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Abstract. Given a finite Weyl group W with root system �, assign the weight α ∈ � to each covering pair in
the Bruhat order related by the reflection corresponding to α. Extending this multiplicatively to chains, we prove
that the sum of the weights of all maximal chains in the Bruhat order has an explicit product formula, and prove
a similar result for a weighted sum over maximal chains in the Bruhat ordering of any parabolic quotient of W .
Several variations and open problems are discussed.
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Introduction

In the Bruhat ordering of a Weyl group, the covering edges relate certain pairs of elements
that differ by a reflection. If we assign a weight to each edge that is a linear function f
of the corresponding root (a normal vector for the hyperplane fixed by the reflection), we
can extend this multiplicatively to chains, thereby obtaining a polynomial weight function
on (unrefinable) chains in the Bruhat order. Our main results consist of an explicit product
formula for the sum of the weights of all maximal chains in the Bruhat ordering of a finite
Weyl group W (Theorem 1.1), and a more general result for the Bruhat ordering of any
parabolic quotient W/WJ (Theorem 2.2). The only restriction on the weight function f is
that it should be WJ -invariant; in the case of the full Bruhat order (i.e., when WJ is trivial),
this is no restriction at all.

One motivation for this work can be traced to a 1984 paper of Proctor [7]. In this paper,
Proctor used a basis theorem from the Standard Monomial Theory of Lakshmibai and
Seshadri to derive a number of interesting combinatorial identities related to the Bruhat
ordering of those parabolic quotients that correspond to minuscule W -orbits. It is natural
then to investigate what happens in general quotients.

Although Standard Monomial Theory is significantly more complicated in the non-
minuscule case (see [4] for example), the results in this paper can be viewed as generalizing
a limiting case of Proctor’s identities to arbitrary quotients. Indeed, in a minuscule quotient,
all covering edges connect pairs of elements that differ by simple reflections, and f can
be chosen so that each edge has unit weight. Hence in this case, the weighted sum over
maximal chains counts the number of ways to express the longest element of the quotient
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as a minimal product of simple reflections, and Theorem 2.2 provides a product formula
for this number, recovering one of the original results in [7].

We should point out that the proofs in this paper do not use Standard Monomial Theory.
We use the combinatorial structures of that theory, but the only property we require (a basis
theorem due to Littelmann [5]) can be proved by elementary methods.

1. Maximal chains in the full Bruhat order

Let � be a finite crystallographic root system embedded in a Euclidean space E with
inner product 〈 , 〉. We let {αi : i ∈ I } ⊂ � denote a choice of simple roots, and �+

the corresponding set of positive roots; i.e., the roots in the nonnegative linear span of the
simple roots. One knows that � is the disjoint union of �+ and −�+. (For this and other
standard facts about finite root systems, we refer the reader to [1] or [3].)

For each α ∈ �, we let α∨ := 2α/〈α, α〉 denote the co-root and tα : E → E the reflection
corresponding to α, so that tα(λ) = λ − 〈λ, α∨〉α. The reflection corresponding to αi is
denoted si , and the Weyl group W is the subgroup of GL(E) generated by {si : i ∈ I } and
includes all of the reflections tα for α ∈ �. For all w ∈ W , the length �(w) is defined to be
the minimum l such that w is expressible in the form si1 · · · sil .

The height of a root α, denoted ht(α), is the sum of its simple root coordinates; more
generally, ht(·) can be viewed as a linear functional on the root lattice Z�. It is well-known
and easy to show that if ρ = ∑

α∈�+ α/2, then

〈ρ, α∨
i 〉 = 1 (i ∈ I ), (1.1)

so 〈ρ, · 〉 is the height function for the co-root system �∨ = {α∨ : α ∈ �}.
For each J ⊆ I , we let �J denote the root subsystem of � generated by {α j : j ∈ J },

and WJ the corresponding Weyl subgroup. One knows that

W J := {w ∈ W : �(ws j ) > �(w), all j ∈ J }

is a set of coset representatives for W/WJ , and moreover, each element w ∈ W J is the
shortest member of the coset wWJ .

We let < denote the Bruhat ordering of W ; i.e., the transitive closure of the relations

w < wtα if �(w) < �(wtα) (w ∈ W, α ∈ �+).

