when an appropriate feedback law is introduced, 
and there is no need to solve the huge Riccati equations. 

(2) Positions of actuators can be selected before the struc- 
tural design. If the possible locations for the actuators 
are very limited or they are constraints to the structural 
design, then the problem can be formulated as structural 
optimization under a specific feedback control law with a 
constraint to the position of the actuator. 

(3) The structure is designed with consideration of both the 
structural and control effect simultaneously, so the re- 
sponse of this kind of structure is much more improved 
than the one designed without control, and also superior 
to the one applied by the control force without simulta- 
neous design. 
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2 S t r u c t u r a l  de s ign  b y  a h o m o g e n i z a t i o n  m e t h o d  

Shape and topology optimization using the homogenization 
design method has been quite successful recently (see Suzuki 
and Kikuchi 1991; Ma et al. 1995). Its original idea was intro- 
duced by Bendsee and Kikuchi (1988). This method is based 
on the concept of optimizing the material distribution of in- 
finitely many microscale voids in a perforated structure. The 
optimiality criteria derived from the necessary conditions of 
minimizing the mean compliance are solved by an optimality 
criteria (OC) method. 

The homogenization method can be stated in the follow- 
ing. A perforated structure can be characterized by elastic 
coefficients Eijkl and mass density p, which are functions 
of the porosity of a structure. Both of them vary with the 
changes of the characteristic sizes and shape of the voids, and 
they must be very small so that  it is reasonable to claim that  
all quantities have two coordinate dependencies. One is for 
the macroscopic coordinate x, and the other is for the micro- 
scopic one x/e ,  where r is the size of the microstructure to 
characterize microscaie porous media. By using the homoge- 
nization theory, the elastic coefficients can be derived by re- 
flecting the properties of the microscopic behaviour without 
looking at the details of all the material points of the body. 
Assume that t7 C R 3 and is a perforated porous design do- 
main. The weak formulation of the equilibrium equation is 
written as 

/ Eijki t OxJ i )  
~2 ~2 F 

/ ( ' )  pe ~ u~dS?= O, (1) 
D 
where u~ is the displacement in the structure, v i is the virtual 
displacement, f~ the body force, t i the boundary traction on 
boundary F, and 

Ei~jk,={ EOjk , insolid andpe= { pO insolid 
0 in void 0 in void , (2) 

where ETjkl and p0 are the elastic coefficients and density of 

the solid portion. Since E~jkt depends on the local variable 

y = x/e,  u e also depends on x and y. Using the asymtotic 
expansion of u e with respect to r 

ue (x ,y )  = u0(x ,y )  + r  + r  + . . . ,  (3) 

and substituting the relation 

. o) 
O~:ir ) = -t-c-l~--m.-y / r  (4) 

into (1), we have the following equations (see Guedes 1990): 

. 

i Eiik  ax-- 7 ax--7"" 
~7 $2 F 

i p ss \ ) : o, (5) 
Y2 

H 1 Eijmn - Ei~mn Oyn Eijks : -~l y 

pH = r ~  p'dY = ~-] f~dY, (6) 
Y Y 

after collecting the terms with the same order ore, and letting 
c ---+ 0, where u 0 is the component of the average displace- 

ments in the microstructure, EHkg , pH and f B  are the ho- 

mogenized elastic coefficients, mass density and body force, 

respectively, and Xtm xg)''" is a proportionality constant similar 
to the eigenmode due to the unit global strain specified, and 
is the solution of the microscopic problem that  characterizes 
the micromechanical behaviour of a specific microstructure; 

X~ g)''' can be obtained by solving 

Y Ei~'k'-Ei~'mn Oyn J Oy'~" 
where the space V y  is Y-periodical defined on the mi- 
crostructural domain Y. 

For simlicity, we assume the microstructure is defined by 
three design variables, a, b and O, where 1 - a are the size 
of a rectangular hole which is rotated by | with respect to 
the z 1 coordinate as shown in Fig. 1. Using these design 
variables, three possible design domains are formed; they a r e  

the full material domain, full void domain and porous domain 
(see Fig. 2). The rotated homogenized elasticity tensor can 
be obtained by 

G H Eijks = EijkiRilRjjRkK1%lL , 
the rotation matrix 1% is defined by 

R(O)=[cosO - s i n O  ] 
sin O cos ~ " 

X 2 

l > Xl 

Fig. 1. Design variables of a microstructure 
t 

full material porous 
microstmctum full void microstmcture 

microstmctum 
Fig. 2. Three possible microstructures used in homogenization 
design 

Letting u 0 = u and considering the static case only, (5) can 
be written in terms of EG: 
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f~ f2 F 

From (8), we can solve the displacement field by the homog- 
enized coefficients EGkl  which are the functions of a, b and 

- j  

O. 

