
Research Paper
DOI 10.1007/s00158-004-0467-z
Struct Multidisc Optim 29, 198–212 (2005)

Coordination specification in distributed optimal design
of multilevel systems using the χ language

L.F.P. Etman, M. Kokkolaras, A.T. Hofkamp, P.Y. Papalambros and J.E. Rooda

Abstract Coordination plays a key role in solving de-
composed optimal design problems. Several coordination
strategies have been proposed in the multidisciplinary op-
timization (MDO) literature. They are usually presented
as a sequence of statements. However, a precise descrip-
tion of the concurrency in the coordination is needed
for large multilevel or non-hierarchic coordination archi-
tectures. This article proposes the use of communicat-
ing sequential processes (CSP) concepts from concur-
rency theory for specifying and implementing coordina-
tion strategies in distributed multilevel optimization rig-
orously. CSP enables the description of the coordination
as a number of parallel processes that operate indepen-
dently and communicate synchronously. For this pur-
pose, we introduce elements of the language χ, a CSP-
based language that contains advanced data modeling
constructs. The associated software toolkit allows execu-
tion of the specified coordination. Coordination specifi-
cation using χ is demonstrated for analytical target cas-
cading (ATC), a methodology for design optimization of
hierarchically decomposed multilevel systems. It is shown
that the ATC coordination can be compactly specified
for various coordination schemes. This illustrates the ad-
vantage of using a high-level concurrent language, such
as χ, for specifying the coordination of distributed opti-
mal design problems. Moreover, the χ software toolkit is

Received: 10 December 2002
Revised manuscript received: 9 February 2004
Published online: 30 September 2004
 Springer-Verlag 2004

L.F.P. Etman1,�, M. Kokkolaras2, A.T. Hofkamp1,
P.Y. Papalambros2 and J.E. Rooda1

1Department of Mechanical Engineering, Eindhoven Univer-
sity of Technology, Eindhoven, PO Box 513, 5600 MB, Eind-
hoven, The Netherlands
e-mail: {l.f.p.etman, a.t.hofkamp,j.e.rooda}@tue.nl
2Department of Mechanical Engineering, University of Michi-
gan, 2250 G.G. Brown Bldg., Ann Arbor, Michigan 48109-
2125, USA
e-mail: {mk, pyp}@umich.edu

useful in implementing alternative schemes rapidly, thus
enabling the comparison of different MDO methods.

Key words multidisciplinary optimization, decompos-
ition, coordination language, communicating sequential
processes, hierarchical multilevel systems, analytical tar-
get cascading

1
Introduction

Several multidisciplinary optimization (MDO) ap-
proaches have been proposed during the last two decades
for solving optimal design problems of systems that in-
volve more than one engineering discipline. In these
approaches large optimal design problems are typically
partitioned into collections of smaller and more tractable
subproblems, each associated with a discipline. Gener-
ally speaking, a subproblem does not need to be asso-
ciated with a discipline; it may represent a subsystem
or component of the decomposed system. The terms
discipline and MDO are used here in this broader con-
text. An additional advantage of partitioning may be the
ability to solve the subproblems concurrently. The chal-
lenge of solving such distributed optimal design problems
lies in addressing the interactions among the individual
disciplines. System constraints may depend on design
variables that are present in more than one discipline,
and discipline constraints may depend on responses from
other disciplines. The solution of the subproblems has
to be coordinated in a manner that ensures convergence
to a solution that is consistent with the one that would
have been obtained if the original problem could be solved
without decomposition.
Development of theoretically sound and practical

decomposition and coordination methods is still an
open research topic. Decomposition methods exploit
some structure in the coupling of the subsystems. Two

199

main types of decomposition methods can be identi-
fied: methods that originate in rigorous mathematical
formulations, and methods that emerged from MDO ap-
proaches in engineering; the latter tend to be heuristic.
Mathematical decomposition methods generally use the
structure of a large set of analytical constraint equations
to obtain a partition that can be coordinated efficiently.
Engineering-based methods are either aspect-driven or
component-driven. They deal with “black-box” discipline
analysis models that cannot be represented by analytical
equations in the system optimization problem. Motivated
by design practice, engineering-based methods aim at
disciplinary optimization autonomy by means of a multi-
level decomposition. Alexandrov and Lewis (2000, 2002)
showed that some of those formulations exhibit con-
vergence difficulties. Theoretically convergent multilevel
optimization methods are presented in Michelena et al.
(2003) and Haftka and Watson (2004).
Precise and compact specification of the coordination

becomes increasingly important as the number of lev-
els and subproblems grows. Implementing coordination
schemes for multilevel hierarchies or non-hierarchic prob-
lems becomes complicated and is prone to errors. Spec-
ifying the sequence of solving the optimization subprob-
lems and managing the necessary data exchange using
programming languages such as Fortran or C is not a triv-
ial task. Parallel processing complicates matters even
more. Having the ability to implement the coordination
at a higher level of abstraction is therefore advantageous.
A coordination language with a clear concept of concur-
rency is necessary. It is preferable for such a concurrent
specification language to have a highly expressive syntax
with formal semantics.
Available mathematical programming languages, e.g.,

AMPL (Fourer et al. 1993), are typically geared to-
wards formulating numerical optimization problems.
In computer science, several languages have been de-
veloped to describe the coordination of concurrent pro-
cesses. These coordination languages can be classified
into data-driven and control-driven (Papadopoulos and
Arbab 1998). A data-driven language coordinates data
by means of a shared data space, while a control-
driven (or process-oriented) language treats processes as
“black-boxes” that are coordinated through exchanging
state values or broadcasting control messages. Afore-
mentioned mathematical decomposition methods are
suited to data-driven coordination, while “black-box”
engineering-based methods fit the process-oriented coor-
dination approach.
Communicating sequential processes (CSP) is a pop-

ular theoretical foundation of process-oriented coordina-
tion languages (Hoare 1985; Roscoe 1997). CSP is partic-
ularly attractive for modeling coupled disciplines and op-
timization subproblems in MDO, provided that suitable
data language elements are available to deal with the nu-
merical optimization setting. We propose to utilize CSP
concepts for specifying coordination in distributed opti-
mal design of multilevel systems. In particular, we adopt

the CSP-based language χ (Hofkamp and Rooda 2002a,b;
Vervoort and Rooda 2003), which includes data types re-
quired for numerical optimization. The χ language was
developed originally for simulating discrete-event and
hybrid (combined discrete-event and continuous-time)
manufacturing systems (Van Beek et al. 2000). It is de-
signed primarily for modeling purposes; hence, it is easy
to understand and has only few language constructs. The
discrete-event part of χ is used in this work.
The paper is organized as follows. First, MDO coordi-

nation architectures are reviewed and placed into a CSP
perspective. Then, several basic χ language elements ne-
cessary to specify the parallel processes and their inter-
actions are introduced. This paper focuses on hierarchi-
cally decomposed multilevel systems. In this regard, co-
ordination specification by means of the χ language is
demonstrated for analytical target cascading (ATC). An
overview of the ATC formulation is given and different
coordination strategies are discussed. A simple yet illus-
trative example with a three-level hierarchy is used to
show the advantage of the approach and demonstrate
that different ATC coordination strategies can be speci-
fied efficiently. Finally, the main findings are summarized
and discussed.

2
Multidisciplinary optimization

In this section we review the general MDO problem for-
mulation, summarize main solution strategies, and con-
sider a new concept for MDO coordination.

