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Summary. We consider both Nash and strong Nash implementation of 
various matching rules for college admissions problems. We show that all such 
rules are supersolutions of the stable rule. Among these rules the "lower 
bound" stable rule is implementable in both senses. The "upper bound" Pareto 
and individually rational rule is strong Nash implementable yet it is not Nash 
implementable. Two corollaries of interest are the stable rule is the minimal 
(Nash or strong Nash) implementable solution that is Pareto optimal and 
individually rational, and the stable rule is the minimal (Nash or strong Nash) 
implementable extension of any of its subsolutions. 

J E L  Classification Numbers: C78, D78. 

1 Introduction 

A class of public decision problems that has been extensively analyzed is the 
class of two-sided matching problems. (For an exposition of game theoretic 
modelling and analysis of two-sided matching problems see Roth and 
Sotomayor  E20].) Most of the studies on these problems deal with one-to-one 
matching. Nevertheless in real life applications many-to-one matching is the 
most  typical case, where one side consists of institutions and the other side 
consists of individuals: Colleges admit many students, first hire many  workers, 
and hospitals employ many  interns. On the other hand, students attend one 
college, workers work for one firm and interns work for one hospital. 

A college admissions problem 1 consists of two finite disjoint sets of agents 
(which are interpreted as sets of students and colleges), a vector of natural 

* We wish to thank Professor William Thomson for his efforts in supervision as well as his useful 
suggestions. We are grateful to the participants in his reading class, workshops at Bilkent 
University, University of Rochester, and in particular Jeffrey Banks, Stephen Ching, Bhaskar 
Dutta, Rangarajan Sundaram and an anonymous referee for their helpful comments. 
Correspondence to: T. Kara 
1 Gale and Shapley [4] introduces the college admissions problems. Gale and Sotomayor [53, 
Roth [15, 16, 17, 18], Roth and Sotomayor [19] study various aspects of the college admissions 
problems. 
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numbers (where each component is the "capacity" of a particular college), and 
a preference relation for each agent. Each student has a preference relation 
over the colleges and not attending a college. Each college has a preference 
relation over groups of students. An allocation in this context is a matching of 
colleges and students where no college is matched to more students than its 
capacity. A student blocks a matching if he prefers not attending to any college 
to its assignment. A college blocks a matching if he prefers a subset of its 
assignment to its assignment. A matching is individually rational if it is not 
blocked by a student or college. A college-student pair blocks a matching if 
they are not matched to each other, yet the student prefers the college to his 
assignment and the college prefers a subset of its assignment plus the student 
to its assignment. A matching is stable if it is not blocked by a student, a college 
or a college-student pair. A matching is in the core if no coalition can improve 
on it by its own resources. Following Gale and Shapley [4], Roth [15] shows 
in a constructive way that the set of stable matchings is non-empty for all 
college admissions problems. Moreover Roth [17] shows that the set of 
matchings in the core is equal to the set of stable matchings. 

A solution is a correspondence which selects a set of allocations for each 
problem. We refer to solutions as college admissions rules in this context. 
Some of the college admission rules of interest are: The stable rule which selects 
the set of stable matchings for each college admissions problem, the core 
correspondence which selects the set of matchings in the core, the individually 
rational rule which selects the set of individually rational matchings, the Pareto 
rule which selects the set of Pareto efficient matchings, the Pareto efficient and 
individually rational rule which selects the set of Pareto efficient and individ- 
ually rational matchings, etc. Note that the stable rule is equal to the core 
correspondence in this context. 

In a decision problem, agents usually have private information about their 
own preferences, In most cases, it may be unreasonable to expect truthful 
revelation. However there may be solutions which give agents the incentive to 
be truthful independently of the other agents' behavior; this property is known 
as strategy-proofness. On the other hand, it may be possible to reach the 
allocations selected by a solution in spite of the fact that agents behave 
strategically, by confronting them with an appropriately constructed "game 
form." This possibility is the motivation for the theory of implementation. 
A 9ameform consists of sets of possible actions for each agent (their strategy 
spaces), and an outcome function, a function that selects an allocation for each 
profile of actions. Each agent can choose from his strategy space so as to 
influence the resulting allocation in his favor. The objective is to find a game 
form such that at equilibrium the desired allocations are obtained. The 
primary equilibrium concept we consider is Nash equilibrium. (For expositions 
of implementation theory see Maskin [10], Moore [11] and Thomson [27].) 

The results concerning strategy-proofness are quite discouraging in the 
context of one-to-one matching problems. Roth [14] shows that there is no 
selection from the stable rule that is strategy-proof. Alcalde and Barber/t [1] 
improve on this result and show that there is no rule that is Pareto efficient, 
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individually rational, and strategy-proof. The classs of one-to-one matching 
problems is a subclass of the class of college admissions problems where the 
capacity of each college is equal to one. Therefore these negative results 
directly extend to college admissions problems. 2 Due to these negative results, 
in this paper  we replace strategy-proofness with the less demanding require- 
ment o fNash  implementability. We show that any college admissions rule that 
is Pareto efficient, individually rational, and Nash implementable should 
select all the stable matchings (and possibly some other matchings). That  is, 
any college admissions rule satisfying Pareto efficiency, individual rationality, 
and Nash implementability is a supersolution of the stable rule. Among such 
college admissions rules, the "lower bound" stable rule is Nash implementable. 
Therefore the stable rule is the minimal college admissions rule that is Pareto 
efficient, individually rational and Nash implementable. However the "upper 
bound" Pareto efficient and individually rational rule is not Nash implemen- 
table. The proofs of these implementability results cannot be achieved by the 
classical technique introduced by Maskin [8]. They are obtained by means of 
a recent technique developed by Danilov [2]. 

Nash equilibrium is a strictly non-cooperative concept. If cooperation 
among the players is possible, the players might do so to influence the outcome 
in their interest. In such cases it may be more appropriate  to consider strong 
Nash equilibrium as the equilibrium concept. Strong Nash equilibrium (due to 
Aumann) is the cooperative counterpart  of Nash equilibrium. Nash equilib- 
rium is defined in term of unilateral deviations. Strong Nash equilibrium 
considers deviations by all coalitions. We also consider implementation in 
strong Nash equilibrium. We show that any college admissions rule that is 
Pareto efficient, individually rational, and implementable in strong Nash 
equilibrium is a supersolution of the stable rule. Among such rules both the 
"lower bound" stable rule and the "upper bound" Pareto efficient and 
individually rational rule are implementable in strong Nash equilibria. 

