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A b s t r a c t  A new formulation is presented for mathematical 
modelling to predict material properties for the optimal design of 
continuum structures. The method is based on an extended form 
of an already established characterization for continuum design, 
where the material properties tensor for an arbitrary structural 
continuum appears as the design variable. The extension is com- 
prised of means to represent an independently specified unit rela- 
tive cost .factor, which appears simply as a weighting function in 
the argument of the isoperimetric (cost) constraint of the original 
model. A procedure is demonstrated where optimal black/white 
topology is predicted out of a sequence of solutions to material 
properties design problems having this generalized cost formula- 
tion form. A systematic adjustment is made in the unit relative 
cost field for each subsequent solution step in the sequence, and 
at the stage identified with final topology, no more than a small 
fraction of a percent of the total element area in the system has 
material property density off the bounding ~'black" or '~white" 
levels. This technique is effective for the prediction of optimal 
black/white topology design for design around obstacles of arbi- 
trary shape, as well as the more unusual topology design problems. 
Results are presented for 2D examples of both types of problem. 
In addition to the treatment for (the usual) minimum compliance 
design, an alternate formulation of the design problem is presented 
as well, one that provides for the prediction of optimum topology 
with a generalized measure of compliance as the objective. 

1 I n t r o d u c t i o n  

Among established characterizations within structural opti- 
mization for the determination of continuum topology design, 
most are modelled on the assumption that  the structure is 
composed of two-phase material,  where generally each phase 
is taken to be locally isotropic. Literature in the general 
area of topology design for structures, which is concentrated 
in the recent decade, is summarized very well in Bendste's 
book (1995), in the proceedings by Bends~e and Mota Soares 
(1993), and in the survey article by Rozvany et al. (1995). 
The various alternatives employed to address the inherent ill- 
posedness of the two-phase model are aired thoroughly there, 
and the reader is referred to these and other resources in the 
literature on topology design for consideration of the details 
related to existing models and procedures. The recent work 
of Petersson and Sigmund (1996), which postdates the cited 
article and books, describes an alternative approach [a nar- 
rowing of the design space via imposition of a bound on the 

derivative of the design function, a device introduced in the 
context of plate design by Niordson (1983)] in a way that  fa- 
cilitates gaining insight into the development of various exist- 
ing models for topology design based on the two-phase char- 
acterization. 

The formulation of this paper is based on a recent devel- 
opment in analytical modelling for the prediction of optimal 
material properties where, in contrast to the two-phase basis 
of earlier methods, structural material  is represented in the 
form of an arbitrary (free} material properties tensor field. 
Using this model, optimal topology is predicted in effect as 
a part of the determination of optimal fields for the mate- 
rial properties tensor. Specifically, supposing that  resulting 
values for a measure of the material  properties tensor are 
identified with a scale of greys, then a plot of the greys sum- 
marizes topologies at the respective grey levels. The purpose 
here is to show how an extended version of the material  prop- 
erties design formulation may be exploited to form a method 
for the generation of computer prediction of refined topolo- 
gies, i.e. to achieve a resolution from grey-scales results to 
a black/white topology. Following this alternative approach, 
certain pathologies experienced in connection with computa- 
tional solution procedures based on the familiar two-phase 
models are circumvented. This relates to the facts that  the 
free-material design problem is well-posed, i.e. does not lack 
closure, and that  in the present method the simplicity of this 
model is preserved throughout the computational procedure. 
To elaborate on the latter point, using our model the opti- 
mal black/white topology design is produced without resort 
to modifications in the original design problem. In other 
words, steps such as relaxation of the model, the introduc- 
tion of synthetic penalization procedures, or the imposition of 
constraints on the design space, common to existing schemes 
for topology design, do not arise in the present alternative 
treatment for the problem. 