2.1
Problem formulation

The general MDO problem can be stated as follows: Find
the values of the discipline design variables such that
a system objective is optimized subject to system and dis-
ciplinary design constraints, interdisciplinary design vari-
able coupling constraints, and interdisciplinary response
variable coupling constraints.
A set of design variables xi is identified for each dis-

cipline i = 1, 2, . . . ,m, where m is the number of disci-
plines. Some of the design variables may be shared in
several disciplines: this sharing is represented by inter-
disciplinary design variable coupling equations
k(x1,x2, . . . ,xm) = 000. Discipline constraints gi ≤ 0 de-
pend only on discipline design variables xi and discipline
responses ri. System constraints g0 ≤ 0 may depend on
all design variables and responses. The same holds for the
system objective f .
Interdisciplinary response variables coupling is repre-

sented by equations l(c1, c2, . . . , cm, r1, r2, . . . , rm) = 0.
These equations relate responses rj of discipline j that are
inputs ci to discipline i, j �= i. Finally, discipline responses
are functions of discipline design variables and, possibly,

200

responses of other disciplines, and are computed using an-
alysis or simulation models: ri = ai(xi, ci).
Based on the above definitions, the MDO problem can

be formulated mathematically as

min f(x1,x2, . . . ,xm, r1, r2, . . . , rm)

w.r.t. x1,x2, . . . ,xm, r1, r2, . . . , rm, c1, c2, . . . , cm

s.t. g0(x1,x2, . . . ,xm, r1, r2, . . . , rm)≤ 0

gi(xi, ri)≤ 0 , i= 1, 2, . . . ,m

k(x1,x2, . . . ,xm) = 0

l(c1, c2, . . . , cm, r1, r2, . . . , rm) = 0

ri−ai(xi, ci) = 0 , i= 1, 2, . . . ,m

xi ∈ Xi , i= 1, 2, . . . ,m . (1)

2.2
Classification of MDO architectures

Several methods for MDO can be found in the literature.
Classifications of the associated architectures are pre-
sented in Cramer et al. (1994), Balling and Sobieszczan-
ski-Sobieski (1996), and Alexandrov and Lewis (1999).
The key element in these classifications is the way feasibil-
ity of the constraints in Problem (1) is maintained.
Cramer et al. (1994) classify MDO methods into “all-

at-once” (AAO), individual discipline feasible (IDF), and
multidisciplinary feasible (MDF). The formulation of
Problem (1) corresponds to the IDF strategy. The an-
alysis equations appear nested (Balling and Sobieszczan-
ski-Sobieski 1996) or closed (Alexandrov and Lewis
1999) with respect to the system optimization problem
(cf. Fig. 1). Since response coupling is included in the sys-
tem optimization, the system will be interdisciplinarily
feasible (i.e., satisfy the response coupling constraints)
only after convergence has been achieved.
To guarantee interdisciplinary feasibility at each it-

eration of the optimization, one has to treat response
coupling as nested with respect to the system optimiza-
tion, as shown in Fig. 2. Evaluating a system design x=
[xt1,x

t
2, . . . ,x

t
m]
t to obtain responses r= [rt1, r

t
2, . . . , r

t
m]
t

automatically implies that coupled disciplinary responses
are consistent. Cramer et al. (1994) refer to this strategy
as MDF.
Balling and Sobieszczanski-Sobieski (1996) distin-

guish between single-level and multilevel architectures.
Single-level refers to an architecture where only the sys-
tem optimization problem determines the design variable
values. In the multilevel case disciplinary optimizers are
introduced to determine the independent discipline de-
sign variables, while the system optimizer determines
the shared design variables. From the system optimizer’s
point of view the disciplinary constraints gi ≤ 0 will al-
ways be satisfied (i.e., they are closed design constraints

Fig. 1 Individual discipline feasible architecture

Fig. 2 Multidisciplinary feasible architecture

Fig. 3 Hierarchical multilevel architecture

according to the classification in Alexandrov and Lewis
(1999)). An example of a hierarchical multilevel architec-
ture is shown in Fig. 3, where x+i and r

+
i represent targets

for design variables and responses provided by the sys-
tem optimizer, respectively, while x∗i and r

∗
i represent the

values that are returned from the discipline optimizers.
Appropriate coordination strategies must be specified

for solving the subproblems. Coordination algorithms in
the MDO literature are usually presented as step-wise
sequential procedures, sometimes visualized by flow di-
agrams. However, a sequential description of the coor-
dination in a distributed MDO architecture requires the
description of the exact order of communications (data
exchange) for all subsystems. For multilevel and non-
hierarchic decompositions this is a tedious task that is
prone to errors, especially when the problem size grows
(many levels and/or subproblems). To avoid this, one

201

should be able to specify the (concurrency in the) coor-
dination at a higher level of abstraction, i.e., by means of
an appropriate concurrent language based on computer
science.

2.3
Communicating sequential processes and MDO
coordination

Several theoretical foundations are available to describe
systems that exhibit concurrent behavior. A short over-
view is given in the introduction of Bos and Kleijn
(2002). Communicating sequential processes (CSP) con-
cepts (Hoare 1978, 1985; Roscoe 1997) are highly suited
for specifying coordination in MDO. They model coordi-
nation as parallel processes that operate independently
and communicate synchronously over predefined chan-
nels. The CSP concept matches engineering-based MDO
methods that partition optimal system design problems
into a collection of smaller subproblems. Each subprob-
lem can be seen as an independent “black-box” process,
while the necessary data exchange among subproblems
can be viewed as a series of communications.
The MDO problem formulations shown in Figs. 1, 2,

and 3 can be coordinated using CSP concepts. Each circle
represents a process that is responsible for the closure of
a specific set of constraints. Processes can be executed in
parallel assuming that they are not waiting for data from
other processes. Such input/output relations among pro-
cesses are modeled as communication channels, visualized
by arrows that illustrate the direction of information flow.
Using CSP, communication sequences are defined locally
for each process. Any order of communication among pro-
cesses is allowed as long as the local process communica-
tion sequences are obeyed.
In our opinion, MDO coordination benefits greatly

by using a specification language based on elements of
concurrent programming, especially for multilevel hier-
archies and non-hierarchic schemes. Such a language en-
ables a formal and precise description of the MDO pro-
cesses (typically related to analysis or optimization) and
the communication among them. We demonstrate this
using the CSP-based χ language developed by the Sys-
tems Engineering group at the Eindhoven University of
Technology in the Netherlands.