3 D e s i g n  p r o c e d u r e  

One of the major difficulties in optimization problems to- 
gether with control is how to find an appropriate objective 
function. A standard objective function used in optimal con- 
trol theory is the sum of strain, kinetic and control energy, 
and is written in the following form: 

t] 
d = / ( x t Q x  + f t R f )  dr ,  (9) 

0 

where x is a state variable vector, f is a control force vector, 
R is the positive definite weighting matrix for control forces, 
and Q is the semipositive definite weighting matrix for state 
variables. One question raised is how to choose the termina- 
tion time t f  for dynamic problems for optimal control. Sup- 
pose t f  is the time the system reaches the steady state. The 
response before t f  is called transient response region, and 
after t ]  we call it steady state region. If t f  is small, then 
the objective function (9) emphasizes the transient response, 
if t f  is large, then (9) emphasizes the steady state response, 
while for median t f, the objective function includes both the 
transient and steady state regions. However, no matter  what 
value of t f  is chosen for the linear time-invariant system, the 
cost for the solution of Riccati equations is too high for large 
scale problems, and the situation becomes even worse if t f  is 
not large, because the calculations in sensitivity for both the 
structural design variables and optimal gains are incredibly 
expensive. 

An alternative way to deal with a wide range of struc- 
tural contro ! problems may be the application of a sequential 
approach of an optimal structural  design with consideration 
of the control effect, and a control algorithm design for tran- 
sient response by classical or optimal control theory. The 
procedure can be written in the following steps. 

(1) Define the composite objective function in the steady 
state, i.e. t f ~ co. 

(2) Establish the mathematical  formulation for the optimiza- 
tion problem and construct a finite element model for the 
design domain. 

(3) Find the optimal structures and control forces in steady 
state by solving the minimization of the objective func- 
tion. 

(4) If the steady state response is satisfied, then go to step 6. 
Otherwise go to step 5. 

(5) Choose different weighting matrices for the control ob- 
jective and/or  select other actuators '  locations until the 
steady state response is fulfilled. 

(6) Define the design requirements in the transient region for 
the optimal structures obtained in the steady state. 

(7) Find the control gains in the transient region for the ob- 
tained optimal structure. 
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(8) If the response in the transient region is satisfied, then 
stop; if not go to step 9. 

(9) Add more actuators to the optimal structure or go to step 
5. 

We consider only steps 1 to 5 in this paper, and the other 
steps will be solved in the future. 

4 F o r m u l a t i o n  of  o p t i m i z a t i o n  

For optimal structural design in ready state, we choose an 
objective function as the sum of the strain energy and control 
energy, 

min J = f t R f  + dtQd, (10) 
a,bO 

K d  = G l f  + F 
s.t. P ( a , b )  = 0 , (11) 

L = (z l ,  z2) 

and 

P ( a , b ) =  ~ f ( a e + b e - a e b e ) d ~ e - t 9  s, (12) 

e=l/2e 
where d is a n x 1 displacement vector, a, b and O are the 
design variable vectors, P(a ,  b) = 0 is the material  resource 
constraint, G 1 is n x m location matr ix for the control force, 
F is a n x 1 applied external force vector, f is a m x 1 control 
force vector, nel is the total  number of the finite elements, 
and 12 e is the element design domain. The magnitude of 
the matrices Q and R is assigned according to the relative 
importance of the state variables and the control forces in the 
minimization procedure. By adjustng the relative values of 
Q and R, one can synthesize the control to achieve a proper 
trade off between these two objectives, L is a constraint of 
the position of the actuator specified at coordinate (x l ,  x2). 