One has �(w) < �(tαw) if and only if w−1α ∈ �+ (e.g., [3, Section 5.7]), and it is easy to
check that tαw = wtw−1α , so

w < tαw ⇔ �(w) < �(tαw) ⇔ w−1α ∈ �+ (w ∈ W, α ∈ �+), (1.2)

and it follows that the Bruhat ordering is also the transitive closure of these relations.
Define a weight function on the relations of the form w < wtα (α ∈ �+) by setting

wt(w < wtα) = α,
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Figure 1. The Bruhat ordering of W (A2).

and extend this multiplicatively to (some) Bruhat chains by defining

wt(x0 < x1 < · · · < xl) = wt(x0 < x1) · · · wt(xl−1 < xl),

provided that each step xi−1 < xi is of the form w < wtα for some w ∈ W and α ∈ �+.
For example, this applies to all unrefinable chains in (W, <). The weights of these chains
may be understood as elements of the polynomial ring Z[αi : i ∈ I ].

Theorem 1.1 We have
∑

wt(x0 < · · · < xl) = |�+|!
∏

α∈�+

α

ht(α)
,

where the sum ranges over all maximum-length chains in the Bruhat ordering of W .

The Bruhat order is known to be graded, so maximum-length chains are the same as
maximal chains.

For example, the root system � = A2 has three positive roots, α, β, and α + β. The
Bruhat ordering of W (see figure 1) has four maximal chains, the weights of these chains
being αβα, βαβ, and α(α + β)β (twice). Hence the above identity takes the form

αβα + βαβ + 2α(α + β)β = 3! αβ(α + β)/2.

2. Maximal chains in a quotient

If λ ∈ E is dominant vector (i.e., 〈λ, αi 〉 ≥ 0 for all i ∈ I ), then the W -stabilizer of λ is the
parabolic subgroup WJ , where J = {i ∈ I : 〈λ, αi 〉 = 0} (e.g., see [3, Section 1.15]). Thus
the W -orbit of λ can be identified with W/WJ , and the restriction of the Bruhat ordering
from W to W J can (we claim) be converted to an ordering on Wλ by taking the transitive
closure of the relations

tαµ < µ if 〈µ, α〉 > 0 (µ ∈ Wλ, α ∈ �+).
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Note that this places λ at the top of the partial ordering, whereas the identity element is at
the bottom of (W, <).

Proposition 2.1 Assume λ ∈ E is dominant and µ, ν ∈ Wλ.
(a) The map w �→ wλ is order-reversing (W, <) → (Wλ, <).
(b) We have µ ≤ ν if and only if x ≥ y, where x, y denote the shortest elements of W such

that xλ = µ and yλ = ν.

Thus (W J , <) and (Wλ, <) are dual-isomorphic.

Proof: (a) Consider a covering relation in (W, <); say w < tαw, where w ∈ W , α ∈ �+.
We must have w−1α ∈ �+ (see (1.2)), whence 〈wλ, α〉 = 〈λ, w−1α〉 ≥ 0 and tαwλ ≤ wλ.

(b) Suppose that µ < ν is a covering relation in (Wλ, <); thus ν = tαµ for some
α ∈ �+ such that 〈µ, α〉 < 0. Since xλ = µ, we have 〈λ, x−1α〉 = 〈µ, α〉 < 0, so x−1α

is necessarily a negative root, �(tαx) < �(x) (again by (1.2)), and tαx < x . If tαx is not the
shortest element such that tαxλ = ν (i.e., tαx /∈ W J ), then we must have �(tαxs j ) < �(tαx)
for some j ∈ J , in which case tαxs j < tαx < x . By iteration, it follows that y < x , and
the converse is a consequence of (a).

Define a weight function on the relations tαµ < µ in (Wλ, <) by setting

wtλ(tαµ < µ) = 〈λ, w−1α〉 = 〈µ, α〉 > 0 (µ = wλ, α ∈ �+),

and extend this multiplicatively to some (but certainly all unrefinable) chains in (Wλ, <).
Given the anti-isomorphism w �→ wλ, this can be viewed as a specialization β �→ 〈λ, β〉
of the weight function wt(w < tαw) = wt(w < wtw−1α) = w−1α we defined previously.

Theorem 2.2 If λ ∈ E is dominant and �λ := {α ∈ � : 〈λ, α〉 > 0}, then

∑
wtλ(µ0 < · · · < µl) = |�λ|!

∏
α∈�λ

〈λ, α〉
ht(α)

,

where the sum ranges over all maximum-length chains in (Wλ, <).