3
Coordination specification using the χ language

The χ specification language has been developed origi-
nally for modeling manufacturing systems that exhibit
complex concurrent behavior. It is a language designed
primarily for modeling pure discrete-event concurrent
systems or systems that combine discrete-event and con-
tinuous time behavior (Van Beek et al. 2000). We will
show that the discrete-event part of χ is well suited for

specifying coordination of distributed optimal system de-
sign problems in a formal and rigorous manner. A brief
informal description of the χ syntax (denotation of lan-
guage elements) and semantics (meaning of language
elements) is presented in this section. A complete formal
definition of the language can be found in Bos and Kleijn
(2002). A tutorial introduction is given by Vervoort and
Rooda (2003).
The χ language is highly expressive with only a small

number of orthogonal language elements. It is easy to
understand and combines a well-defined concept of con-
currency with advanced data modeling constructs. The
discrete-event part of χ is based on CSP (Hoare 1978) and
Dijkstra’s guarded command language (Dijkstra 1975).
Parallel behavior is restricted to occur among processes
(following Van de Mortel-Fronczak et al. (1995)). Indi-
vidual processes are specified in an imperative way using
a sequence of statements. For readability of the specifica-
tion, systems can be introduced to represent collections of
coupled processes, as well as functions to define calcula-
tions. Interactions among processes are modeled as syn-
chronous communications over channels (Hoare 1985).
Synchronous means that communication between two
processes takes place only when both are willing to com-
municate, and that such a communication takes place in-
stantly (no storage in the channel). The concepts of time
and probability, which play a key role in modeling manu-
facturing systems, are also available in χ. In this work,
these concepts do not play a role in MDO coordination,
and are therefore omitted.
The main definitions for communicating sequential

processes using χ can be summarized as follows:

– A process represents a sequentially behaving compon-
ent in a larger concurrent system.
– A system is a collection of concurrent processes that
cooperate by synchronous interaction. A system be-
haves like a process and can again be part of other
systems.
– A channel represents a connection between two pro-
cesses, and enables interaction between them.
– Interaction (communication) between two processes
means instantaneous data exchange (through a point-
to-point channel).

3.1
Data types

MDO coordination formulations usually generate con-
siderable amounts of (numerical) data that have to be
exchanged among the subproblems. Therefore, a coordi-
nation language for MDO has to provide language con-
structs to model this data flow compactly. The χ language
satisfies this requirement. χ has several built-in data
types, and distinguishes basic data types and container
data types. The basic data types are: bool (boolean), nat
(natural), int (integer), real, string, and void. The void
type is the empty data type used in the declaration of

202

synchronization channels and ports. Container data types
are: array, tuple, and list, among others. These three con-
tainer data types are briefly explained below, where T
denotes a data type that is either basic or container.

Tn is an array of fixed length n containing data elements
of type T . As an example, 〈2.1, 4.8,−4.9〉 is an array
of type real3. Arrays can be built from any basic or
container data type provided that the elements are of
identical type. This means that an m×n matrix of
reals can be represented by (realn)m. The index oper-
ator .i (0≤ i≤ n−1) allows to access the elements in
the array, e.g., 〈2.1, 4.8,−4.9〉.1 returns 4.8.

T0×T1×T2× . . .×Tm denotes a tuple that is a more
general form of an array in the sense that the elem-
ents of a tuple need not be of the same type. A tuple
is comparable to a record in Pascal. For example, we
may have two-tuple containing arrays, like bool2×
real3. Similar to the array, elements of a tuple may
be either basic or container data types and can be ac-
cessed by the index operator.

T ∗ is a list containing an ordered sequence of elements
that must all be of the same type T . An example of
a list of type nat∗ is [1, 2, 3]. The length of the list is
variable, that is, elements can be added to or removed
from the list. The empty list is []. In addition to the
concatenation (addition) and subtraction (removal)
operators, a number of functions are available, e.g.,
for accessing the value of the first element of a list or
querying the length of a list.

Disciplines responses and optimization results are typic-
ally generated in the form of arrays or tuples of arrays.
Lists are suitable for storing data that are needed in later
iterations.

3.2
Processes

The basic building block of a χ model is a process. The
process definition has the following general format:

proc N(Vp) = |[Vl|Sp]| .

The process is identified by its name N and parameters
Vp; the latter are represented by a comma-separated list
of (formal) parameters of the form v : type, where type can
be a standard data type T , a send port (v : !T) data type,
or a receive port (v : ? T) data type. It is also allowed to
have arrays of ports (v : (!T)n, and v : (?T)n). The body
of the process is specified between the brackets |[and]|.
Local variables Vl are declared first, followed by the se-
quence of statements Sp to be executed by the process.
Table 1 presents, using BNF format (Backus 1960),

the syntax of a subset of χ process statements that is
relevant for specifying an MDO coordination. The state-
ments are explained below informally.

Table 1 Syntax of χ process statements

Sp ::= skip (skip)

| x := e (assignment)

| E (event)

| Sp ; Sp (sequential composition)

| [GC] (guarded command)

| ∗[GC] (repetitive guarded command)

| [SW] (selective waiting)

| ∗[SW] (repetitive selective waiting)

E ::= p ! e (send)

| p ?x (receive)

| p ! (synchronization send)

| p ? (synchronization receive)

GC ::= eb −→ Sp

| R : eb −→ Sp

| GC []GC

SW ::= eb ; E −→ Sp

| R : eb ; E −→ Sp

| SW []SW

R ::= i : nat← l..u (range including l, excluding u)

| R,R (range list).

skip means do nothing. It is used in selection statements
to express that nothing needs to be done when a cer-
tain guard evaluates to true.

x := e denotes the assignment statement. The value that
follows from the evaluation of expression e is assigned
to variable x. The types of x and e have to be the same.
Multi-assignment is also allowed, e.g., 〈x, y〉 := 〈e1, e2〉

Sp1 ; Sp2 denote that statement Sp2 is executed after the
execution of statement Sp1 has been completed, that
is, process statements are executed sequentially. In the
sequel, a statement denoted by Sp may also be the
concatenation of multiple process statements.

E represents an event statement. This includes the send
statement (p ! e), the receive statement (p ?x), the
synchronization send statement (p !), and the synchro-
nization receive statement (p ?). The send statement
p ! e tries to send the evaluation outcome of expres-
sion e over the channel connected to port p. This send
statement succeeds if the other process connected to
the same channel is willing to receive. Similarly, the re-
ceive statement p ?x waits until data through port p is
received and assigns this data to variable x. The ports,
variables, and expressions must have equal types. Syn-
chronization is a communication statement without
transferring data. It is used to exchange an acknowl-
edgment. A synchronization statement succeeds when
the process connected to the same channel is also will-
ing to synchronize.

[GC] stands for guarded command statement or selec-
tion statement. This statement offers a choice between
several guarded alternatives. Each alternative is speci-
fied using the syntax eb −→ Sp, where eb is the boolean
expression denoting the guard. The different alterna-

203

tives are separated by the symbol []. Upon execution of
the selection statement the guards of all alternatives
are evaluated. If one of the guards evaluates to true,
the corresponding process statement Sp is executed. If
more than one guard happens to be true then one of
the true alternatives is chosen non-deterministically,
i.e., nothing can be said about which choice will be
made. If no guard evaluates to true an error occurs.

∗[GC] is the repetitive guarded command or repetitive
selection statement that allows one to carry out the
selection statement GC repeatedly. The repetition is
continued until all guards evaluate to false. When this
happens, the repetition ends and the statement fol-
lowing the repetitive guarded command is executed.

[SW] denotes selective waiting. The selective waiting
statement is an extended version of the selection state-
ment where the guard of an alternative is replaced
by the pair of a guard (boolean expression) and an
event statement: eb ; E −→ Sp. When the selective
waiting statement is executed, all guards are evalu-
ated once. For the guards that have evaluated to true,
the construct waits until at least one of the event
statements can be carried out. If the event statement
of just one alternative is possible, this statement is
executed followed by the corresponding process state-
ments. If event statements of multiple alternatives
happen to be possible, one event statement is chosen
non-deterministically followed by the execution of the
process statements of the corresponding alternative. If
none of the guards evaluates to true an error occurs.

∗[SW] represents repetitive selective waiting and repeats
the selective waiting statement until all guards evalu-
ate to false. After the end of the repetition, the state-
ment following the repetitive selective waiting state-
ment is executed.