To consider related background material  in more detail, 
the cited model for the design of optimum continuum struc- 
tures, which predicts as its solution the optimal material 
properties field from among admissible "free tensor" fields, 
was first presented by Bends0e et al. (1994). [This sort of 
formulation was extended by Bends0e et al. (1995) to multi- 
purpose design, and it is described for design with nonlinear 
materials by Bendste et al. (1996)]. As note above, such re- 
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sults already represent topology design, but only in the sense 
where topology is associated with fields of "shades of grey"; 
the grey level corresponds to the scalar variable identifying 
material property density. We note that the present model 
belongs to the category of models for optimal design where 
the density is uniquely identified with a measure of unit strain 
energy. For present purposes, namely to obtain a modified 
form of the "free material design" formulation that serves as 
the basis to solve for optimal black/white topology, means 
are introduced to represent arbitrary specified unit relative 
cost over the field of the structure. A general form for rep- 
resentation of unit or local cost fields is described by Taylor 
and Washabaugh (1995a,b, 1997); applications to truss de- 
sign are reported by Taylor (1997). Cost is represented there 
in generalized form by the introduction into the isoperimet- 
tic (cost) constraint of a set of weights applied to a complete 
form of expression for an invariant measure associated with 
the continuum material, or for the discrete structure with el- 
ements of the truss. The representation here for the cost of 
continuum material is the same except that, instead of it be- 
ing expressed in general form, the problem is to be treated for 
a specific choice for the invariant measure of material prop- 
erties, in fact one appearing in the paper by Bends0e et al. 
(1994). 

This paper includes a presentation in brief of the model on 
which the procedure to predict optimal black/white topology 
design is based, the form of which follows closely the develop- 
ments reported by BendsCe el al. (1994) for minimum com- 
pliance design using the free material properties tensor as the 
design variable. That model, modified to reflect nonuniform 
unit cost over the field of the structure, is then interpreted 
into an algorithm form for computational treatment of the 
problem, and graphical results are presented for an exam- 
ple topology design problem. The same means are also ex- 
ploited to demonstrate a procedure to predict optimal topol- 
ogy where obstacles are present within the admissible space 
for the structure. Along a different line, an interpretation is 
given in detail for an alternative model for the prediction of 
optimal topology, one where the argument of the objective 
is a generalized measure of structural compliance in place of 
the usual minimum compliance criterion. 

2 Ana ly t i ca l  p r o b l e m  fo rmula t i on  

Both notation and presentation for the developments de- 
scribed in this section follow those given by BendsCe et al. 
(1994), except for modification of the isoperimetric (cost) 
constraint as noted. The minimum compliance design for 
a continuum structure occupying region/2 and composed of 
material with modulus Eijks , and subject to body force f 
and to boundary traction t on part F t of the boundary, is 
stated symbolically as: 

rainE,~ {~(~) = /2f fifiid/2 +l"t/ti~tidS ' 

subject to 

/ F ,  ijkteij(~)ekt(~) d/2 - t(9) = O, V9 E K ,  

I2 

~ : > 0 ,  / w ~ ( / ~ ) d / 2 -  R_< 0. (1) 

/2 
The symmetries usual for an elasticity modulus tensor ap- 
ply, and loads fi and ti, the designation of/2,  Ft and Fu, 
unit relative cost function w, and bound R on total "cost" 
are data. Set K identifies kinematically admissible vector 
fields fi, ~, and with F representing the complete bound- 
ary and Fu the fixed part, we require that F = Ft U Fu; 
l"t M 1"u = 0. The symbol ~ stands for an invariant of the 
modulus tensor, at this point undesignated, w and R symbol- 
ize, respectively, a (specified) unit relative cost distribution 
and the specified bound on global cost. Solutions for the ma- 
terial properties (topology) design for different unit relative 
cost fields are to be compared, eventually, and so admissible 
cost fields w(x) > 0 are to belong to a normalized set, e.g. 
ff2w dV = N; N > 0 specified (the value N may be varied 
in computational procedures, in order to maintain constant 
volume fraction of material). The second constraint in (1) 
represents that the material tensor is positive semidefinite, 
i.e. Eijklr > O; r = r Vi, j. 