Remark 2.3 If we fix J ⊆ I and let λ ∈ E vary over all dominant vectors with stabilizer
WJ , both sides of the identity can be viewed as polynomial functions in the variables
{〈λ, αi 〉 : i ∈ I − J }. In this way, Theorem 2.2 is equivalent to a polynomial identity in
n = |I − J | variables, and Theorem 1.1 is the special case J = ❡�.

For example, consider the root system � = A4, with the simple roots αi (i = 1, 2, 3, 4)
numbered according to the path structure of the Dynkin diagram. If we choose a dominant
λ ∈ E so that 〈λ, αi 〉 = m, n, 0, 0 for i = 1, 2, 3, 4 (where m, n > 0), then the W -stabilizer
of λ is isomorphic to the Weyl group of A2, the W -orbit of λ has 20 elements, and the
Bruhat ordering of this orbit is displayed on the left in figure 2. The λ-weights on the edges
of this poset are all equal to one of m, n, or m + n. The posets on display in the center and
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Figure 2. The Bruhat ordering of a W -orbit in A4.

on the right in figure 2 show the edges of weight m and m + n, respectively. The remaining
12 edges have weight n.

There are seven roots in �λ; their respective heights and weights are 1, 1, 2, 2, 3, 3, 4
and m, n, m + n, n, m + n, n, m + n. On the other hand, one can check that (Wλ, <) has
74 maximal chains, the weights of these chains being mn3(m + n)3, mn4(m + n)2, and
m2n3(m + n)2 (14 times each); m2n4(m + n) (12 times); mn5(m + n) and m3n3(m + n)
(6 times each); m2n5 and m3n4 (3 times each); and mn6 and m4n3 (once each). The assertion
of Theorem 2.2 is that in this case, the weights sum to 35mn3(m + n)3.

3. Asymptotic standard monomials

Having recognized the polynomial nature of Theorem 2.2, it suffices to prove it for the
special cases corresponding to all λ in the semigroup of dominant integral weights; i.e.,

�+ = {λ ∈ E : 〈λ, α∨
i 〉 ∈ Z≥0, all i ∈ I}.

At the same time, it will be more convenient to replace � with the co-root system �∨; this
has the effect of modifying the weight function slightly so that

wtλ(tαµ < µ) = 〈µ, α∨〉 ∈ Z>0,

and similar replacements α → α∨ are necessary on the product side of the identity.
The advantage of restricting our attention to dominant integral weights is that there is an

irreducible finite-dimensional representation V (λ) of a semisimple Lie algebra with root
system � corresponding to each λ ∈ �+, and Theorem 2.2 can be viewed (we claim) as a
comparison of two asymptotic expansions of dim V (mλ) in the limit m → ∞.

For the first expansion, use the Weyl dimension formula (e.g., [2, Section 24.3]) to obtain

dim V (mλ) =
∏

α∈�+

〈mλ + ρ, α∨〉
〈ρ, α∨〉 =

∏
α∈�λ

(
m

〈λ, α∨〉
〈ρ, α∨〉 + 1

)
.

Bearing in mind (1.1), we deduce
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Lemma 3.1 For all λ ∈ �+, we have

dim V (mλ) =
∏

α∈�λ

〈λ, α∨〉
ht(α∨)

ml + O(ml−1) (l = |�λ|).

For the second expansion, we analyze a set of combinatorial objects that index a basis of
V (mλ). These objects were defined by Lakshmibai and Seshadri in their program of Standard
Monomial Theory (e.g., see Section 4 of [4]). Here, we (mostly) follow the notation and
terminology in Section 8 of [10].

For any rational b > 0, the b-Bruhat ordering of Wλ is defined to be the transitive closure
of the relations

tαµ <b µ if tαµ�µ and b〈µ, α∨〉 ∈ Z (µ ∈ Wλ, α ∈ �+),

where ν�µ indicates that µ covers ν in (Wλ, <). Thus ν <b µ is a covering relation of the
b-Bruhat order if and only if µ covers ν in (Wλ, <) and b(µ−ν) is a positive integer multiple
of a positive root. Notice also that if b is an integer, then the b-Bruhat order coincides with
the original Bruhat order.

If we specialize the example in Section 2 and take m = 2, n = 1, then one can check that
the (1/2)-Bruhat and (1/3)-Bruhat orderings of Wλ are the posets displayed in the center
and on the right in figure 2.