A range expressionR can be used in the guarded com-
mand and selective waiting statement to enable compact
notation. The range expression allows the definition of
variables that are varied within certain lower and upper
bounds.
The key statements to specify communication among

concurrent processes are the send, receive, and synchro-
nize statements, as well as the (repetitive) selective wait-
ing statement. The latter is the most powerful statement
of χ for the specification of the communication between
concurrent processes. The communication of a process
with other processes can be specified without the need to
predefine some sequence of communication. Such a selec-
tive waiting construct is essential for the specification of
complex coordination schemes.

3.3
Systems

Processes can be grouped together in a system by paral-
lel composition. The processes in the system are coupled
through channels. Such a system acts like a process and

can be combined with other processes to form a new sys-
tem. A χ system is defined as follows:

systN(Vs) = |[Vc|Ss]|

A system is identified by its name N and parameters Vs.
System parameters Vs have the same format as process
parameters Vp explained in the previous section. The sys-
tem body resides between |[and]| brackets, and starts
with a declaration list of local channel variables Vc, fol-
lowed by system statement Ss. A channel variable c of
type T is declared using the syntax c : −T . Only values of
type T can be communicated through this channel.
The processes and systems are instantiated in the sys-

tem statements Ss with the appropriate channels and pa-
rameters. Instantiations are written asN(e1, e2, . . . , en),
whereN is the name of an existing process or system and
ei (1 ≤ i≤ n) is an expression resulting in a value of the
appropriate data type. Processes and systems are instan-
tiated in parallel using the parallel composition operator
Ss ‖Ss. The local channel variables are used to connect
different process instantiations to each other. A single
channel connects one send port to one receive port. The
data types of the two connected ports and the channel
must match. Bundles (arrays) of channels can be specified
as well.
A closed system has to be instantiated at the top level.

This closed system has no communication ports parame-
ters. The environment

xper = |[N(e1, e2, . . . , en)]|

instantiates top level system N with parameter values e1
to en, where ei can be a basic or container data type, but
not a port or channel data type.

3.4
Functions

Functions can be used to define calculations that cannot
be expressed in a single line or that appear at several dif-
ferent places in the specification. The calculation is per-
formed each time the function is called by a process. A χ
function is defined as

funcN(Vf)→ Tr = |[Vl|Sf]|

and identified by its nameN and a list of formal input pa-
rameters Vf of type v : T . The return type of the function
is Tr. Both T and Tr are basic or container data types.
Local variables x : T may be introduced in Vl, followed by
the sequence of statements Sf that defines the function.
The statements that may be used in a function

are the guarded command statement, the repetitive
guarded command statement, sequential composition,
assignment, and the skip statement as defined earlier
in Sect. 3.2. One new statement is the return statement

204

↑ e that completes the execution of the function and re-
turns the value of expression e to the process statement
or function statement that called the function. Multi-
ple return statements are allowed in one function. The
χ semantics assumes that functions behave in a strictly
mathematical sense. Event (e.g., send or receive) state-
ments are not allowed in functions.

3.5
Python interface

An MDO coordination specified in χ is represented by
processes that communicate through channels. The nu-
merical computations performed by the individual pro-
cesses are modeled as functions. Generally, these calcu-
lations require routines external to χ, which means that
a χ process has to be able to call external software. This
has been realized by allowing functions written in Python
(Python 2004; Lutz et al. 1999) to be treated like func-
tions written in native χ (Hofkamp 2001). Python can
be linked readily to other software. The Python interface
is supported by the χ compiler that generates the exe-
cutable to run the coordination, as explained below.

3.6
Execution of the coordination

Hofkamp and Rooda (2002b) developed a compiler to
translate χ specifications into C++ code. Compilation of
the generated code yields an executable program. After
successful compilation, one can run the χ program, i.e.,
in our case run the coordination to solve the decomposed
MDO problem. Since χ is a CSP-based language, it uses
interleaving semantics for its execution, whichmeans that
one statement in one process at a time is being exe-
cuted (except for communication statements between two
processes that are always processed synchronously). The
scheduler of χ determines which statement in which pro-
cess will be executed next. In this manner, the χ scheduler
takes care of the sequence of execution of the (parallel)
process statements. Therefore, the concurrent χ language
enables a straightforward implementation of the coordi-
nation; the user does not need to program the actual se-
quence in which the subproblems have to be solved, or to
coordinate the data transfer among them.
However, interleaving semantics implies that function
calls to external numerical routines are carried out one at
a time, even if they occur in parallel processes. To allow
true parallel execution, each external function call has to
be decomposed into a four step procedure: initiate, no-
tify initiation, ask for clearance to proceed, and retrieve
results. An additional synchronization process has to be
introduced. Processes get clearance to proceed through
a synchronization with the synchronization process when
they have all started their jobs. This is illustrated in the
example presented in Etman et al. (2002). We are investi-
gating whether this approach can be replaced by a more

elegant one. The series of jobs generated during execution
of the coordination can be queued and distributed over
the available processors.

4
Application to analytical target cascading

Analytical target cascading (ATC) is a design optimiza-
tion methodology of hierarchically decomposed engineer-
ing systems (Kim 2001; Kim et al. 2003). The original
system design problem is partitioned into a model-based,
multilevel hierarchical set of subproblems associated with
subsystems and components. System design targets are
defined at the top level and “cascaded down” to lower
levels by formulating optimization subproblems to match
subsystem and component response values with cascaded
specifications.
ATC is a rigorous methodology for multilevel sys-

tem design and has been demonstrated to be conver-
gent under standard convexity and smoothness assump-
tions (Michelena et al. 2003). The ATC process has
been applied successfully in vehicle design case studies
(Michelena et al. 2001; Kim et al. 2002) and has been ex-
tended to the design of product families (Kokkolaras et al.
2002).
The key to the success of the ATC process lies in coor-

dinating the solution process of the subproblems. Several
coordination strategies are discussed in Michelena et al.
(2003). However, it is not known a priori which strategy
is the most efficient. This may even be problem depen-
dent. We demonstrate that the χ language can be used
to specify the coordination of the ATC process efficiently
and compactly, allowing thus rapid implementation and
investigation of alternative coordination strategies.

4.1
Review of the ATC formulation

Analytical target cascading is presented using a general
notation, from which the design problem for each element
(i.e., system, subsystem, or component) can be recovered
as a special case. The formulation allows for design speci-
fications to be introduced not only at the top level for the
overall product, but also “locally” to account for individ-
ual subsystem and component requirements.
A typical example of a hierarchically decomposed sys-

tem is shown in Fig. 4. We define the set Ei to include the
elements of level i. For each element j in the set Ei, we de-
fine the set Cij to include the “children” of this element.
For example, we have E1 = {B, C} and C1B = {D, E}.
The responses R of each element are classified into

two types: responses R̂ associated to “local” targets and
responses R̃ associated to “cascaded” targets; the latter
link successive levels in the problem hierarchy. Similarly,
two types of design variables can be distinguished for each
subproblem: local design variables xij and shared design