Problem (1) can be stated in the alternative form 
(Bends0e et al. 1994) 
max { ~ / / ( / ~ ,  fi)} 
k > 0  , (2) 

f~,g'(~)da-R<_O 
where H represents potential energy associated with the lin- 
ear elastostatics problem. Noting that the local measure of 
cost of material is taken to be an invariant of the modu- 
lus tensor, i.e. a scalar function in /2, "maximization with 
respect to the tensor" may be interpreted separately with re- 
spect to local dependence on orientation, and with respect to 
variation over the field. Accordingly, with the introduction 
of p to represent the latter aspect, problem statement (2) is 
rewritten as 

max 
P ~>0 ~(p, k,  ~) . (3) 0<Pmin_~P~pmax 
fa ~p d/2-R<0 ~'(k)=p 

From this point onward, the development is written for the 
example where the invariant ~ is identified specifically with 
the trace of the modulus tensor, g'(E) = Eijij. The inner- 
most max and rain can be interchanged, and the solution for 
the inner max provides the result for optimal material prop- 
erties [details are given by Bendsce et al. (1994)], namely, 

eijCk~ (4) 
Eijki =- P]l ~is II 2 
With the substitution of this result, the corresponding opti- 
mal strain energy density, say W, is given by 

1 1 
W := -~EijkggijCk~ = -~Pr162 (5) 

(which equals the strain energy of an isotropic linearly elastic 
material). In view of (5), problem statement (3) can now be 
written more simply as 
max / 
P min { 1 / 
O<Pmin<P~--pmax ~EU -2 PSijSij d/2 - s . (6) 
fa wp d~2-R<0 

Thus what remains from (1) is the requirement to predict 
the optimal distribution p(z) and the associated equilibrium 
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state u(x). Once the optimal distribution function p has 
been obtained, the optimal pointwise material properties are 
determined from (4). 

We note that the weighted cost constraint introduced in 
the present formulation has the same form as that of the cor- 
responding isoperimetric constraint in the original problem 
statement from Bendsee et al. (1994), so the mathematical 
structure of the design problem is unchanged from the origi- 
nal one and the solution to (6) is (still) a saddlepoint. [The 
prior material properties design problem is in fact recovered 
from the present one for the case w = 1.] Also, given (5), 
the optimality condition for the design of optimal material 
properties may be stated as 
1 
~eijeij = wF + ~ - 2 ,  (7) 

where F > 0, 7(x) _> 0, and _7(x) _> 0 represent multipliers 
on the global and local design constraints. This result is the 
same as that presented by BendsCe et al. (1994) except for 
the presence of unit relative cost factor w, and as noted there 
it has the appearance of the optimafity condition for design of 
thickness for an optimal sheet design. Thus by (7) the result 
in its present form states that the unit strain energy field 
equals the prescribed weighting function w(x) times constant 
F in the "design domain", i.e. where Pmin < P < Pmax. 

3 A n  a l t e rna t ive  f o r m u l a t i o n  

The purpose here is to present a formulation that is gener- 
alized somewhat with respect to the objective. Thus while 
prior problem statements (1) and (2) represent minimization 
of structural compliance, for the generalized form the objec- 
tive is taken to be a measure over the structure of the inner 
product of a specified weighting and the magnitude of dis- 
placement. [An alternate form where specific weighted mea- 
sures of displacement appear as constraints is described by 
Rozvany and Zhou (1993).] This problem can be expressed 
conveniently with the introduction of an additional vector 
field variable, say ilk(x) > 0 in f2, k = 1,2,3, which bounds 
the absolute value of displacement components Uk(X ) [this 
provides for the present vector field problem the convenience 
realized with the introduction of a scalar bound in the inter- 
pretation given to minmax problems by Bendsee and Taylor 
(1984).] The specified field qk(x) > 0 in Y2, k = 1,2, 3, pre- 
scribes a weighting in the objective, one which in fact weights 
]Uk(X)] as is to be confirmed below (the means to include a 
weighted measure of boundary displacements in the objective 
is discussed below as well). With the introduction of these 
quantities, the design problem can be expressed as (tildes 
used above to identify elements of the admissible sets are 
omitted here for simplicity) 