Once we define the objective function in this form, we 
must choose the appropriate weighting matrices. Should they 
be constant matrices of functions of structural parameters? 
For simplicity, constant weighting matrices (Hale et al. 1985; 
Kajiwara et al. 1994) are usually chosen in most works on 
simultaneous design, while the magnitude of their elements 
is selected by existing experience. For the weighting matrices 
that  are not constant, in general, one selects Q = K, then 
d t Q d  becomes twice the strain energy. How to select R? An 
improper choice of R will lead to a design far from our goal. 
In the homogenization design method, the structure changes 
dramatically during the optimization iterations, the constant 
R is definitely not a good choice if Q is not a constant ma- 
trix. Venkayya and Tichler (1985) mentioned a suitable way 

t 1 of choosing t t  by setting I~ = G I K -  1511. Unfortunately, 

we cannot use their choice because the sensitivity of K - 1  is 
almost impossible to obtain for large scale problems. In this 
work, we select Q = K, and choose a control weighting which 
possesses a similar property of G t K  - 1  G 1. 

Using the displacement feedback closed-loop control we 
can assume f = - R - 1 G ~ d ,  then the first equation of (11) 
becomes 

(K + G 1 R - 1 G ~ ) d  = F .  (13) 

Reformulating the equilibrium equation yields 

K 2 d  = F ,  (14) 
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where K 2 = K + G 1 R - 1 G  t is the modified stiffness matrix 
under the control effect. Problem (14) can be solved by the 
finite element method, and it is very similar to the standard 
problem K d  = f. The eigenvalues of K are called open-loop 
eigenvalues, the eigenvlues of K 2 are called the closed-loop 
eigenvalues. By introducing this feedback control, the control 
effect will modify the stiffness matrix so that  the eigenvalues 
of the structure are shifted. 

An eigenvalue is a good choice for defining a global control 
weighting, because its sensitivity can be easily computed even 
for large scale problems. We may choose 

W 
R = (15)  

where A 1 is the smallest eigenvalue and w is a normalized 
weighting constant with respect to  the smallest eigenvalue. 
Traditionally, control system design is performed after the 
structural design is obtained, but it may give control de- 
signers few choices of actuators '  positions, and then a lot 
of control energy must be put in to stabilize the structure. 
If locations of the actuators are the constraints for the de- 
signers, then how does the structural designer formulate the 
problem, so they can still accomplish the optimal design. If 
we use (10), the control system designers can select appropri- 
atd actuators '  positions before the structural design (usually 
the choice depends on the amount of control energy consump- 
tion, easiness of installing control devices), and we do expect 
that a structure designed by this formulation will offer us a 
good transient response control. 

5 S e n s i t i v i t y  ana lys i s  a n d  u p d a t i n g  s c h e m e  

Taking the derivative of (10), 

OJ = Ft  0d  (16) 
0ae Oae ' 
and substituting 0d K - 1  0K2d and OK2 OK + 

0a----~ = - 2 0 a e  0 a e  = 0 a e  

w 1-G10-~-~ Gt0ae  1 into (16), we have 

Od ( d t ~ _  d+  1 a t  ~ 0 A l ~ t n  ~ 
0 a e  - \ v=e w u ~ a e , . , 1 , ~ j  . (17) 

The sensitivity of the stiffness matrix can be found by know- 
ing the sensitivity of elasticity constants and shape functions 
used in the finite element analysis. The sensitivity of the 
eigenvalue (see Haftka et al. 1990) is represented by 

0AI _ r ( 0 K  0 M )  
Oae ~ a e  - A1 ~eae q~l=  

(Oke  . Ome'~ 
r \0-~e - - A l ' ~ a e  ) ~ble' (18) 

where 61 is the normalized eigenvector w.r.t, the mass ma- 
trix corresponding to the first eigenvalue, ke is the element 
stiffness matrix, m e  is the element mass matrix, and ~ble is 
the first normalized eigenvector in element e. Thus, (18) can 
be calculated in the element level, and the computing cost is 
not so high even for large scale problems. 

6 A n  e x a m p l e  o f  t h e  d i f f icu l ty  in a p p l y i n g  t h e  con- 
t r o l  s y s t e m  to  a s t r u c t u r e  d e s i g n e d  by  s t r u c t u r a l  en-  
g inee r s  

In this paper, all problems use the properties of material cor- 
responding to Young's modulus = 100 GPa, Poisson's ratio 

= 0.3 and density p = le - 6. 