205

Fig. 4 Example of hierarchically partitioned design problem

variables yij . The design problem Pij corresponding to
the jth element at the ith level is formulated as follows:

min
x̄ij

∥∥∥R̂ij−Tij
∥∥∥
2

2
+
∥∥∥R̃ij− R̃Uij

∥∥∥
2

2
+
∥∥yij −yUij

∥∥2
2
+

εRij+ ε
y
ij

subject to
∑
k∈Cij

∥∥∥R̃(i+1)k− R̃L(i+1)k
∥∥∥
2

2
≤ εRij

∑
k∈Cij

‖y(i+1)k−y
L
(i+1)k‖

2
2 ≤ ε

y
ij

gij(Rij ,xij ,yij)≤ 0 ,

hij(Rij ,xij ,yij) = 0 , (2)

where Rij = [R̂
t
ij , R̃

t
ij]
t = rij(R̃(i+1)k1 , . . . , R̃(i+1)kcij ,

xij ,yij), Cij = {k1, . . . , kcij}, and cij is the number of
children. Note that an element’s response depends both
on the element’s design variables and its children’s re-
sponses. In the above problem formulation,

x̄ij = [x
t
ij ,y

t
ij ,y

t
(i+1)k1

, . . . , yt(i+1)kcij
, R̃t(i+1)k1 , . . . ,

R̃t(i+1)kcij
, εRij , ε

y
ij]
t is the vector of all optimization

variables,
xij is the vector of local design variables, that is, vari-
ables exclusively associated with the element,

yij is the vector of shared design variables, that is, vari-
ables associated with two or more elements that share
the same parent,

εRij is the tolerance optimization variable for coordinat-
ing the responses of the element’s children,

εyij is the tolerance optimization variable for coordinat-
ing the shared design variables of the element’s chil-
dren,

Tij is the vector of local target values,
R̃Uij is the vector of response values cascaded down to the
element from its parent,

yUij is the vector of shared design variable values cascaded
down to the element from its parent,

R̃L(i+1)k is the vector of response values cascaded up to
the element from its kth child,

yL(i+1)k is the vector of shared design variable values cas-
caded up to the element from its kth child, and

gij and hij are vector functions representing inequality
and equality design constraints, respectively.

4.2
ATC coordination

Analytical target cascading requires the iterative solution
of the optimization subproblems according to the hier-
archical structure of the decomposed problem. Figure 5 il-
lustrates the information flow between a subproblem and
a) its parent and b) its children before and after the opti-
mization subproblem has been solved.
One of the advantages of ATC is that subproblems

at each level can be solved in parallel assuming that
the necessary parameters have been updated. Therefore,
the coordination strategy has to specify the sequence in
which the levels will be visited. The number of possi-
bilities increases in hierarchies with multiple levels. Fig-
ure 6 depicts coordination alternatives for a hierarchy of
three levels. Note that (Michelena et al. 2003) showed the-
oretical convergence properties for Schemes III and IV
only.
Next we explain how the ATC coordination can be

specified as a coupled system of χ processes. A process
will be instantiated for each element in the hierarchy.This
process specifies the sequence of statements to exchange
data with its parents and children and solve the opti-
mization problem Pij . The exact process specification for
problem Pij depends on the coordination scheme.

Fig. 5 Information flow for subproblem Pij

Fig. 6 Coordination alternatives for hierarchy of three levels

206

4.3
Loop-like coordination

Consider first a coordination scheme that visits all lev-
els in the hierarchy in a loop-like sequence (Scheme I
in Fig. 6): i = 0, 1, 2, . . . , N, 0, . . . , N , etc. where i = 0
and i = N represent the top and bottom level, respec-
tively. Note that Fig. 6 only illustrates the sequence in
which subproblems within a level are solved; it does not
depict data exchange or flow.
In the loop-like coordination, the top-level process

Ctop associated to problem P0 (index j is dropped since
there is only one element) starts by carrying out an op-
timization to determine response and shared variable
target values for its children. During the first iteration,
Ctop uses some appropriate (possibly zero) initial values
for the response and shared variables that are normally
passed up from its children. After Ctop has cascaded its
targets, it waits until it receives updated values of chil-
dren response and shared variables. It then carries out
a new optimization, compares the new vector of opti-
mization variables to the previous one, checks the conver-
gence status of the children processes, and either stops
(when optimization variable values have not changed
significantly and all children process are converged) or
reiterates.
A second type of process is needed for the inter-

mediate-level subproblems Pij that have both a parent
and one or more children, i.e., i ∈ 1, . . . , N −1. For the
loop-like scheme, such an intermediate-level process Cmid
carries out the following sequence of steps: Receive tar-
gets from the parent, carry out an optimization (during
the first iteration use an initial guess for the children re-
sponse and shared values), cascade determined targets to
the children, wait until all the children have sent updated
response and shared values, pass updated values to the
parent.
Thirdly, we need bottom-level processes Cbot for sub-

problems PNj . A bottom-level process waits until it re-
ceives targets from its parent, carries out an optimization,
and returns updated values.
The loop-like coordination scheme for a decomposed

problem is specified by coupling instances of the top-level,
intermediate-level, and bottom-level processes. No addi-
tional process is needed to control the overall coordina-
tion. Initially, all processes are waiting to receive target
data from their parents, except for the top-level process.
The top-level process carries out an optimization and cas-
cades targets down to its children. These intermediate-
level processesmay carry out their optimizations in paral-
lel; all the other processes are waiting to receive new data.
The computed targets are cascaded down. This proceeds
until the bottom-level processes have been reached and
have carried out their optimizations. The bottom-level
processes pass up updated response and shared variable
target values to their parents, which update their parents
without carrying out any new optimizations. In this man-
ner, updated target values are passed up level-by-level

until the top-level process is reached. If convergence has
not occurred, a new ATC iteration starts.
Note that the tree of processes does not need to be

symmetrical. The same coordination arises if one branch
has more levels than another branch. If the ATC hierar-
chy consists of only two levels, the coordination specifi-
cation contains only top-level and bottom-level process
instances.
A repository processR is introduced to facilitate mon-

itoring processes during the ATC iterations. The sub-
problem processes send updated values of their optimiza-
tion variables to this process R. These optimization vari-
able values are stored in R. After completion of the ATC
process, the complete iteration history is available in R,
and may be used for further analysis.

4.4
Definition of χ processes for loop-like coordination

The χ specifications of the processes in the loop-like co-
ordination scheme are presented below. First, the vari-
able types, as presented in Fig. 7, are introduced. Herein,
types vx, vr, and vy denote vector arrays of reals of fixed
(maximum) length mx, my, and mr, respectively; χ is
a strong-typed language requiring that the dimensions
of arrays are known at compilation time. Types vys and
vrs are matrix arrays of sizes ms×mr and ms×my, re-
spectively. Types vxbtop, vxbmid, and vxbbot are tuples
containing two or more data-elements of type vx, vy, vys,
vrs, or real. These three tuple types match the optimiza-
tion variables of the top-level, intermediate-level, and
bottom-level design problems, respectively. The elements
in the tuples can be accessed through their identifiers de-
fined before the dot operator. Finally, type par is defined
as a tuple of reals and nats to store the scaling values used
in the optimization problem of the process, the number of
children of the process, and the actual array dimensions
used in the process.
Using these type definitions, the χ specification of the

top-level process Ctop is presented in Fig. 8. The first
element f in the parameter list of Ctop defines the ex-
ternal function that will carry out the optimization. Pa-
rameters b and c represent the send and receive port ar-
rays, respectively, through which data are sent to and re-
ceived from the children of Ctop. The fourth parameter e

Fig. 7 Data types needed for the processes

207

Fig. 8 Top-level coordination process Ctop

is a send port to repository R for updating the coordi-
nation history; the fifth parameter s is a synchronization
port to R for notifying completion of the ATC process.
The last four parameters correspond to top-level response
targets, initial values of the optimization variables, sub-
problem parameter values, and convergence tolerance, re-
spectively.
The following local variables are introduced in Ctop:

a response vector r, matrices rLs and yLs of response and
shared variable target values, respectively, that have been
passed up from the children, a tuple of optimization vari-
ables xb, a boolean variable cvrg, a boolean array cvrgs,
and two natural variables i and n. Ctop starts by carry-
ing out an initial optimization. The following sequence