min ~ qk~k dV] 
~k ,Uk ,Vk,~kg,~kl, E 

such that 

- / ~ k - < 0 ,  Uk - ~k <- O, --Uk - ~k <- O, 
1 1 

~kt - ~ (uk, ,  + ~t,k) = 0,  ~kl - ~(~k,l  + v , ,D  = 0,  

- E < 0 ,  

f f k v k d V + / p t k v k - / E i j k l c i j g k l d V < O ,  Y v � 9  

/ ~ ( E )  - ___ (8) dV R 0. 

E2 
A version of this formulation applicable for truss design 

is described by Taylor (1997). We suppose here that the null 
solution to (8) is excluded; this may be enforced objectively 
by adding the constraint Q - fY2 Eijktr dV < O, Q > 0 
in the formulation. To do so would not lead to anything of use 
in the present interpretation of the model, however, so for the 
sake of simplicity this concern is not addressed here. Notation 
in (8) follows that of the previous problem statements, but 
note the additional gij and v k representing "adjoint strain 
and displacement". Given that the set of admissible v k is 
defined in the usual way, the seventh constraint in the list 
assures that r ; uk equilibrate the prescribed loads. The first 
three entries in the constraint list simply reflect the stated 
role of bounding function ilk(x). Also, with the deformation 
kinematics requirement expressed explicitly (the fourth and 
fifth constraints), strains r gij and displacements Uk, v k 
are variationally independent. Note that while representation 
of the extremum problem statement for design of the material 
tensor is in a sense more cumbersome in the extended form 
(8), its interpretation becomes somewhat simpler to follow in 
the process. The presence of strain-displacement relations as 
explicit constraints facilitates extension of the formulation to 
cover finite strain modelling, for example [this idea appears 
in a different context in the book by Washizu (1982)]. 

To proceed with the intepretation of the problem, multi- 
pliers associated with the first five constraints in (8), respec- 
tively, are designated as nk, #k, ~]k, ski and Ski" Then the 
generalized KKT conditions associated with the first three 
constraints are stated, 

nk /~k=0 ,  nk>--0, Y x E ~ 2 ,  (9) 

# k ( u k - f l k ) = O ,  # k - > 0 ,  V x E E 2 ,  (1O) 

rlk(-u k-,5'k)=O, r/k>O, VxE12. (11) 
Stationarity w.r.t, ilk(x) requires that at the solution 

qk - (~k + , k  + ~k) = 0,  v .  �9 ~ .  (12) 

Suppose that nk > 0 in a finite interval of ~.  Then according 
to (9) /~k(x) has a value identical to zero in that interval, 
which requires in turn by the original constraints that the 
primary displacement Uk(X ) is identical to zero there. Such 
"intervalwise rigid body displacement" is inadmissible (see 
below for confirmation), and so it follows that flk > 0 --* 
nk = 0 almost everywhere (a.e.) in tg. The set of points 
at which ~k has value zero is designated ~2o. Note also by 
(10) and (11) that this requires #kT]k = 0 outside Y2o. As a 
consequence, the remaining possibilities for meeting (9)-(12) 
are summarized by 

#k = qk, Uk =ilk say for x �9 f2+, (13) 
~]k=qk, u k = - P k  say for x � 9  (14) 

With weight qk specified to have positive value through- 
out I2, the closure in domain tgo U $2+ t.J Y2_ = ~2 follows. 
Finally, from (13), (14) and the closure result we have that 
luk] = ilk, and this qualifies that the objective stated origi- 
nally, namely f$2 qk]Ukl dV, is indeed properly identified with 
the argument of "min" in (8). 

Conditions for stationarity in problem (8) w.r.t, displace- 
ment Uk(X ) and strain ~ij(x), and w.r.t, the adjoint displace- 
ment and strain Vk(X ) and gij(x) are to be examined next. 