A Lakshmibai-Seshadri chain (or LS chain) µ of type λ and degree m is a pair consisting
of a chain in (Wλ, <) of any length l ≥ 0, say µ0 < µ1 < · · · < µl , and an increasing
sequence of rationals 0 < b1 < · · · < bl < m such that

µ0 <b1 µ1 <b2 · · · <bl µl .

It is useful to record the information carried by µ in a (noncommutative) monomial

µ = µ
a0
0 µ

a1
1 · · · µal

l (a0 = b1, ai = bi+1 − bi , al = m − bl)

of degree m = a0 + · · · + al . There is no harm in allowing repetitions in the terms of µ,
say µi = µi+1, but in such circumstances, we must identify µ with the LS chain obtained
by deleting bi and µi . In terms of monomials, this means for example that µa

0µ
b+c
1 µd

2 and
µa

0µ
b
1µ

c
1µ

d
2 label identical objects.

Let Cm(λ) denote the set of all LS chains of type λ and degree m. The only property
we require of LS chains, due to Littelmann [5], is that C1(λ) indexes a basis of V (λ).
(For another proof, see Theorem 8.3 of [10].) Bearing in mind that µ ≤mb ν if and only if
mµ ≤b mν, we may rescale µ ∈ Cm(λ), replacing µi with mµi and bi with bi/m, thereby
obtaining a bijection between Cm(λ) and C1(mλ). To summarize, we have

Lemma 3.2 For all λ ∈ �+, we have dim V (mλ) = |C1(mλ)| = |Cm(λ)|.

Proof of Theorem 2.2: Define a binary relation ← on C(λ) = C1(λ) by setting

(
ν

c0
0 · · · νck

k

) ← (
µ

a0
0 · · · µal

l

)
if νk ≤ µ0.
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This imposes a “partially reflexive” order structure on C(λ) in the sense that ← is transitive,
asymmetric (ν ← µ andµ ← ν impliesµ = ν), but not necessarily reflexive. (We propose
that such structures should be called “prosets.”) Indeed, we have µ ← µ if and only if µ is
a singleton (i.e., µ = (µ1) for some µ).

Choose an m-tuple µ1, . . . ,µm ∈ C(λ), and let µ+
i and µ−

i denote the top and bottom
elements of µi . We have µ+

i ≤i µ−
i+1 if and only if µi ← µi+1, so the concatenation of

µ1, . . . ,µm is an LS chain of degree m if and only if µ1 ← · · · ← µm . Conversely, it is
easy to see that any LS chain of degree m factors (uniquely) into LS chains of degree 1, so
we can identify Cm(λ) with the m-element multichains µ1 ← · · · ← µm in C(λ).

If we choose an r -chain ν1 ← · · · ← νr of distinct elements from C(λ), then the
m-multichains with support set {ν1, . . . ,νr } can be obtained by choosing integers ki ≥ 1
such that k1 + · · · + kr = m and concatenating ki copies of ν i in the order i = 1, . . . , r .
However, as noted previously, the only terms that can occur more than once in a multichain
are the singleton LS chains. Thus if ν i is not a singleton, we must choose ki = 1.

If there are l + 1 singletons among ν1, . . . ,νr , then there are
(

m − r + l + 1

l

)
= 1

l !
ml + O(ml−1)

ways to choose k1, . . . , kr . Combining this with Lemma 3.2, we obtain

dim V (mλ) = |Cm(λ)| = 1

�!
Nλm� + O(m�−1),

where �(λ) + 1 = � + 1 denotes the maximum number of singletons that can appear in a
strict chain ν1 ← · · · ← νr in C(λ), and Nλ denotes the number of such chains. Comparing
this with the expansion in Lemma 3.1, it must be the case that �(λ) = |�λ| and

Nλ = �(λ)!
∏

α∈�λ

〈λ, α∨〉/ht(α∨).