2 Definitions and notation 

In this section we first define implementability and related concepts in the 
framework of general social choice theory. We will make use of these concepts 
in the framework of college admissions problems. 

The set of alternatives is A. The set of agents is N = {1, 2 . . . . .  n}. For  each 
agent iEN, ~i is the set of his possible preference relations. The lower contour 
set of R i at aeA is L(a, Ri) = {beA: aRib }. 

2 S6nmez [24] studies strategy-proofness on college admissions problems. He shows that when 
each college can admit as many students as it wants the stable rule is single-valued and also 
strategy-proof. Moreover it is the only rule that is Pareto efficient, individually rational and 
strategy-proof. Finally, he shows that a rule satisfying these properties exists if and only if each 
college can admit as many students as it wants. S6nmez [25] further studies strategy-proofness on 
a general class of matching problems and shows that there exists a rule that is Pareto effficient, 
individually rational and strategy-proof only if the core correspondence is single-valued. Further- 
more if there is such a rule it is the core correspondence. 
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Let N = ~Ii~N Ni. A social choice rule (or simply a rule) is a correspondence 
~0: N -~ A. A preference profile/{ is obtained by a monotonic transformation of 
R at aeA,  if L(a, R~) ~_ L(a, R~) for all i sN.  Let MT(R,  a) denote the set of 
preference profiles that are obtained by a monotonic transformation of R at a. 
A rule, q), is monotonic if for all R,/{ e N, and for all a e ~o(R), if_~ ~ M T(R, a) then 
ae~o(R). The rule satisfies no veto power if, for all ieN, and for all RsN,  if 
A = L(a, R j) for all j~N\{i} ,  then asq)(R). 

A game form is a pair F =  (X ,h)= (I]~NXi, h), where X~ is agent i's 
strategy space, and h: X--, A is an outcome function. The pair (F, R) defines 
a game. A strategy profile x s X  is a Nash equilibrium for the game 
(F, R) = ((X, h), R) if and only if for all is N and for all x' i s X i, h(x)Rih(x I, x_ i). 
Let N(F, R) denote the set of Nash equilibria for the game (F, R). A strategy 
profile is a Nash equilibrium if no agent can benefit by a unilateral deviation. 
The game form F implements ~p in Nash equilibria, if h(N(F, R)) = ~0(R) for all 
REN. 

Maskin [8] shows that monotonicity is a necessary condition for Nash 
implementability. Maskin [8], Williams [28] and Saijo [21] further show that 
monotonicity and no veto power together are sufficient for Nash implement- 
ability. 

A college admissions problem is a four-tuple (C, S, q, R). The first two 
components of the four-tuple C = {c 1 . . . . .  c,}, and; S = {sl . . . . .  sin} are two 
non-empty, finite and disjoint sets of colleges and students. The third compo- 
nent q = (%, . . . .  qcn), is a vector of positive natural numbers, where qci is the 
capacity of college cisC. The last component R = (R~)~c~ s is a list of prefer- 
ences of colleges and students. Let P~ denote the strict relation and I~ denote 
the indifference relations associated with the preference relation Ri for all 
i e C u S .  We consider the case where C, S and q are fixed and hence each 
preference profile defines a college admissions problem. 

The preference relation R~ of student s sS  is a linear order on 
~s = {{q},-- . ,  {c~}, Zf}. Let ~ be the class of all such preference relations for 
student ssS. The preference relation R~ of college ceC is a linear order on 
2;cq = { G } ~ s  and it is responsive (Roth [16]). That is, for all G _c S such that 

IGl<qc,  

G~{s}P~Gu{s}  sPcs; 1. For  all s, s ' sS\G,  , ,<=> ,3 
2. For all ssS \G,  Gu{s}P~G~:~{s}P~. 

Let N~ be the class of all such preferences for college c~C. Let N = N~ x ~ .  
The choice of a college c from a group of students G _  S under the 

preference Re is defined as 

Ch~(R~, G) = {G' ~_ G: ]G'[ <_ % G'R~G" for all G" ~_ G such that IN"] < qc} 

A matching/~ is a mapping from the set C u S into 2 c~s (the class of subsets 
of C u S) such that: 

3 We write s istead of {s}. 
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1. For  all s~S, ]/~(s)[ _< 1 and #(s) = ~ if #(s) _~ C; 
2. For  all ceC, I~(c)l ~ qc and #(c) = ~3 if/4c) ~ S; 
3. For  all (c, s)eC x S, Iz(s) = c if and only if sE#(c). 4 

For  any i~ C w S, we refer to #(i) as the assignment of i at #. We denote the set of 
all matchings by ~ .  

In the present context of college admissions problems, N = C w S and A is 
the set of matchings .~. Given a preference relation R c of a college ceC, 
initially defined over Zcq, we extend it to the set of matchings ~/, in the 
following natural way: c prefers the matching # to the matching #' if and only if 
it prefers its assignment under # to its assignment under #'. We slightly abuse 
the notation and also use R c to denote this extension. The same can be done for 
each student seS. 

A college e e C is acceptable to a student s E S under a preference profile R if 
cPsCL A student s~S  is acceptable to a college ce C under a preference profile 
R if sPc(25. A matching # is blocked by a student sES under a preference profile 
R if/~(s) is not acceptable to s under R. A matching # is blocked by a college 
c under a preference profile R if #(c) ~ Ch~(R~, #(c)). Note that this statement is 
equivalent to the following under responsive preferences: A matching/~ is 
blocked by a college c~C under a preference profile R if there is a student 
s~#(c) which is not acceptable to c under R. A matching # is individually 
rational under a preference profile R if it is not blocked by a student or a college 
under R. We denote the set of all individually rational matchings under R by 
Y(R). 