196 

With the introduction of gke and Ski as multipliers associated 
with the fourth and fifth constraints in (8), and with the mul- 
tiplier on the seventh constraint symbolized by A, the cited 
stationarity conditions are 

(#k - ~)k) + gk l , /=  0 in /2 ,  (15) 

gkln~ = 0 on F ,  (15b) 

gkt - AEijkegij = 0 in/2 ,  (16) 

Afk + skl,i = O in l2 ,  (17) 

sklrl~ - At k = 0 on Ft, (17b) 

Ski - AEijki~ij = 0 in/2 .  (18) 

According to (16) and (18), ~kJA and Skt/A measure stress 
for material Eijkl  under strains gkl and eke, respectively. 
At the same time, (17) and (175) identify the field S k j A  
as the equilibrant of actual loads Pk and t k. From (15) and 
(155) stress field gkt/A equilibrates "loads" Pk := t tk/A and 
~k := ~k/A or, making use of the result (13) and (14) on the 
decomposition of/2, (15) can be interpreted into the system 

gkl,l + qk = 0 in /2+ ,  (19) 

gkl,s -- qk = 0 i n / 2 _ .  (20) 
Points in [2o represent intersections of/2+ and/2_,  i.e. points 
where u k switches sign. Boundary condition (155) together 
with (19) and (20) summarize the equilibrium requirement 
on adjoint stress ~ke/A. 

Formulation (8) may be elaborated to provide for the 
inclusion of the objective of weighted displacement on the 
boundaries. Supposing that a weighting bk(z ) > 0 on F 
is specified, and with the introduction of the (additional) 
bounding function 5k(x ) > 0 on F, for the extended problem 
we seek to predict the solution to 

m i n ~  q k f l k d V + / b k S k d S 1  3 (21) 

with the additional constraints 
- 5  k _< O ) 
u k - 6  k <0 i o n F  (22) 
- u k  - 5 k  -- 0 

appended to the original constraint list. Following in form 
the development given above, interpretation of the necessary 
conditions for the modified problem provide that 5k = }Uk] on 
F (it follows as well that 5k = flk on F, since u k is continuous 
in /2 U F), and the prior boundary condition (15b) becomes 

gktrl~e - b k = 0 on 1". (23) 
To summarize, for the problem in its extended form it is 

possible to design for weighted objective on either interior 
or boundary displacement alone, or for combined, indepen- 
dently weighted measure of displacement on both /2 and F. 
Also note that, assuming the earlier choice for invariant ~(E)  
applies here, the optima]ky condition for the extended formu- 
lation (8) has the same form as (7) for the original minimum 
compliance problem, but is expressed in terms of a measure 
of unit mutual energy, i.e. 

Ar = wF + ~ - 7_7_ (24) 
[the terminology "mutual" energy was used, for example, by 
Prager (1972)]. While this result matches in simplicity its 
counterpart for the conventional minimum compliance prob- 
lem, means to identify the optimal material tensor are not 

readily available in the case of the generalized problem. Of 
course, in the case that the weighting functions qk and b k are 
equal to actual body force and boundary loads, the present 
system reduces to one equivalent to that of the prior section. 

We remark that the generalized compliance formulation 
(8) can be extended directly to accommodate nonlinear defor- 
mation kinematics, simply via an upgrade of the fourth and 
fifth constrMnts there to represent the Green strain measure 
in place of the linear one [the finite strain problem was treated 
e.g. by Guedes and Taylor (1996)]. 