�9 Problem specifications (example 1): design domain 4 cm 
by 10 cm; finite element mesh 28 by 70; volume constraint 
10; location of actuator L = (2,5.875); boundary condi- 
tions are shown in Fig. 3 

Fig. 3. Design domain and boundary conditions for example 1 

* Traditional approach: structural designers ignore the 
specifications imposed by control designers. They use 
mean compliance as the objective function, and obtain 
the optimal structural design shown in Fig. 4. When con- 
trol designers receive this design layout, there is no mate- 
rial distributed at their desired location for the actuator. 
Even if some material distribute at L, the controllability 
of this system is still unknown. There is no guarantee that  
the control device can transfer their energy to reduce the 
structural deformation. If the structure does not perform 
well under the control force, then the control designers 
must either change the specification of the location of the 
actuator or request to design the structure again. Chang- 
ing the location of the actuator involves the building of a 
foundation for the control device, the design of a mech- 
anism, power supply for hydraulic motors, and so on. If 
they decide to design the structure again, how much ma- 
terial should the structural designer put at the location 
of the actuator, and how can they reinforce this location? 
Neither situation is easy to solve. 

�9 Current approach: by using (t0), (11) and (12), the op- 
timal structure distributes some material  at the location 
desired by the control designer, see Fig. 4. The struc- 
tural designers construct an optimal structure while still 
making this position available for the control designers to 
install an actuator to control the response of the optimal 
structure. The current approach obtains a satisfactory 
design much easier than the tradit ional  sequential struc- 
tural control design. The objective function and control 
force converges smoothly as shown in Fig. 5. This exam- 
ple demonstrates the advantage of selecting the positions 
of the actuator by the control designers before the struc- 
tural design is done. 
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1000, 

Control designers' 
desired locatmn 

Traditional design 

Actuator's location 

Controlled structural design 

Fig. 4. Optimal structures for example 1 

7 Effect o f  t h e  c o n t r o l  we igh t ing  c o n s t a n t  w 

�9 Problem description (example 2): design domain 2 cm by 
8 cm; nondesign domain, two elliptic holes; finite element 
mesh 40 by 160; volume constraint 4; locations of actuator 
L 1 = (2,2.7), L 2 = (2,5.3); assumption the weight of 
control device is neglected 

�9 Design purpose: an initial porous structure fixed at two 
middle ends, and suhjected to a downward force, see Fig. 
6. The control designers know that the largest deforma- 
tion will be close to the top or bottom of the structure. 
Assuming that the bottom of the structure does not have 
enough space for adding extra equipment, the control de- 
signers choose the top part of the structure as a desired 
location for the actuator. We attempt to find out how the 
weighting constant affects the design. 

�9 Discussion: in this example, the control device is mounted 
on the top of the structure and is used to act at two loca- 
tions to control the deformation of the structure. The two 
control forces have the same magnitude, but with oppo- 
site directions. The displacements (or strain) at these two 
locations affect the reaction of the control device. Positive 
strain causes the control system to generate compressive 
forces, contrariwise, negative strain invokes tensile forces. 
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Fig. 5. Convergent results in example 1 

t-- Hydraulic cylinder 

/ 
[ ]  Design domain 

[ ]  Fixed end External force 
O Nondesign domain 

Fig. 6. Initial design domain and a control device for example 2 

To investigate the effect of the weighting value on the 
structural design, five different w are chosen for design. 
These weighting values and major computed data for the 
final structures are listed in Table 1. 

Some of the optimal structures corresponding to these 
weightings are shown in Fig. 8. It is noted that when w 
decreases, more material is distributed at the positions where 
the control is applied, i.e. the distribution of material tends 
to produce a structure easier for control while still keeping 
reducing the structural deformation. A short conclusion from 
this example is summarized as below. 

(1) When the structure changes during the iterations, the 
eigenvalue also changes, and the magnitude of the con- 
trol force will adjust according to the magnitude of the 
eigenvalue. This example shows that the eigenvalue is an 
appropriate weighting, and can be used as an information 
to estimate the control gain for the controlled structure. 

(2) Both the strain energy and total energy have the same 
trend, i.e. as the weightng w increases, strain energy and 
total cost also increase, but the control force decreases as 
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Fig. 7. Convergent results in example 2 

w = 1.0 

w= 5.0E4 

w = 1.0E7 

Fig. 8. Optimal structures in example 2 

the weighting w increases (Fig. 7). This means that large 
control force will further decrease the objective value of 
the structure. Thus, the smaller the objective we want, 

the larger the control forces we need. 

(3) The matrix G 1 R - 1  G t in (13) is, in general, semipositive, 
so the control effect will only increase the eigenvalue of 
the structure under a suitable control design algorithm. 
Thus, the closed-loop eigenvalues are always larger than 
the open-loop eigenvalues. 