A matching p is blocked by a college-student pair (c , s )eCx S under 
a preference profile R if cPs#(s) and/~(c) r Ch~(R~, #(c)u {s}). Note that an 
individually rational matching #EJ(R)  is blocked by a college-student pair 
(c, s)eC x S under a preference profile R if cP~#(s) and 

1. sPc~ if ]#(c)[ < % 
2. there exists a student s'~#(c) with sPcs' if I#(c)[ = q~. 

A matching # is stable under a preference profile R if it is not blocked by 
a student, a college, or a college-student pair. We denote the set of all stable 
matchings under R by 5P(R). Roth [15] shows that for any R ~  there exists 
a matching t~c(R)~AP(R) such that 

V#eSP(R), Vc~C #c(R)(C)RciL(c ) 

We call the matching ilc(R ) the college-optimal stable matching for the 
preference profile R. There is an analogous matching which favors the 
students. We refer to this matching as the student-optimal stable matching for 
the preference profile R, and denoted it by #s(R). 

A matching/~ is Pareto optimal under R if there is no other matching #' such 
that #'(i)Ri#(i ) for all ie C u S and #'(j)P]#(j) for somejE C w S. A matching # is 
weakly Pareto optimal under R if there is no other matching #' such that 

4 We write c instead of {c}. 
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#'(i)P~#(i) for all ie C w S. We denote the set of all Pareto optimal matchings 
under R by r and the set of all weakly Pareto optimal matchings under 
R by ~ ( R ) .  

In the context of college admissions problems, rules will be referred to as 
college admission rules~ An example of such a rule is the rule that selects the 
college-optimal stable matching, pc(R), for each preference profile ReN.  We 
call this rule the college-optimal stable rule and denote it by #c- We define the 
student-optimal stable rule analogously and denote it by #s. Other examples 
of college admission rules are the one which selects the set of the stable 
matchings Ae(R), the Pareto rule which selects the set of Pareto optimal 
matchings ~(R), the individually rational rule which selects the set of individ- 
ually rational matchings J(R), and the Pareto and individually rational rule 
which selects the set of Pareto optimal and individually rational matchings 
N(R) c~ J (R)  for each preference profile REN. We denote the stable rule by ~ ,  
the Pareto rule by ~ ,  the individually rational rule by J ,  and the Pareto and 
individually rational rule by ~ J .  

3 Monotonic college admission rules 

The stable rule is monotonic. A next natural question is whether there are 
other subsolutions of the Pareto and individually rational rule that are 
monotonic. Theorem 1 concerns monotonic subsolutions of the Pareto and 
individually rational rule. It states and proves that all monotonic solutions 
that are Pareto efficient and individually rational are supersolutions 5 of the 
stable rule. Therefore, if there is any hope of implementing a Pareto efficient 
and individually rational rule in Nash equilibria, it is the stable rule and its 
supersolutions. 

Theorem 1 Let ~o ~ ~ S  be monotonic. Then ~ c_ ~o. 

Proof: Let qo c ~ j  be monotonic. Let R c ~  and #~9~(R). We need to show 
that geq)(R). Let ceC. Define ~(c) as 

S{s~g(c):s'Rcs for all s'~#(c)} if I#(c)l-- qc 
#(c)= 
- ) ~ f  if I#(c)[ < qc 

Define the set S(#, c) as 

,g(#, c) = {seS:p(c)PcsP~ } 

Order the elements of S(#, c) = {sl . . . .  , st} such that glPfit_ 1"" s2Pfil �9 Define 
the set Yk(#, c) as 

Yk(#,c)={GeX~:gkr Ial <q~} k= 1,2,...,/ 
Let R ~ = R~. Given R) ~, let R~ (k = 1 . . . . .  l) be such that 

1. For  all G, G'eX~\Yk(#,c) 
k i k - 1  r GP~ G "*~GPc G 

s A rule 0 is a supersolution of the rule q0 if ~o c_ O. 
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2. For all Gs Yk(#, c) 

GP~Gw{~k} and ~G' c__S such that GP~G'P~G~{gk} 

Note that R~ is responsive for all k = 1 . . . . .  I and for all ceG (see Appendix A). 
Let R ~  be as follows: (see Figure 1 and Figure 2) 

1. For all seS  with #(s) = 

2. For all seX wth #(s) r 

(a) For all c, d e C  

R~ = R s 

/<:::i> t CPsC CPsC 

(b) #(s)/3~ and there does not exists c~C\#(s) such that #(s)PscPs(25. 

3. For all cEC 

/~c = Rf  ("'c)l 

Note that we have R~MT(_~, #) (see Appendix B). 
We have #eS:(R)__ J(R), and #eJ(/~). Suppose there exists a college- 

student pair (c, s)eC x S such that cP~#(s). Then we have cPs#(s). But #~5:(R), 
therefore ~(c)Pcs and hence ~_P~s. Thus no college-student pair blocks # under 
R and #eS:(/~) c_ ~J(/~). 
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Let seS and c6C be such that cPs#(s ). Since #~Y(/~) we have ~(c)Pcs and 
hence we have ~/~A. Therefore 

v#'~J(~), Vs~S #(s)FCs#'(s) 

Let ceC and seS\#(c) be such that SPc~_(c ). Then, since #eS'~(/~) we have 
#(s),Psc and hence we have ZPs c. This with the individual rationality of 
# under/~ implies that 

v#'~r Vcec #(c)~j(c) 

and hence ~ J ( / ~ ) =  {#}. Therefore ~0(/~)= {#}. But REMT(R,#) and q0 is 
monotonic, therefore # ~ ~o(R). [] 

Remark 1 This result is a generalization of a result obtained for the one-to- 
one matching problems (marriage problems) in Kara and S6nmez [6]. 

One of the college admission rules that is often analyzed in the literature is 
the college-optimal stable rule (student-optimal stable rule). This rule is used 
to match medical interns and hospitals by the National Resident Matching 
Program. 6 One of the corollaries of Theorem 1 is that the college-optimal 
stable rule (student-optimal stable rule) is not monotonic. Therefore the 
college-optimal stable rule is not Nash implementable, and hence it is natural 
to ask how close it is to being Nash implementable. One appealing operation 
consists of expanding the rule such that the resulting rule is Nash implemen- 
table, and therefore monotonic. Among the possible expansions a minimal one 
is the most desirable. This is the motivation for the following definition due to 
Sen [22]. Given cp: .~ ~ A, the minimal monotonic extension of q~, mme(~o), is 
defined by 

mme(~o) = ~ {~p: N --, A: ~p _~ q~, where/p is monotonic} 

Note that mme(~o) is well defined as the feasible rule, the rule that selects the set 
of all alternatives for each preference profile, is monotonic. We also have 
mme(~o) monotonic as monotonicity is closed under intersection. (To see some 
applications of the concept of minimal monotonic extensions in the classical 
domain see Thomson [26].) 