(a) (d) 

(b) (e) 

(c) (f) 

Fig. 1. Sequence from design (a) for uniform cost to the black- 
white optimal design (f) -solutions obtained using 8-node rectan- 
gular elements and with rapid stepwise adjustment in the unit cost 
function 

4 Computat iona l  so lut ion 

Optimal topology design is predicted using a cyclic proce- 
dure, where the result at each cyclic step is a solution to (3) 
corresponding to a specific designation for the unit relative 
cost w(z). The method used to obtain the results presented 
by Bendsee et al. (1994) is followed here to produce these 
stepwise solutions, namely an optimality based approach cou- 
pled with a conventional finite element model solver. As was 
noted in the cited paper, this is a technique that has been 
used over the past two decades to obtain numerical results 
for a wide range of structural optimization problems. The 
present procedure to determine optimal topology is initiated 
by solving for the optimal distribution p corresponding to 
uniform unit relative cost over the entire structure. The unit 
relative cost field is adjusted at each subsequent step as fol- 
lows. A threshold or cutoff vMue of the material property 
density p is designated, and a uniform, higher value is given 
to the unit relative cost over the areas where density has a 
value below the threshold value. The solution is obtained 
for optimal p(z) corresponding to this new unit cost field to 
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(a) (e) 
(a) (d) 

(b) (f) 

(b) (e)  

(c) (g) 

(d) (h) 

Fig. 2. Sequence fro the example of Fig. 1, but where design 
results (a) through (h) are obtained with gradual adjustment of 
the unit cost field 

(c) (f) 

Fig. 4. Sequence (a) through (f) for the evolution to black-white 
topology with a required hole or obstacle within the region of the 
original result; checkerboarding is attributed to the low-order ele- 
ment (4-node rectangular) used here 

(a) (c) $ 

- �9 , _ i :  
s, 

J 

la) (e) 

r 

Fig. 3. Interpretation of the solution design (h) of Fig. 2: (a) 
through (c) show respectively the 1111, 1122 and 2222 components 
of the material modulus tensor; the magnitude and direction of 
principle strains are given in (d). The scale shown for "shades of 
grey" applies to all examples 

complete the step. Results for each such step in the method 
reflect a relative increase on concentrat ion of material  density, 
evolving toward the value for the upper bound on p in the 
regions remaining at lower uni t  relative cost. The evolution 
from an init ially broad spect rum of shades of grey toward a 
discrete black/white  design is described in Figs. 1, 2, 4 and 5 
for the numerical  examples. We note that  the (relatively un-  
refined) solution process is carried out in a "user interactive 
mode", and the rates for ad jus tment  of the "threshold value 
for density" and the "increased uni t  relative cost" are at the 

(b) (0 

(c) (g) 

(d) ( h )  

Fig. 5. Evolution for an example similar to that of Fig. 4, but 
where the hole or obstacle is placed along the edge of the "design 
space"; results were obtained using 8-node elements 

user's discretion. While the overall computa t ional  procedure 
has not been subject to s tudy and testing (our purpose here 
is just  to provide examples of its workings), it appears that  
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on the order of fifteen steps in the cyclic procedure suffices 
to produce high quality renditions of optimal black/white 
topology. 

All the examples treated here relate to the design of a 
2D continuum model of an end loaded cantilevered beam. 
The structure is supported along its left edge and loaded by 
a local distribution centred around mid-height on the right 
edge. All computations are performed using four- or eight- 
node rectangular elements on a 40 by 64 element mesh, and 
the objective in all cases is to minimize (conventional) com- 
pliance. Sketches shown in Figs. la-f reflect the evolution 
of "material property density" distributions, from the initial 
step described above and shown in Fig. la, through several 
intermediate solutions (Figs. lc-e), to our final result of Fig. 
If. (Values of "density" corresponding to shades of grey are 
indicated by the scale shown in Fig. 3; the same scale applies 
to all examples). As a measure of convergence toward a pure 
black/white design, we note that in the solution correspond- 
ing to Fig. lf, only two out of the total number of elements in 
the structure have density between the upper and lower limit 
values. Note that the relative "white-to-black" density for 
these results has the order of magnitude 107 . Results shown 
in Fig. 2 are for the same example problem, but a significantly 
more gradual rendition of topology for this example reflects 
finer structural detail, the scale of detail in fact becomes set 
early in the evolution process for both sets of computation. 
Diagrams in Fig. 3 provide information on the distributions 
of the components of the modulus tensor, and on the ori- 
entation and magnitude of principal strains. A comparison 
of Figs. 3a and b suggests that the 1122 component of the 
material tensor enters the optimal result, at the expense of 
the 1111 component, in areas where the member-like regions 
intersect. This reflects the relatively more complex stress- 
state in such areas, which in fact act as "joints". For the 
remaining two examples, a part of the original design space 
is to be left open in the final optimal designs, as would be 
the case where a hole is required or an obstacle is present in 
the "design space". In each case, the "hole" is produced by 
the imposition of relatively high unit cost in the area desig- 
nated to be void of structure, i.e. by the same means as those 
exploited to obtain the black-white topology in the overall 
structure. Computational results for these two problems are 
shown in Figs. 4 and 5; the problem settings are explained in 
the figure captions. 