Table 1. Major results for different weightings 

Case Case 1 Case 2 Case 3 Case 4 Case 5 
Weighting value w - - 1  w=Se4  w--  le5 w = 2 e 5  w - - l e 7  
1st open-loop 4.77E5 6.86E5 6.99E5 7.03E5 4.44E5 
eigenvalue 
1st close-loop 8.96E5 8.42E5 7.98E5 7.60E5 4.47E5 
eigenvalue 
Steady state 7.27 4.54 3.34 2.22 2.06E - 2 
control force 
Final objective 2.29E1 2.55E1 2.68E1 2.81E1 L97E1 
function 

8 M u l t i p l e  e igenvalues  a n d  d y n a m i c  con t ro l  weight-  
ing 

8.1 Formulation 

In previous examples, only the lowest eigenvalue as a control 
weighting was considered. Does this weighting always give a 
good result? To answer this question, a more general form, 
which includes multiple eigenvalues and a dynamic weighting, 
are presented. A conclusion will be made after the compari- 
son of some numerical data. First let us consider the control 
weighting with multiple eigenvalues of the form 

. fne g ) 
rt  = wi i , (19) 

\ i=l 

where neig is the number of eigenvalues considered in t h e  

weighting, W i is a weighting constant for each eigenvalue. 
Thus, the contributions from different eigenvalues can be ad- 
justed by W i and the ratio of t he  control objective can be 
regulated by w. 

During.the iterations of optimization, the order of critical 
modes may change, and the lowest eigenvalue is not necessar- 
ily the dominant one. If we always use the fixed eigenvalues to 
estimate the stiffness of a structure, then we probably cannot 
obtain the good results that we expect. A dynamic weighting 
that uses the modal energy to extract the critical modes is 
introduced. The form of the dynamic weighting is the same 
as (19); the difference is that neig is the number of critical 
modes, and h i is the critical eigenvalue. 

8.2 Comparisons of different control weightings 

�9 Problem specification (example 3): design domain 4 cm 
by 10 cm; finite element mesh 20 by 50; volume constraint 
10; location of actuator L =- (4.0, 5.0) 

�9 Discussion: the initial design domain is rectangular, two 
downward external forces act at the bottom, and one ca- 
ble connected two hydraulic cylinders offers the vertical 
control force, see Fig. 9. The four combinations of weight- 
ing constants and one dynamic weighting shown in Table 
2 are used to investigate their effects on structural design. 



External force 
Design domain 

Fig. 9. Initial structural control configuration for example 3 

To make a fair comparison, we choose different weighting 
constants w, so that the final control forces for all cases are 
almost equal. The optimal designs corresponding to these 
data are shown in Fig. 10. The comparison of the Skyline 
size, objective value, strain energy, and displacement at the 
exciting position are plotted in Fig. 11. The Skyline size is the 
storage size of double precision real value for stiffness matrix. 
While convergence of the layout is achieved, more and more 
elements become void, so its size decreases accordingly. Thus, 
a smaller Skyline size means that the structure can be easily 
m~nufactured. 

Table 2. Weighting constant used in example 3 

Case1 Case2 Case3 Case4 Case5 
W 1 1 0 0 0.333 dynamic 
W 2 0 1 0 0.333 dynamic 
W3 0 0 1 0.333 dynamic 

Two fundamental modes are very important during this 
structural optimization; one vibrates mainly in the Y- 
direction (this is the critical mode) and the other vibrates 
mainly in the X-direction. In each iteration, the order of 
these two modes may change, and we cannot guarantee that 
the lowest mode is the critical one. In cases 1 and 2, the 
critical mode shifts between the first and the second during 
the iterations, and the performance of these two structures is 
moderate. Case 3 uses the third eigenvalue as control weight- 
ing, and the structure cannot converge well because the third 
mode never becomes critical during the iterations. The same 
situation occurs in case 4, although we use the first three 
eigenvalues as a weighting, the critical mode is always the 
first one in this problem, and that is why we cannot obtain 
good results. The previous results motivate us to extract the 
critical mode by calculating the modal energy, and always 
use the critical eigenvalue as the control weighting, which we 
call dynamic weighting. The results show that case 5 has the 
best performance in all properties that we evaluate. Thus we 
conclude that the dynamic weighting gives us the best design, 
and we will have this weighting for the rest of this paper in 
controlled structural design. 