Fig. 9 Intermediate-level coordination process Cmid

of tasks is then executed: cascade targets (i.e., send tar-
gets to children), receive updated target values (from
children), carry out optimization, check convergence, and
update optimization variable values.
Ctop is declared locally converged if the square of the

norm of the difference between the previous and the cur-
rent iterates is smaller than some value tol, i.e., if ‖x̄(n)−
x̄(n−1)‖22 ≤ tol. Note that the vector of optimization vari-
ables x̄ has different instantiations for the top, interme-
diate, and bottom levels. Ctop is declared globally con-
verged if convergence has occurred for the “local” opti-
mization problem as well as for all the children optimiza-
tion problems. The function checkcvrg returns true if this
is the case. To this end, the children pass up their con-
vergence status in addition to the updated response and
shared variable values. Ctop stores the convergence status
of its children in the boolean array cvrgs. The functions
topnorm and checkcvrg are specified as χ functions. The
ATC process is terminated when Ctop has converged or
some predefined maximum number of iterations has been
reached. A synchronization is sent to repository processR
to acknowledge this.
The intermediate-level process Cmid is specified in

a similar way as shown in Fig. 9. Cmid has four commu-
nication ports to parent and children: a and d are receive
and sent ports coupled to the parent; b and c are re-
ceive and sent port arrays (bundles), which are coupled
to the children. After the initialization, Cmid repeats in-
definitely the following sequence of statements: receive re-
sponse and shared variable target values through port a;
cascade targets to the children through ports b.i; receive
updated response and shared variable values as well as
the status of convergence of children-problems through
ports c.i; send updated values and convergence status to
the parent through port d. After Cmid has received the
target values cascaded down from its parent, it carries out
the local optimization defined by function f , using initial
optimization variable values xb0 and subsystem param-
eters p. After the convergence status of the children has
been received, the local and overall convergence of Cmid
is determined as described for Ctop, however, a modified
norm function (midnorm) is used.

Fig. 10 Bottom-level coordination process Cbot

208

Fig. 11 Repository process R

The bottom-level process Cbot is specified in Fig. 10.
Cbot receives targets through port a, carries out the opti-
mization defined by f , and passes up updated values and
convergence status through port d.
Finally, there is a repository process R that collects

optimization results every time a subproblem is solved,
and stores them in lists (see Fig. 11). Note that processR
is not essential for the ATC coordination itself. Process
R has ports to all subproblem processes. R has three
different port parameters since the optimization vari-
ables tuples differ for the top-level, intermediate-level,
and bottom-level processes, respectively. Additionally we
have a synchronization port to the top-level process for
the acknowledgment of the ATC finish. The key state-
ment of R is a repetitive selective waiting statement. The
repetitive selective waiting statement waits until a new
iteration update is received from one of the subprob-
lem processes or until a synchronization is received from
the top-level process. R stores the iteration updates of
the subproblems in separate lists designated to each of
the processes. If a synchronization communication takes
place, the lists of the subproblems are processed by func-
tion pp.

4.5
Alternative coordination schemes

Alternative coordination schemes can be obtained by
modifying the specifications of the subproblem processes.
For example, coordination Scheme II (i= 0, 1, . . . , N −1,
N,N − 1, . . . , 1, 0, etc.) is obtained by simply inserting
the line

; 〈xb, r〉 := f(xb0, rUS, yUS, rLs, yLs, p)

after the statement

; ∗[i < p.ns−→ c.i?〈rLs.i, yLs.i, cvrgs.i〉; i := i+1]

in the Cmid process specification of Fig. 9. By doing this,
intermediate-level processes carry out an additional opti-
mization every time updated values are passed up.
Michelena et al. (2003) considered nested coordina-

tion schemes (Schemes III and IV in Fig. 6). Scheme III,

for instance, can be specified by inserting an iteration
loop between the receive and send statements with re-
spect to the parent-related communication. In this man-
ner, communications with the children are nested with re-
spect to communications with the parent. The repetition
statement is inserted into the Cmid process specification
of Fig. 9 as follows:

; ∗[true

−→ a?〈rUS, yUS 〉

; ∗[¬cvrg∧n <maxiter

−→ n := n+1

; 〈xb, r〉 := f(xb0, rUS, yUS, rLs, yLs, p)

; . . .

; xb0 := xb

]

; d!〈r, xb.y, cvrg〉

] .

The ease by which these different coordination
schemes can be specified is a clear advantage of a high-
level coordination language such as χ. Note that pro-
cesses Ctop, Cmid, Cbot, and R have been specified for
analytical target cascading in general. By using specific
instances of these processes one can easily build the co-
ordination architecture of any ATC application at hand.
This is demonstrated for a hierarchy of three levels in the
next section. Once the overall system coupling has been
specified, the χ software allows one to run the ATC pro-
cess using the Python interface.

5
Example

We will now demonstrate the specification of different co-
ordination strategies using the χ language on a simple but
illustrative analytical target cascading problem.

5.1
Mathematical formulation of example problem

Our example is based on the geometric programming
problem

min
z≥0

z21 + z
2
2

s.t.
z−23 + z

2
4

z25
−1≤ 0 ;

z25+ z
−2
6

z27
−1≤ 0

z28+ z
2
9

z211
−1≤ 0 ;

z−28 + z
2
10

z211
−1≤ 0

z211+ z
−2
12

z213
−1≤ 0 ;

z211+ z
2
12

z214
−1≤ 0

209

z21− z
2
3− z

−2
4 − z

2
5 = 0

z22− z
2
5− z

2
6− z

2
7 = 0

z23− z
2
8− z

−2
9 − z

−2
10 − z

2
11 = 0

z26− z
2
11− z

2
12− z

2
13− z

2
14 = 0 . (3)

Kim (2001) decomposed this problem using the equal-
ity constraints as responses within a bi-level hierarchical
structure and demonstrated the application of the ATC
process. Here, we decompose the original problem into
three levels as shown in Fig. 12; z5 is the shared vari-
able that couples the subproblems of the intermediate
level. Note that z11 is a shared variable coupling the two
problems of the bottom level. The ATC formulation does
not allow subproblems to share variables unless they are
children of the same parent. Since the purpose of this ex-
ample is to illustrate the χ implementation of alternative
coordination strategies, we treat z11 as a parameter using
its known optimal value.
The subproblems are formulated in the next subsec-

tions following the notation presented in Sect. 4.1. The
index j is dropped at the top level since there is only one
element.

Top-level problem

Problem P0 is formulated as:

min
R11,R12,y0,ε

y
0 ,ε
R
0

‖R0−T0‖+ ε
y
0+ ε

R
0

s.t.
∥∥y0−yL11

∥∥+∥∥y0−yL12
∥∥≤ εy0

∥∥R11−RL11
∥∥+∥∥R12−RL12

∥∥≤ εR0 , (4)

whereR11 := z1,R12 := z2,y0 := z5,R0 = r0(R11,R12) =
z21+ z

2
2, and T0 = 0. Note that z1, z2, and z5, correspond

to the formulation of the original problem, and that z5 is
a shared variable computed at the problems of the inter-
mediate level and coordinated at the top level.