The approach used here to obtain numerical results 
clearly depends on the management of the cyclic procedure, 
and our limited experience does not support the drawing of 
detailed conclusions. We observe that the computational pro- 
cedure converges dependably and, as was indicated above, 
according to present experience on the order of 15 solution 
steps suffices to produce a refined final design result. [This 
compares favourably with projected costs of the "slope con- 
strained method (Petersson and Sigmund 1996)"], for exam- 
ple, where prediction of a final design result is estimated to 
require from 100 to 1000 solutions of the original problem, 
i.e. the one without slope constraints. 

5 Summary 

A method has been presented for the prediction of topology 
design for minimum compliance continuum structures. Com- 

putational examples are presented in 2D, but the model and 
method are applicable as given for 3D design problems. Re- 
sults are shown for design around an obstacle as well as for 
the simple minimum compliance design. The problem is for- 
mulated in a way to predict the optimal material properties 
together with topology design. In this presentation the set of 
admissible materials includes all possible constitutions for the 
(realizable, linearly elastic) continuum, and thus the results 
are distinct compared to those predicted out of more familiar 
methods for the design of topology. The latter reflect the 
limitations inherent with the assumption of a two-phase, lo- 
cally isotropic material for the design. The present technique 
might be interpreted as a form of filtering, where the orig- 
inally opaque <shades of grey> design is rendered through 
the solution process into a "high-resolution" version of design 
(which is in fact what is meant by the label "topology design" 
for continuum structures!). The distinctiveness of the present 
results lies in part with the fact that the continuously vary- 
ing optimal material properties are predicted along with the 
"high resolution" definition of structural shape. 

In addition to the treatment of the conventional minimum 
compliance problem, a formulation is presented for design 
where the integral of an independently weighted measure of 
displacement is minimized. This alternate formulation pro- 
vides for the user to designate, in the setting of problems for 
optimal topology design, where over the structure the (rela- 
tive) displacement is to be controlled. While this model has 
not yet been implemented computationally for continuum de- 
sign, its counterpart expressed for the design of discrete struc- 
tures has been applied successfully to predict optimal truss 
designs (Taylor 1997). 

In terms of its mathematical structure the extension of the 
problem formulation from the original "material properties 
design" one to the form presented here for topology design 
is notably inconsequential, i.e. the structure of the model is 
unchanged. However, clearly the form elaborated to account 
for specified local unit relative cost is significant on practical 
grounds, as it comprises the basis for what proves to be an 
efficient and simple technique to predict optimal topology. 
The efficiency derives largely from the fact that the model 
which serves as a basis for prediction of topology retains the 
simplicity (linearity) of the original "material tensor design" 
problem. 

One might anticipate useful future developments to estab- 
lish a similar approach for applications to nonlinear problems 
[such purposes may be served by recent developments (Tay- 
lor 1996) in variational modelling for nonlinear elasticity], 
for example, or to predict optimal multipurpose design, and 
so on. Also, with regard to problem-solving capability, ex- 
ploitation of the larger potential of the present technique for 
prediction of optimal topology and material properties design 
clearly presents a challenge for the creation of more broadly 
applicable means for computational treatment. It should be 
of interest in this respect to consider refinements among op- 
timality criterion based methods (see e.g. Zhou and Rozvany 
1993) for their potential usefulness. 
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