9 A n  e v a l u a t i o n  o f  p r e s e n t  m e t h o d  

To demonstrate the perfomance of controlled structural de- 
sign, we must compare our current approach with other tra- 
ditional designs. We still use the same design arrangement 
as the example in Section 8.2. 

Three different design problems are specified as follows 

case: 1 
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case: 2 

case: 3 

case: 4 

case: 5 

critical mode for case: 5 

Fig. 10. Optimal design for example 3 

(example 4): 

* problem 1: controlled structural design; 
�9 problem 2: static design (Suzuki and Kikuchi 1991); 
�9 problem 3: static design obtained in problem 2, and ap- 

plication of the same control force obtained in problem 1 
to this design. 

Three situations for each problem are considered by changhag 
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m 

2 3 4 5 

2 3 4 5 6 8 

Fig .  11.  Evaluat ion for four different proper t ies  in example  3 

t he  l o c a t i o n  o f  t h e  e x t e r n a l  forces  x;  t h e y  are  z 1 = 3.6, z 2 = 
3.0 a n d  x 3 = 4.8, r e spec t ive ly .  T h u s ,  n i n e  cases  in  t h r e e  
g r o u p s  will be  i n v e s t i g a t e d ,  see  T a b l e  3. 

ease: I 

~ f = 0 for case 2 
f = - 3.07 for case 3 

/U/ 'x  
case: 2 and 3 

case: 4 

f =  0 for case 5 
6 

case: 5and 6 

case: 7 

~ f = 0 for case 8 
f =  - 3.07 for case 9 

case: 8 and 9 

F ig .  12.  Opt ima l  design for example  4 

C a s e s  1, 4 a n d  7 a re  con t ro l l ed  s t r u c t u r a l  des ign ,  cases  
2, 5 a n d  8 are  s t a t i c  des ign ,  a n d  cases  3, 6 a n d  9 a re  s t a t i c  
des ign  a c t e d  on  by t h e  con t ro l  force  o b t a i n e d  in  t h e  con-  



Table 3. Data for nine cases 

Case z Control force 
Group 1 1, 2, 3 3.6 -3 .07  
Group 2 4, 5, 6 3.0 -3 .26 
Group 3 7, 8, 9 4.8 -3 .50  

trolled structural design. The optimal designs corresponding 
to these cases are plotted in Fig. 12. Cases 3, 6 and 9 have the 
same structure as cases 2, 5 and 8, but with the control force 
applied. The comparisons will be made inside each group. In 
group 1, case 3 has the best response in displacement, but it 
sacrifices too much stress response. It is obvious that  case 1 
is the best design in this group. The same situation occurs in 
group 2, the von Mises stress in case 6 is almost twice that  of 
case 4. Thus, case 4 is the best design in group 2. In group 
3, the controlled structural design has a very similar design 
to the static design, but case 7 shows superior performance 
in every response we evaluate as compared to the other two. 
The conclusion is that  the controlled structural design is the 
best of these three design problems, and contains the poten- 
tial suitable for dynamic response control. 

From this example, we know that  if we want to use an ac- 
tuator to reduce the response of a structure, we cannot simly 
apply the control force anywhere with arbitrary magnitude 
to a structure designed by structural engineers. Both the 
external forces and the control effect must be considered at 
the same time. Our current approach, controlled structural 
design, offers a good response in strain energy and displace- 
ment at critical positions without having excessive von Mises 
stress. 

10 C o n c l u s i o n  

Control designers can assign the locations of actuators be- 
fore structural design, while structural designers treat this 
requirement as a constraint, and finally the simultaneous de- 
sign for the structures and control forces in the steady state 
is obtained. Thus, control designers can offer some informa- 
tion to structural  designers before the design, and the design 
procedure for the structure and the control system is not to- 
tally separate. The lowest eigenvalue is chosen as the control 
weighting to at tain the purpose of minimizing the compos- 
ite objective, and the example in Section 7 shows that this 
weighting can be used sucgessfully. Then a dynamic con- 
trol weighting is proposed, and it gives the best performance 
from the numerical results.. Finally, comparisons were made 
between the controlled structural and traditional designs; the 
performance of present design is really superior to the tradi- 
tional ones. The approach proposed in this paper already 
set up an optimal structural design with consideration of the 
control effect. A transient response control design, our ~tudy 
in the future, will be implemented on this structure. 
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