By extracting the top element ν+
i from each member of a strict chain ν1 ← · · · ← νr ,

we obtain a Bruhat multichain ν+
1 ≤ · · · ≤ ν+

r . Hence �(λ) is the maximum length of a
(strict) chain in (Wλ, <). It also follows that for each non-singleton ν i occurring in a chain
counted by Nλ, it must be the case that ν−

i � ν+
i . Otherwise, the strict Bruhat chain obtained

by extracting the set of distinct top elements that occur could not have maximum length.
Thus the only non-singletons that may occur have the form µ = µa

0µ
1−a
1 for some covering

pair µ0 � µ1 with µ0 <a µ1. In particular, this requires µ0 = tαµ1 for some α ∈ �+ such
that ka ∈ Z, where k = 〈µ1, α

∨〉 > 0. Hence there are k −1 possible choices for a; namely,
a = i/k for i = 1, . . . , k − 1. Therefore, as we traverse a maximum-length singleton chain
through (Wλ, <), each (necessarily covering) edge tαµ < µ provides an opportunity to
insert one of 〈µ, α∨〉 − 1 possible doubleton chains, or no doubleton chain at all, for a total
of 〈µ, α∨〉 = wtλ(tαµ < µ) choices. It follows that

Nλ =
∑

wtλ(µ0 < · · · < µl),

where the sum ranges over all maximum-length chains in (Wλ, <).



298 STEMBRIDGE

Remark 3.3 The above proof appears to rely on representation theory. However the
arguments in [5] and [10] show by elementary methods that Weyl’s formula for the character
of V (λ) can be viewed as a generating function for LS chains of type λ. Furthermore, it
is easy to deduce the Weyl dimension formula from the character formula, so in fact both
Lemmas 3.1 and 3.2 can be formulated in a way that involves no representation theory, and
proved by elementary methods.

4. Variations and questions

4.1. Asymptotic characters

Let χ (λ) denote the character of V (λ), an element of the group ring Z[eµ : µ ∈ E].
Using the Weyl character formula, one can show that the limit of e−mλχ (mλ) as m → ∞ is
well-defined as a formal power series, and in fact

lim
m→∞ e−mλχ (mλ) =

∏
α∈�λ

1

1 − e−α
.

However, as hinted in Remark 3.3, this series can also be identified as a generating series
for “stable” LS chains of type λ and unbounded degree, or alternatively, as a weighted sum
over (strict) chains of arbitrary length in (Wλ, <). In the latter form, the weight function has
a rather complicated description. However, in case λ is minuscule, LS chains of type λ and
degree m are simply the m-multichains µ1 ≤ · · · ≤ µm in (Wλ, <), and each such chain
contributes eµ1+···+µm to χ (mλ). This observation played a critical role in Proctor’s study
of “Bruhat lattices” in [7].

4.2. Asymptotic tableaux

There are many combinatorial objects that have been used to index bases of representations
of semisimple Lie algebras, and for each of these, an asymptotic analysis of dim V (mλ) anal-
ogous to our proof of Theorem 2.2 has the potential to produce an interesting combinatorial
identity.

The most familiar of these objects are the semistandard tableaux associated with the root
system � = An−1 (for definitions, see [6, Section I.5]). In this case, dominant weights can
be viewed as integer partitions λ = (λ1, . . . , λn) with < n parts (i.e., λn = 0), and the
quantity ci := 〈λ, α∨

i 〉 = λi − λi+1 measures the number of columns of length i in λ.
A semistandard tableau can be viewed as a sequence of subsets of [n] = {1, . . . , n}

(i.e., columns), subject to certain rules about compatibility between adjacent columns. The
tableau has shape λ if the number of i-sets in the sequence is ci for 1 ≤ i < n, and these
tableaux index a basis for V (λ).

Let P denote the partial ordering on subsets of [n] obtained by declaring X ≤ Y if X
and Y can occur consecutively as columns of a semistandard tableau. (One should check
that this does define a true partial order, unlike the “proset” in Section 3.) In this way,
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semistandard tableaux are multichains in P . It is an interesting coincidence that P turns out
to be isomorphic to the Bruhat ordering of W (Bn)/W (An−1).

Given λ, let J = {i : ci > 0} = {i : 〈λ, α∨
i 〉 > 0}, and define PJ to be the subposet of P

formed by the subsets whose cardinalities are in J . An asymptotic analysis of the number
of semistandard tableaux of shape mλ leads to the following analogue of Theorem 2.2:

∑
wt(X0 < · · · < Xl) =

∏
α∈�λ

〈λ, α∨〉/ht(α∨),

where the sum ranges over all maximum-length chains in PJ ,

wt(X0 < · · · < Xl) =
∏
i∈J

〈λ, α∨
i 〉�i

�i !
,

and �i denotes the length of the subchain of X0 < · · · < Xl formed by the i-subsets. Note
that this weight function is not multiplicative.