Another corollary to Theorem 1 is that the stable rule is the minimal 
monotonic extension of any of its subsolutions. In particular, it is the minimal 
monotonic extension of the college-optimal stable rule (student-optimal stable 
rule). 

Corollary I Let (p _~ 50 be monotonic. Then (p = 5'. 

Proof: Follows from monotonicity of the stable rule and Theorem 1. [] 

Any matching that is not stable has little chance to survive in real life 
applications and this observation highlights the importance of this corollary. 
Consider the hospital-intern matching in the United States. After being 
matched to a hospital it usually takes an intern only a few telephone calls to 

6 See Roth [15]. 
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identify a preferable match. If a hospital can also benefit from this arrange- 
ment, there is no reason to expect the intern and the hospital to accept 
the assignment of the National Resident Matching Program. Note that in 
the United States the participation in this system is voluntary and the 
arrangements of the National Resident Matching Program are not legally 
binding. 

4 Nash implementable college admission rules 

The next natural question is whether there are subsolutions of the Pareto and 
individually rational rule that are Nash implementable. Due to Theorem 1, we 
need to concentrate on the supersolutions of the stable rule. A natural point of 
departure is checking whether the stable rule itself is Nash implementable. 

Monotonicity is a necessary condition for Nash implementability. Mono- 
tonicity together with no veto power are sufficient conditions for Nash 
implementability. The stable rule is monotonic. Yet it does not satisfy no veto 
power. Hence we cannot determine whether the stable rule is Nash implement- 
able by appealing to these results. Nevertheless, the next theorem shows that 
the stable rule is Nash implementable as long as there are at least three agents. 
We will need further notation and results to prove the theorem. For  this, we 
will return to the general context. 

Let q~: ~ -~ A and B _~ A. An alternative bEB is essential for agent iEN in 
B for ~p if 

~RE~ L(b, Ri)~_B and bEcp(R) 

We denote the set of esssential alternatives for agent iEN in B for (p by 
E(cp, i, B). A rule, (p, is essentially monotonic if for all R,/~ E ~ and for all a e cp(R), 
if E(~o, i, L(a, Ri) ) ~_ L(a, Ri) for all iEN, then aEq~(/~). 

Danilov [2] shows that if [ N I _> 3 then (p is Nash implementable if and only 
if it is essentially monotonic. 

Danilov proves his result on a domain where preferences are linear orders 
on A. Yamato [29] generalizes his result as follows: Let ~ be such that, for all 
aEA, R E~, iEN, and bEL(a, Ri), there exists R ' 6 ~  such that L(b, R'f) = L(a, Ri) 
and for all j ~ i, L(b,R)) -= A. Then, if IN[ _> 3, a social choice rule (p is Nash 
implementable if and only if it is esssentially monotonic. 

Our domain does not satisfy Danilov's domain assumption. Nevertheless 
it does satisfy Yamato's. Therefore in the proof of the following theorem we 
will use Yamato's result. 

Lemma 1 For  all RE.~, #ESP(R), cEC, sES we have 

E(5 ~, c, L(#, Re) ) = {#'eL(#, Re) :VG _~ #'(c) #(C)RcG } 

E( 5 p, s, L(#, Rs) ) = L(#, Rs) 

Proof: Let us first consider the colleges. Let ReN,  #ES'~(R) and cEC. Let 

L(#, Rc) -= {#'eL(#, Re): VG ___ #'(c) #(c)RcG } 
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Claim 1: E(~,  c, L(#, Re) ) ~_ L(#, Rc). 
Let #'6E(~9 ~ c, L(#, Re) ). Then there exists R ' 6 ~  such that 

#'6~9~ ') and L(#',R'c)~_L(#,R~) 

Therefore #'~L(~, Re). As #'~SP(R ') we have 

VG ~_ #'(c) #'(c)R;G 
which implies 

VG ~_#'(c) #(c)R~G 
There #'eL(#, R~). 

Claim 2: L(#, Re) __ E(~, c, L(#, Re)) 
Let #'eL(#, Re). Let R ' e ~  be such that 

1. Vs~S, Vc~C\#'(s) #'(s)R'sL2JP'sC. 
2. Vc'~C\{c},VG~Zq~, #'(c')R'~,G. 
3. VG _ #(c), VG' ~ #(c) G'P'~#(c)R'~GR'c~J. 

(Note that in the preference profile R' the colleges' preferences are compatible 
with responsive preferences.) 

By construction we have # ' ~ ( R ' )  and 

L(#', R;)= {~e~:3~ _~ #'(c) ~(c)= C} 
As #' ~L(#,R~) we have #(c)Rc~(C ) for all [zeL(#',R'~), i.e., L(#',R'~)~_ L(I~,Rc). 
Therefore # '~E(~,  c, L(#, R~)). 

This shows that 

E(S P, c, L(#, R,)) = L(#, R~) 

By similar arguments it can be shown that 

E(S P, s, L(#, Rs) ) -- L(#, R~) = {#'eL(#, R~): VG _~ #'(s) #(s)R~G} 

Each student has a capacity equal to one and # ~ ( R )  ___ J(R),  which implies 
L(#, R~) = L(#, R~). Therefore 

E(S~, s, L(#, R~)) = L(#, Rs) 
[] 

Note that for all R ~ ,  for all c~C, and for all #~J(R) ,  #EL(#,Rr 
E(y', ~, L(#, R~)). 

Theorem2 Let ]CuSI_>3. The stable rule is implementable in Nash 
equilibria. 