Intermediate-level problems

There are two problems at the intermediate level. Prob-
lem P11 is formulated as:

min
R21,y11,x11,ε

R
11

∥∥R11−RU11
∥∥+∥∥y11−yU0

∥∥+ εR11

s.t.
∥∥R21−RL21

∥∥≤ εR11
g11(R21,x11,y11)≤ 0 , (5)

where R21 := z3, x11 := z4, y11 := z5, R11 = r11(R21,

x11,y11) =
√
z23 + z

−2
4 + z

2
5, and g11(R21,x11,y11) =

(z−23 + z
2
4)z
−2
5 −1.

Fig. 12 Hierarchical structure of decomposed problem

The second intermediate-level subproblem P12 is
stated as:

min
R22,y12,x12,ε

R
12

∥∥R12−RU12
∥∥+∥∥y12−yU0

∥∥+ εR12

s.t.
∥∥R22−RL22

∥∥≤ εR12 ,
g12(R22,x12,y12)≤ 0 , (6)

where R22 := z6, x12 := z7, y12 := z5, R12 = r12(R22,
x12,y12) =

√
z25+ z

2
6+ z

2
7, and g12(R22,x12,y12) =

(z25+ z
−2
6)z

−2
7 −1.

Bottom-level problems

There are two problems at the bottom level. Problem P21
is given by:

min
x21

∥∥R21−RU21
∥∥

s.t. g21(x21)≤ 0 , (7)

where x21 := [z8, z9, z10], p= 1.3(= z11),R21 = r21(x21) =√
z28+ z

−2
9 + z

−2
10 +p

2, and

g21(x21) =



(
z28+ z

2
9

)
p−2−1

(
z−28 + z

2
10

)
p−2−1


 .

The formulation of subproblem P22 is:

min
x22

∥∥R22−RU22
∥∥

s.t. g22(x22)≤ 0 , (8)

where x22 := [z12, z13, z14], p = 1.3(= z11), R22 =

r22(x22) =
√
z212+ z

2
13+ z

2
14+p

2, and

g22(x22) =



(
p2+ z−212

)
z−213 −1

(
p2+ z212

)
z−214 −1


 .

210

5.2
Implementation of coordination using χ

Implementation of the ATC coordination using χ requires
the instantiation of a number of processes such as those
specified in Sect. 4. This is illustrated for Scheme I in our
example problem. The following constant values are used:
the maximum length of design variable arrays mx = 3
(there is a maximum of three local design variables in
any of the subproblems), the maximum length of response
variable arrays mr = 1, the maximum length of shared
variable arraysmy= 1, and the maximum number of chil-
dren in any subproblem ms = 2. The actual number of
intermediate-level processes is nm= 2 (P11 and P12), and
the actual number of bottom-level processes is nb = 2
(P21 and P22). Moreover, we define the maximum num-
ber of iterationsmaxiter and a “not-a-number” value nan
that is used for empty entries in the fixed-length arrays.
The system that couples the processes is instantiated

according to Fig. 13. The top-level problem P0 requires
a process instantiation of Ctop as specified in Fig. 8. Each
of the two children of P0 requires an instantiation of the
intermediate-level process Cmid as shown in Fig. 9, repre-
senting problems P11 and P12. The bottom-level subprob-
lems P21 and P22 are represented by two process instan-

Fig. 13 Processes and channels in the three-level ATC ex-
ample

Fig. 14 Coordination instantiation of the three-level ATC example

tiations of Cbot as defined in Fig. 10. Finally, repository
process R needs to be instantiated (see Fig. 11).
These six processes are coupled to each other by chan-

nels of appropriate data types. The channel names are
defined in Fig. 13. For example, Ctop sends data of type
vr×vy to each of its children via channel array a, and
receives data of type vr×vy×bool from its children via
channel array b. Ctop has two send channels to reposi-
toryR: channel g to send iteration updates, and channel s
to acknowledge the completion of the ATC coordination.
The intermediate-level process Cmid representing design
problem P11 receives data of type vr×vy from Ctop via
channel a.0 and sends data of type vr×vy×bool via
channel b.0. The Cmid process representing P11 also com-
municates through channels c.0 and d.0 with the Cbot
process that represents its child P21. Problems P12 and
P22 are represented in a similar fashion. The two Cmid
processes and the two Cbot processes send updates to re-
positoryR through channel arrays h and k, respectively.
Note that channels a to f are channel arrays of size

ns = 2. However, P11 has only one child, therefore only
the first elements of the channel arrays c and d are used,
i.e., c.0 and d.0. The same holds for P12 and channel ar-
rays e and f . The constant ns cannot be defined as a sep-
arate parameter in the process definition; χ is a strongly
typed language and does not allow (channel) array type
specifications of variable size. At present, χ also does not
allow specification of the actual array sizes used in a pro-
cess upon instantiation of the process in a system.
The complete coordination instantiation of the three-

level geometric programming ATC example is included in
Fig. 14. All processes in system S are instantiated with
the appropriate channels and parameters. All optimiza-
tion variables in the tuple xb0 of processesCtop,Cmid, and
Cbot are given an initial value of one, except for the ε

R
ij

and εyij variables, which are initialized to zero. Parame-
ter array p in processes Ctop, Cmid, and Cbot contains for
each instantiation: the scaling parameter value sca for the
ε terms in the objective function of problems P0, P11, and
P12; the number of children; the number of local design
variables; the number of shared variables; and the num-

211

ber of response and shared variable target values of the
children (assumed to be equal), respectively. The last line
of the coordination instantiation in Fig. 14 denotes that
after compilation a system execution of S can be carried
with tolerance tol and scaling sca as input.
Schemes I, II, III, and IV of Fig. 6 have been speci-

fied and implemented using χ. Results are presented and
discussed in Tzevelekos et al. (2003) and Hulshof (2003).

6
Summary and discussion

In our opinion, a high-level concurrent programming lan-
guage for specifying MDO coordination rigorously can
significantly improve implementation and facilitate test-
ing of alternative strategies. Such a language is especially
needed when the scale and complexity of the distributed
optimal design problem architecture is large, e.g., in hi-
erarchically decomposed multilevel systems. Moreover,
concurrency requires precise treatment at a high level of
abstraction to avoid detailed coding of the sequence of
solving subproblems and exchange of data. For practi-
cal use, the high-level concurrent language should sup-
port the execution of the specified coordination. Finally,
a specification language for engineering-based MDO ap-
proaches has to be able to deal with the “black-box” na-
ture of the disciplines (or subsystems), as well as the large
amount of numerical data that must be exchanged.
We have used the χ language, which meets both the

“black-box” and the data handling requirements. It is
a highly expressive CSP-based language that contains ad-
vanced data modeling constructs. Using χ, MDO coordi-
nation is specified as a number of parallel processes that
operate independently and communicate synchronously
over pre-defined channels. The advantage of χ is that it
has been designed for modeling purposes: it is compact
(has few language constructs), easy to understand, and
offers a clear concept of concurrency. Furthermore, χ can
execute function calls to external software by means of
a Python interface.
We demonstrated how χ can be used to specify and

implement alternative coordination strategies in analyti-
cal target cascading, a design optimization methodology
of hierarchically decomposed multilevel systems. Top-
level, intermediate-level, and bottom-level processes rep-
resenting the optimization subproblems in ATC have
been defined and composed into a system.We have shown
that once a specific coordination strategy is implemented,
additional schemes can be easily derived by modifying the
specification. Moreover, larger problems can be treated
readily by simply adding instantiations of the pre-defined
processes.
An analytical example was used to illustrate that

the χ language is well-suited for specifying and imple-
menting the ATC coordination, and that it enables rapid
investigation of alternative strategies. Response surface
techniques are used frequently in MDO (Kodiyalam and

Sobieszczanski-Sobieski 2000; Sobieski and Kroo 2000;
Liu et al. 2004). In Etman et al. (2002) we illustrated that
response surface modeling can also be specified as part of
the coordination. We conclude that a coordination speci-
fication language such as χ may provide new opportuni-
ties in MDO implementations of large-scale and complex
problems.