4.3. Chains in subintervals

It would be interesting to investigate the elements w ∈ W such that the sum over all
maximum-length chains in the Bruhat order from 1 to w, weighted as in Theorem 1.1,
factors completely into linear factors. More generally, one should also investigate when the
analogous sums in the parabolic quotients (W J , <) factor completely.

One class of elements with this property are the “dominant minuscule” elements first
studied by Dale Peterson (see [8] and [9]). Indeed, an element w ∈ W is dominant minuscule
if and only if there exists λ ∈ �+ so that

�(w) = ht(λ − wλ) and w ∈ W J ,

where WJ denotes the W -stabilizer of λ. The key point is that in each maximum-length
chain from λ to wλ in (Wλ, <), each term must differ from the next by a (positive) integer
multiple of a root, so the length of the chain (namely, �(w)) is always at most ht(λ − wλ).
However, given that equality occurs, each term must differ from the next by a simple root, so
every step in every maximal chain from 1 to w in (W J , <) must arise from left multiplication
by a simple reflection. (This fact is also noted in Section 10 of [8].)

For each unrefinable chain 1 < w1 < · · · < wl = w whose steps correspond to left
multiplication by simple reflections, it is an easy exercise to show that

wt(1 < w1 < · · · < wl) = Q(w) :=
∏

α∈�(w)

α,

where �(w) = {α ∈ �+ : wα ∈ −�+}. Thus if w is dominant minuscule, the sum of the
weights of all maximum-length chains from 1 to w is r (w)Q(w), where r (w) denotes the
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number of reduced expressions for w as a product of simple reflections. Furthermore, it is
interesting to note that by some unpublished work of Peterson, it is known that

r (w) = �(w)!
∏

α∈�(w−1)

1

ht(α)
,

so in the dominant minuscule case, there is an identity strikingly similar to Theorem 1.1.
If WJ is the stabilizer of a minuscule weight for � or �∨, then the longest element

of W J is dominant minuscule relative to � or �∨, so in either case, the above reasoning
shows that the sum of the weights of all maximal chains in (W J , <) must factor completely.
Computations suggest that the same is true if WJ is the stabilizer of a dominant root (i.e.,
a quasi-minuscule weight relative to � or �∨). However in general, the maximal chains of
parabolic quotients tend not to have this property; aside from a few small cases, such as all
quotients of W (A3), we are aware of no other examples. In contrast, Theorem 2.2 shows
that the weighted sum for every quotient has a specialization that factors completely.

4.4. Non-crystallographic root systems

It would be interesting to determine if there are analogues of Theorems 1.1 and 2.2 for the
non-crystallographic root systems. Certainly the formulations of both results make sense
whether or not the root system is crystallographic, and computer investigations suggest that
the results are valid, aside from a scalar factor.

One indication that the constant of proportionality is problematic can be seen among the
crystallographic root systems with more than one W -orbit of roots. In such root systems,
each orbit can be rescaled independently and arbitrarily (at the expense of dropping the
crystallographic condition), and it is not hard to show that the effect of these rescalings on the
weight of each maximal chain is exactly the same as the effect on the product Q = ∏

α∈�+ α

(in Theorem 1.1) or Qλ = ∏
α∈�λ

〈λ, α〉 (in Theorem 2.2). However, assuming that the root
system is irreducible, these rescalings also have an effect on the heights of roots, so the two
sides of both identities diverge under rescaling.

On the other hand, using the relationship between the exponents e1, e2, . . . of W and the
heights of roots (see [3, Section 3.20]), one knows that

e(W ) =
∏

α∈�+
ht(α) and e(W )/e(WJ ) =

∏
α∈�λ

ht(α),

where e(W ) = e1!e2! · · ·. This allows one to rewrite the identities in a way that transforms
correctly under rescaling, and computations suggest that these modified identities are valid
even in the non-crystallographic cases.

Leaving aside the constant of proportionality, one possible approach to a version of
Theorem 1.1 that includes non-crystallographic cases would be to exploit the fact that Q
freely generates the module of skew-invariants; it is the polynomial of lowest degree that
is skew-symmetric with respect to the action of W , and all such polynomials are divisible
by Q. Since the weighted sum of maximal chains clearly has the same degree as Q, proving
that the sum is skew-symmetric would imply that it is a scalar multiple of Q.
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