Proof: Let [CuS]  >_ 3. Let R, R ' e ~  a n d / z e J ( R )  be such that 

Vie C u S E(~9 ~ i, L(#, a~)) _~ L(#, R'f) 

(1) Let seS. Let #, be such that # / ( s ' ) = ~  for all s'eS. We have 
# e ~ ( R )  _~ J (R)  and therefore 

#,~L(#, n,) = E(S ~, s, L(#, n,)) _ L(#, n',) 

Hence s will not block # under R' s alone. 
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(2) Let ceC.  Note that if/7~L(#, Re) and fi is such that fi(c) = fi(c)\{s} for some 
s~Ft(c), then fiE L(#, Rc). We have /2eL(/2,Rc) therefore for all fi such that 
fi(c) =/2(c)\{s} for some se/2(s) 

fi ~ L(/2, Re) = E( 6 ~, c, L(/2, Rc) ) ~_ L(/2, R ;) 

Hence c will not block/2 under R'~ alone. 
(3) Let (c ,s)sC x S. Suppose (c, s) blocks/2 under R'. Then 

cn's/2(s ) and s~Ch~(R'~,l~(C)u {s}) 

Le t /~e / r  such that fi(c) = Ch~(R'c,/2(c) t) {s}). We have E(6 a, s, L(#, Rs) ) = 
L(/2, Rs) , therefore L(/2, Rs) c L(/2, R's) which implies 

CPs/2(s) 

Furthermore suppose that/2(c)R~fi(c). Let G =/7(c)\{s}. Note that G G #(c). We 
have /2eJ(R) therefore /2(c)R~GR~G' for all G ' ~  G. This together with the 
responsiveness of the preferences implies that Gu  {s} = fi(c)RcG' w {s} for all 
G' _~ G and therefore #(c)R~G" for all G" ~_ fi(c). That is fieE(SP, c, L(/2, Rc)). But 
E(5~,c,L(#,R~)) ~_ L(/2,R;) therefore /2(c)R;fi(c) which is a contradiction to 
fi(c) = Ch~(R;, g(c) u {s}). Therefore 

r 

We also have CPs#(S), therefore (c, s) blocks # under R. This is a contradiction 
to/2~SP(R). Hence (c, s) will not block/2 under R'. 

This shows that/2s 5~(R'), therefore the stable rule is essentially monotonic 
and hence it is implementable in Nash equilibria. [] 

Note that Theorem 1 and Theorem 2 together imply that the stable rule is 
the minimal Nash implementable subsolution 7 of the Pareto and individually 
rational rule. The next corollary states that (as long as there are three or more 
agents) the stable rule is the minimal Nash implementable extension of any of 
its subsolutions. 

Corollary 2 Let I C u S] _> 3 and (p c 5P be Nash implementable. Then (p = 5C 

Proof: Follows from Theorem 2 and Corollary 1. [] 

The next step is implementing the stable rule in Nash equilibria. As we have 
satisfied the necessary and sufficient conditions noted in Danilov [2], the game 
form introduced in the paper can be used to implement the stable rule in Nash 
equilibria. 

Moore and Repullo [12], Dutta and Sen [3], and Sj6str6m [23] provide 
necessary and sufficient conditions for Nash implementability whenever there 
are two agents. Using their conditions, it is straightforward to show that the 
stable rule is not Nash implementable whenever [ C] = ] S[ = 1. See Kara and 
S6nmez [7] for an independent proof. 

The solution 0 _~ ~0 is the minimal Nash implementable subsolution of ~0 if it is Nash 
implementable and 0 _~ qb for all ~b _c ~o that is Nash implementable. 
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Wha t  about  the Pareto  and individually rational rule itself? Before 
answering this question let us first consider the Pareto  rule and the individ- 
ually rational rule. It is known that the Pare to  rule is mono ton ic  when 
preferences are strict. (See for example Palfrey and Srivastava [13].) It also 
satisfies no veto power. Therefore the Pare to  rule is Nash  implementable, s 
The individually rational rule is also monotonic .  Yet it does not  satisfy no veto 
power. Nevertheless the individually rational rule is implementable in Nash  
equilibria. We propose a simple game form to implement the individually 
rational rule in Nash  equilibria. In this game form each student announces  
a college and each college announces  a group of students. 

Let A = (X,h) be as follows: Xc = 22 q for all c~C and X= = X s for all seS; 
h: X ~ J is defined as 

{x~ i f x = r  andsex~= 
VxEX, Vs~S h(x)(s)= otherwise 

Proposition 1 The game form A implements the individually rational rule in 
Nash  equilibria. 

Proof: 

(1) S(R)  __ h(N(A, R)). 

Let #~J (R) .  Let x e X  be such that  x~ = #(i) for all i eCwS.  Then h(x) = #. 
For  all seS, for all x'=EX s, 

h(x;, x s)(s)e {#(s), ~ }  

and we have Ns)R=~23 by #eJ(R) .  Therefore no student gains by a unilateral 
deviation. 

For  all ceC, for all x ; e X  c 

h(x;, x c)(c)e{Ge22~: G ___ #(c)} 

We have #(c)RcG for all Ge#(c) by # e J ( R ) .  Therefore no college gains by 
a unilateral deviation. 

Hence xeN(A ,  R) and # = h(x)sh(A, R). 
(2) h(N(A, R)) ~_ J(R). 

Let #~h(N(A, R)) and x~N(A,  R) be such that  h(x) = #. 
Let s~S, x'= = ~Z~. Then h(x'=, x s)(S) = ~3. But x~N(A,  R), therefore 

#(s) = h(x)(s)R=h(x' s, x_=)(s) = ~2~ 

Let c ~ C, se #(c), x'~ = #(c)\{s}. Then h(x'~, x_ ~)(c) = #(c)\{s}. But x E N(A, R) 
therefore 

#(c) = h(x)(c)R~h(x' c, x _ c)(c) = #(c)\  {s} 

Hence #~J (R) .  [ ]  

8 Let the weak Pareto rule ~w, be the matching rule which selects the set of weak Pareto optimal 
matchings for each preference profile R eN. Similar results holds if the weak Pareto rule is replaced 
by the Pareto rule. 
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The Pareto and individually rational rule is monotonic since both the 
Pareto rule and the individually rational rule are monotonic. However the 
Pareto and individually rational rule does not satisfy no veto power, so that 
once again Maskin's result does not apply. The next proposition shows that 
the Pareto and individually rational rule is not implementable in Nash 
equilibria. 