Acknowledgements We would like to thank Erjen Lefeber for

providing the new χ-style file for LATEX.

References

Alexandrov, N.M.; Lewis, R.M. 1999: Comparative properties
of collaborative optimization and other approaches to MDO.
In: First ASMO UK/ISSMO Conference on Engineering De-
sign Optimization, 8–9July 1999, MCB press

Alexandrov, N.M.; Lewis, R.M. 2000: Analytical and compu-
tational properties of distributed approaches to MDO. In:
8th AIAA/USAF/MASA/ISSMO Symposium on Multidisci-
plinary Analysis and Optimization, 6–8 September 2000, Long
Beach, paper AIAA-2000-4718

Alexandrov, N.M.; Lewis, R.M. 2002: Analytical and compu-
tational aspects of collaborative optimization for multidisci-
plinary design. AIAA J. 40, 301–309

Backus, J. 1960: The syntax and semantics of the proposed
international algebraic language of the Zürich ACM-GAMM
conference. In: Proceedings ICIP , Unesco, 125–131

Balling, R.J.; Sobieszczanski-Sobieski, J. 1996: Optimization
of coupled systems: a critical overview of approaches. AIAA J.
34, 6–17

Bos, V.; Kleijn, J.J.T. 2002: Formal specification and analysis
of industrial systems, Dissertation, Eindhoven University of
Technology

Cramer, E.J.; Dennis, J.E. Jr.; Frank, P.D.; Lewis, R.M.; Shu-
bin, G.R. 1994: Problem formulation for multidisciplinary op-
timization. SIAM J. Optim. 4, 754–776

Dijkstra, E.W. 1975: Guarded commands, nondeterminacy,
and formal derivation of programs. Commun. ACM 18,
453–457

Etman, L.F.P.; Hofkamp, A.T.; Rooda, J.E.; Kokkolaras, M.;
Papalambros, P.Y. 2002: Coordination specification for dis-
tributed optimal system design. Proc. 9th AIAA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization,
Atlanta, GA, paper no. AIAA-2002-5410

Fourer, R.; Gay, D.M.; Kernighan, B.W. 1993: AMPL: AMod-
eling Language for Mathematical Programming. Duxbury
Press

Haftka, R.T.; Watson, L.T. 2004: Multidisciplinary design op-
timization with quasiseparable subsystems. Optim. Eng., in
press

Hoare, C.A.R. 1978: Communicating sequential processes,
Commun. ACM . 21, 666–677

Hoare, C.A.R. 1985: Communicating Sequential Processes.
Englewood Cliffs: Prentice-Hall

212

Hofkamp, A.T. 2001: Python from χ. Note, Systems Engineer-
ing group, Eindhoven University of Technology,
http://se.wtb.tue.nl

Hofkamp, A.T.; Rooda, J.E. 2002a: χ Reference manual .
http://se.wtb.tue.nl, Systems Engineering group, Eindhoven
University of Technology

Hofkamp, A.T.; Rooda, J.E. 2002b: Chi tool set reference
manual . http://se.wtb.tue.nl, Systems Engineering group,
Eindhoven University of Technology

Hulshof, M.F. 2003: Analytical target cascading: numerical
convergence evaluation and manufacturing system applica-
tion. MSc thesis report SE-420338, Systems Engineering
group, Eindhoven University of Technology

Kim, H.M. 2001: Target Cascading in Optimal System Design,
Dissertation, The University of Michigan, Ann Arbor, Michi-
gan

Kim, H.M.; Kokkolaras, M.; Louca, L.S.; Delagrammati-
kas, G.J.; Michelena, N.F.; Filipi, Z.S.; Papalambros, P.Y.;
Stein, J.L.; Assanis, D.N. 2002: Target cascading in vehicle
redesign: A class VI truck study. Int. J. Veh. Des. 29, 1–27

Kim, H.M.; Michelena, N.F.; Papalambros, P.Y.; Jiang, T.
2003: Target cascading in optimal system design. J. Mech.
Des. 125, 474–480

Kodiyalam, S.; Sobieszczanski-Sobieski, J. 2000: Bilevel in-
tegrated system synthesis with response surfaces. AIAA J.
38(8), 1479–1485

Kokkolaras, M.; Fellini, R.; Kim, H.M.; Michelena, N.F.; Pa-
palambros, P.Y. 2002: Extension of the target cascading for-
mulation to the design of product families. Struct. Multidisc.
Optim. 24, 293–301

Liu, B.; Haftka, R.T.; Watson, L.T. 2004: Global-local struc-
tural optimization using response surfaces of local optimiza-
tion margins. Struct. Multidisc. Optim., in press

Lutz, M.; Ascher, D. 1999: Learning Python. Cambridge:
O’Reilly

Michelena, N.F.; Kokkolaras, M.; Louca, L.S.; Lin, C.C.;
Jung, D.; Filipi, Z.S.; Assanis, D.N.; Papalambros, P.Y.;
Peng, H.; Stein, J.L.; Feury, M. 2001: Design of an advanced
heavy tactical truck: a target cascading case study. Proc. SAE
International Truck & Bus Meeting and Exhibition, Chicago,
IL, paper no. 2001-01-2793

Michelena, N.; Park, H.; Papalambros, P.Y. 2003: Conver-
gence properties of analytical target cascading. AIAA J. 41,
897–905

Papadopoulos, G.A.; Arbab, F. 1998: Coordination Models
and Languages. CWI Software Engineering report SEN-
R9834, National Research Institute for Mathematics and
Computer Science, http://www.cwi.nl, Amsterdam, the
Netherlands

Python 2004: http://www.python.org

Roscoe, A.W. 1997: The Theory and Practice of Concurrency .
London: Prentice-Hall

Sobieski, I.P.; Kroo, I.M., 2000: Collaborative optimization
using response surface estimation. AIAA J. 38, 1931–1938

Tzevelekos, N.; Kokkolaras, M.; Papalambros, P.Y.; Huls-
hof, M.F.; Etman, L.F.P.; Rooda, J.E. 2003: An empirical
local convergence study of alternative coordination schemes in
analytical target cascading. 5th World Congress of Structural
and Multidisciplinary Optimization, Venice, 19–23 May 2003
(CD-ROM)

Van Beek, D.A.; Rooda, J.E. 2000: Languages and applica-
tions in hybrid modelling and simulation: the positioning of
Chi. Contr. Eng. Pract. 8, 81–91

Van de Mortel-Fronczak, J.M.; Rooda, J.E.; Van den Nieuwe-
laar, N.J.M. 1995: Specification of a flexible manufacturing
system using concurrent programming. Concurrent Eng.-
Res. A. 3, 187–194

Vervoort, J.; Rooda. J.E. 2003: Learning χ. Systems Engineer-
ing Group, Eindhoven University of Technology,
http://se.wtb.tue.nl