Lemma 2 For all R ~ ,  #~g~J(R), c~C, s~S we have 

E ( # J ,  c, L(#, Rc) ) = {#'eL(#, R~) :VG c #'(c) #(c)RcG} 

E(~r  s, L(#, Rs) ) = L(#, Rs) 
Proof: Similar to Lemma 1. [] 

Proposition 2 The Pareto and individually rational rule is not implementable 
in Nash equilibria. 

Proof: Let S = {s 1, $2,$3,$4_}, C = {Cl, C2} , qc, = qc~ = 2 and R, /~6~ be such 
that 

R~ 1 /~r Re2=/~ 2 

{$1, $3} {S1, $3} {S1, $3} 
{S1} {$1} {$2, $3} 

~ {~} 

Rs,=Rs, R~2=Rs ~ R~3=Rs ~ Rs4=Rs 4 
C 1 C 2 C 2 C 1 

C 2 C 1 C 1 C 2 

Let # c ~  be such that #(cl)= {Sz, S3} and #(c2} = {Sl, S~}. Note that 
#~NJ(R).  We have 

E ( ~ J ,  cl, L(#, Re) ) = L(#, Rc)\  {sl, s4} 

E (~Y ,  c2, L(#, Rc2) ) = L(#, Re2 ) 
and 

Vs~S E(~Y ,  s, L(#, Rs) ) = L(#, Rs) 
We also have 

Vi~CwS E(~Y ,  i, L(#,Ri) ) c_ L(#, Ri) 

Let #' ~Jg be such that #'(c 1) = {~, s4} and  #'(c2) = {s2, s3}. Note that #'(i)Pi#(i) 
for all ieC u S. Therefore #~W(R)  and #q!~J(R) which implies that ~ J  is not 
essentially monotonic and hence not Nash implementable. [] 

Remark 2 Even though both the Pareto rule and the individually rational rule 
are Nash implementable, the Pareto and individually rational rule is not. This 
illustrates that the Nash implementability (unlike monotonicity) is not closed 
under intersection. 
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Table 1. 

No veto Monotonicity Nash Notes 
power implementable 

5 p No Yes Yes We use Danilov's results tO show 
that 5 ~ is Nash implementable 

#s No No No Follows from Maskin's result 

~o ~ 5 ~ No No No Follows from Maskin's result 

-~ Yes Yes Yes Follows from Maskin's result 

~'~ Yes Yes Yes Follows from Maskin's result 

~r No Yes Yes We provide a simple game form 
to implement ~r in Nash equilibria 

~,,~ No Yes No We use Danilov's result to show 
that ,~J is not Nash implementable 

~wj  No Yes No We use Danilov's result to show 
that ~wj  is not Nash 
implementable 

Remark 3 Let the weak Pare to  and individually rational rule be the matching 
rule which selects the set of weakly Pareto  optimal and individually rational 
matchings ~W(R) c~ J;(R) for each preference profile Rs,~.  We denote the weak 
Pareto  and individually rational rule by ~ w j .  The proof  of Proposi t ion  2 can 
be modified to show that  the weak Pareto  and individually rational rule is not  
implementable in Nash  equilibria. 

Remark 4 Kara  and S6nmez [6] shows that  the Pareto  and individually 
rational rule is Nash  implementable in the class of one- to-one matching 
problems. 

We summarize these results in Table 1: 

5 Strong Nash implementable college admission rules 

So far we have considered Nash  equilibrium as the equilibrium concept. Nash  
equilibrium is a strictly non-cooperat ive  concept. If coopera t ion  among  the 
players is possible, the players might  cooperate  to influence the outcome 
towards their interest. In such cases it might  be more  appropria te  to consider 
strong Nash  equilibrium as the equilibrium concept. Strong Nash  equilibrium 
(due to Aumann)  is the cooperat ive counterpar t  of the Nash  equilibrium. 
Nash  equilibrium is defined in terms of unilateral deviations. Strong Nash  
equilibrium considers deviations by all coalitions. In  this section we consider 
strong Nash  equilibrium as the equilibrium concept. 

A strategy profile x ~ X  is a strong Nash equilibrium for the game 
(F, R) = ((X, h), R) if and only if for all G ~_ N, and for all x'GeX G, either 
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(i) there is an agent i~G such that h(x)Pih(x'G, x_c) , or 
(ii) for any agent ie G, h(x)Rih(x' ~, x_ ~). 

Let SN(F, R) denote the set of strong Nash equilibria for the game (F, R). 
A strategy profile is a strong Nash equilibrium if no coalition of agents can 

weakly benefit all and strictly benefit at least one of its agents by a collective 
deviation. The game form F implements ~ in strong Nash equilibria, if 
h(SN(F, R)) = ~0(R) for all R e ~ .  

Monotonici ty is not necessary for strong Nash implementation. 9 Never- 
theless whenever the preferences are strict, monotonicity is necessary for 
strong Nash implementation. Therefore Theorem 1 implies that if we have any 
hope of implementing a Pareto efficient and individually rational matching 
rule in strong Nash equilibria, it is the stable rule and its supersolutions. 
The next proposition shows that the stable rule is implementable in strong 
Nash equilibria. We will need further definitions and results to prove the 
proposition. 

We define the set of stable matchings to be the set of matchings which are 
not blocked by coalitions of size one or two. It  is not obvious that this notion is 
adequate as we might need to consider coalitions of bigger size. This is the 
motivation for the following definitions. 

A matching # e ~  is blocked by a coalition G c C w S if there exists another 
matching #' ~ . ~  such that for all students s E G c~ S and for all colleges c E G c~ C 

1. #'(s)EG (i.e., every student in G who is matched by #' is matched to 
a college in G); 

2. #'(s)Ps#(s ) (i.e., every student in G prefers his or her new matching to his 
or her old one); 

3. i~#'(c)~ieGw#(c) (i.e., every college in G is matched at #' to new 
students from G, although it may continue to be matched with some of 
its "old" students from #(c)); 

4. #'(c)Pc#(c ) (i.e., every college in G prefers its new set of students to its old 
ones) 

A matching # is group stable under R if it is not blocked by any coalition. 
Roth [161 shows that as long as the preferences for the colleges are 

responsive, group stability is equivalent to stability for college admissions 
problems. That  is, a matching is group stable if and only if it is stable. 

Recall that we defined the game form A as follows: Xc = 27~ for all c~C and 
Xs = 27 s for all s~S, h: X ~//Z is such that 

{x~ ifxs~S2~ ands~xx, 
Vx~X, Vs~S h(x)(s) = otherwise 

9 Maskin [9] considers implementation in the following weaker notion of strong Nash equilibria: 
A strategy should be such that no coalition of agents can benefit all of its members by a collective 
deviation. He shows that monotonicity is necessary for implementation in this notion of 
equilibrium. 
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In the last section we show that the game form A implements the 
individually rat ional rule in Nash equilibria. The next proposi t ion shows that  
the same game form implements the stable rule in strong Nash equilibria. 

Proposition 3 The game form A implements the stable rule in strong Nash 
equilibria. 

Proof: 

Claim 1: h(SN(A,  R)) c_ 5p(R). 

Let I~eh(SN(A,  R)) and x e S N ( A ,  R) be such that  h(x) = !~. 
Let soS,  and x' s = ~ .  Then h(x'~, x_s)(s) = 5Z5. But x e S N ( A ,  R) c__ N ( A ,  R), 

therefore 

I~(s) = h(x)(s)R~h(x' s, x _ ~)(s) = 

Let ceC ,  G c_ #(c), and x; = G. Then  h(x;, x_c)(c ) = G. But x e S N ( A ,  R) c_ 
N ( A ,  R), therefore 

#(c) = h(x)(c)Rch(x;, x c)(c) = G 

Thus, no student or college will block # under  R individually and hence 
#~J (R) .  

Finally let (c, s ) eC  x S be such that s@~(c). We need to consider two cases: 

Case 1: I~(c)l < qc 

Let x ' ,=c and x ' c=#(c )u{ s  }. Then h(x'c,x',,x {c4)(s)=c and 
h(x'c, x b x_  {c,s})(c) =/,(c) u {s}. But x ~ S N ( A ,  R) which implies either 

l~(s) = h(x)(s)Psh(x'~, x'~, x_  {~,,})(s) = c 
o r  

#(c) = h(x)(c)P~h(x' c, x's, x _ {c,,})(c) = #(c) vo {s} 

Thus the college-student pair (c, s) does not  block # under  R. 

Case 2: I/~(c) l = q~ 

Let x ; = c  and x ; = ( 1 4 c ) \ { s ' } ) u { s }  for some student s'e#(c). Then 
h(x;, x;, x_{~,s})(s ) = c and h(x;, x;, x_{c4)(c ) = (/z(c)\{s'})u {s}. But x ~ S N ( A ,  R) 
which implies either 

#(s) = h(x)(s)P~h(x;, x;, x_  {~,~})(s) = c 
o r  

#(c) = h(x)(c)P~h(x'~, x',, x_  {~,s})(c) = (#(c)\{s'}) u {s} 

But s'e#(c) is arbitrary,  therefore either 

#(s)P~c 
o r  

gs'e#(c) 12(x)P~(#(c)\{s'})u {s} 

Thus the college-student pair (c, s) does not  block/~ under R. 
Hence #eSP(R). 
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Claim 2: 5P(R) _~ h(SN(A, R)). 

Let #eJf f  be such that #(~h(SN(A, R)). Suppose #65~(R). Let x ~ X  be such 
that x i = # ( i  ) for all i e C u S .  We have xq~SN(A,R). Therefore there is 
a G'~_ C u S  and x'G,sX a, such that h(x'G,, x_6,)(i)Rih(x)(i)=#(i ) for all ieG', 
h(x'~,, x_ G,)(j)Pjh(x)(j)= #(j) for some jEG', and h(x)(k)Rkh(X'~,, x_ G,)(k) for 
all ks (C  u S)\G'. Let 

or equivalently 

G" = {i~ G' :h(x'o,, x a')(i)Iih(x)(i) = #(i)} 

G" = {ieG' : h(x'~,, x_a,)(i ) = #(i)} 

Then the coalition G = G'\G" is such that h(x'o, x a)(i)Pih(x)(i) for all ie G. 
For  all seG and for all y a e X a  we have 

h(y o x_ ~) (s) ~_ G w #(s) 

But h(x'G, xa)(s)Psh(x)(s ) = #(S)Rs(25, therefore h(x'~, x_c)(s)eG. For all c eG, 
for all y a ~ X a  we have 

h(y a, x _ G) (c) c_ #(c) u G 

Let / l '  = h(x'G, x_ a). Then 

1. V s ~ S n G  #'(s)~G, 
2. V s ~ S n G  #'(S)Ps#(S), 
3. V c ~ C n G  ie# ' ( c )~ i~Gu#(c ) ,  
4. V c ~ C n G  #'(c)Pc#(c ). 

Therefore # is not group stable contradicting # is stable. Hence #q~SD(R). [] 

Corollary 3 Let (p _~ J be strong Nash implementable. Then ~0 = 5 p. 

Proof: Follows from Corollary 1 and Proposit ion 3. [] 

What  about  the Pareto efficient and individually rational rule itself. The 
following game form due to Maskin [9] implements the Pareto and individ- 
ually rational rule in strong Nash equilibria: X? = (X, h) where X i = ~ for all 
i ~ C u S ,  and h: X---, ~ is such that 

Vx~X,  V i e C w S  h(x)( i)=~xi!  i) if x i = x  j for all j ~ C u S  
otherwise 

The reader is referred to Maskin [-9] for a proof. 
We finally consider the strong Nash implementation of the individually 

rational rule. The next proposition due to Kara  and S6nmez I-7] provides an 
indirect answer to this question. We state and prove this proposition in the 
general framework. 

Lemma 3 A rule (p: ~ ~ A  is strong Nash implementable only if for all R ~  
and for all a, a'cqo(R), ifaP~a' for some i~N, then a'Pja for some j e N .  
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Proof: Let q~ be implementable in strong Nash equilibria and F = (X, h) be 
the game form implementing q) in strong Nash equilibria. Suppose there exists 
R e N  and a, a'ecp(R) such that 

VieN aR~a' and 3j~N aPja' 

Since a, a'eq)(R) and cp is strong Nash implementable there exists strategy 
profiles x, x' ~SN(F, R) such that h(x) = a and h(x') = a'. Consider the grand 
coalition N. We have h(x)(i)Rih(x')(i ) for all i~N, and h(x)(j)Pjh(x')(j) for some 
j ~ N  contradicting x'~SN(F, R), completing the proof. []  

Proposition 4 The individually rational rule is not strong Nash implement- 
able. 

Proof: Follows from Lemma 3. [] 

A p p e n d i x  A 

In Appendix A we prove that the preference relation/~c that is constructed 
in the proof of Theorem 1 is responsive for all ce C. 

Let us first consider the case I S(~, c) l -- 0. Then/~c = R~ = Rc and we are 
done. 

Let [ S(/z, c) l > 0. It suffices to show that R~ is responsive. (The same argu- 
ments can be repeatedly used to show that/~c is responsive.) 

Recall that 

Yl(P, c) = {Gelqc : sl (~G, I a l  < q~}  

(We simply denote Yl(#, c) by Y1-) 
Let R~r be such that (see Figure 3) 

1. For all G, G'6!~\Ya 

. For all Ge Y1, 

GP~GW{gl} and 

1 ! ! GP c G <=>GP~G 

GPc G Pc GU{Sl} ~G'eI~\{G} s u c h  t h a t  i , 1 ^ 

~_(c) 

s ~-(c) 

f N 

I I 

1 I [ 
~1 ~ s' 

/ 
I I I 

Figure 3. 
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Note that (1) and (2) above and the responsiveness of R c implies that 

Vs, s' ~S sP~s' <>SPcS' 

Let GeX~  be such that [G[ < G- We first show that for all s, s ' e S \ G ,  
G u {s}PJG u {s'} if and only if sPas'. We need to consider four cases. 

, q da) c u  {s }eZc\r,. 

G u  {s}PX~Gu {s'} <=> G u {s}P~G~ {s'} 

(By the construction of R)) 

.r sEes' 

(By the responsiveness of R~) 

"*~ s P ~ s' 

(By the construction of R~) 

(Ib) Gu{s},Gu{s'}eY~ 
G u { s } p i G u { s , } < = > G w { s } P ~ G u { s , ^  1 , 1 , ^  s1}P c G t) {s }Pc G u {s, $1} 

(By the construction of R~) 

<=~ sP is '  

(By case la) 

(lc) G u  {s}e Y1, G u  {s ' }eY,~\YI  

Since G u { s } s Y ~  we have I G u { s } l < q c  and ~ r  This implies that 
I G w {s'} I < qc. Since any element in 228\ Y~ either contains ~ or has cardinality 
qc we have s' = ~j. Hence 

~zJ\Y, ~z~\rl 
(By the construction of R~) 

(By the construction of R 1) 

~ s P J25 

(By the responsiveness of Re) 

.,~ s P ~ 1 

(By the definition of gl) 

<=>sP~ 1 = s' 

(By the construction of R~) 
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(ld) Gw{s}~Xq\Y i ,  Gw{s ' }EY  1 

Since G u { s ' } ~ Y  1 we have [Gw{s'}l<qc and glCG. This implies that 
I G w {s} I < qc. Since any element in Nq\ Y~ either contains gl or has cardinality 
qc we have s = ~.  Hence 

a k.) {S) ~I G u {S1 }Pi G ~ {s'} ~? G u (gt}P~G w {s'}P) G u {s', s1} 

(By the construction of R~) 

(By the construction of R~) 

r ~P~s 

(By the responsiveness of R~) 

(By the definition of g~) 

r  dlP~s' 

(By the construction of RJ) 

Next we show that for any s~S\G we have G u  {s}PJG if and only if s P ~ .  
We need to consider three cases. 

(2a) 

Since ]Gt < % G ~ \ Y ~  implies that ~I~G. Thus s ~ ~l and Gw {s}~ 
22q\ Y1. Hence 

(By the construction of R~) 

(By the responsiveness of R~) 

~:~{s, sl}Pc gl 
~r~q\Y 1 ~r-~\Y 1 

(By the responsiveness of R~) 

(By the construction of R~) 

<:=> I ^ i i^ sP~ {s, sl}P ~ ;2SPas 1 

(By the construction of R~) 
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(2b) G, G u {s} ~ Y1 

I i ^ 1 1 G u {s}P~ G ~ G  u {s}P~ G ~ {s, s 1}Pc GPc G u {sa} 
r ~zq\Y1 

(By the construct ion of R~) 

~ sP~ S~J 
(By case 2a) 

(2e) G~ Y1, G~g { s } eZ~ \Y  1 

G u {s}P~ G ~  G u {s)P ) OP) G w {sl } 
~Zqc\Y 1 Exq\YI 

(By the construct ion of R~) 

(By the case la) 

"~ sP) ~ 

(By the construct ion of R)) 

Hence R~ is responsive. 
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Appendix B 

In Appendix B we prove that  the preference relat ion/~ that  is constructed in 
the proof  of Theorem 1 is such that  R6MT(/~,  #). 

Let R ~  and #65P(R). Let /~  be defined as in the proof  of Theorem 1. Let 
s6S. We have L(#,/~s) = L(#, Rs) by construction.  

Let c 6 C. If/~c = Rc then L(#,/~c) = L(#, Re). Suppose /~  # R~, then I#(c) l = qc 
and #(c) e z q \  YI(#, c). Let #' eL(#, R~) thus #(c)R~#'(c). If #'(c) e x q \  YI(#, c), 
then #(c)Rj(c)  by construction.  If #'(c)~Yx(#,c ) then G=(# ' ( c )w{~ l} )e  
Xc\ YI(#, c) and #'(c)P~G by construction.  Therefore  #(c)R)#'(c)P~c G. But we 
have #(c), GeX~\YI(#,c ) therefore #(c)PcG by construction.  We also have 
GP~#'(c) which implies #(C)Pc#'(c ). In either case we have #(c)Rc#'(c ) therefore 
L(#,R~) cL(#,R~). The  same arguments can be repeatedly used to show 
L(#, R~) c L(#, Re). Hence R e M T ( R ,  #). 
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