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§ 1. Introduction

Consider the Dirichlet problem
Aux) + flu(x) =0, x€ Dy
u(x) =0, x¢€oD%.

Here f'is a smooth function, and D} (n = 2) is the open ball of radius R in R”,
centered at the origin. In an interesting paper Gipas, NI, & NIRENBERG [GNN]
proved that positive solutions of (1.1) must be spherically symmetric; i.e., ¥ must
be a radial function, u = u(r), r = |x|. Thus u(r) satisfies the ordinary differential
equation

(1.1)

1
u”+n v +fw=0, 0<r<R

r

(1.2)
#(0) = 0 = u(R).

Recently, SMOLLER & WASSERMAN [SW1, 2] considered the bifurcation problem
for positive radial solutions. Specifically, they investigated the ways in which a
symmetric solution can bifurcate into an asymmetric solution. Of course, the
results of [GNN] imply that these asymmetric solutions cannot be positive func-
tions.

It is natural to allow the function f to depend on both u and |x|, and to con-
sider the Dirichlet problem

Au(x) + f(u(x), |x|) =0, x€ Dj,
ux) =0, xcoDi.

It was shown in [GNN], that if f.(w,r) = 0 on the relevant range of u and r,
then positive solutions of (1.3) again must be radial functions. It is thus quite
interesting to investigate the bifurcation problem for positive solutions of (1.3).
We remark however that the general problem (1.3) is quite difficult to study,

(1.3)
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even for the existence of radial solutions. We shall therefore only consider small
perturbations. of (1.1), i.e., we study the problem

Au(x) + f(u(x)) + eh(u(x), |x])) =0, x¢€ Dy

(1.4
u(x) =0, xcoDg,

Here f and 4 are smooth functions of their arguments, ¢ is a small parameter,
and we shall assume that f satisfies the same conditions as in [SW2]; see § 2.

In § 3 we shall prove the existence of positive radial solutions of (1.4) for
small &."Furthermore, in préparation for our bifurcation results, we' shall prove
the existence of “degenerate” radial solutions; i.e., solutions having the property
that zero lies in the spectrum.of their: hnearlzatlons We consider the symmetry-
breaking problem in § 4. We also show there that if 4, > 0, then there exist
positive asymmetric solutions of (1.4); thus the result in [GNN] is sharp. Finally,
in § 5 we shall discuss a special application of our results to a weakly coupled
system of equations.

§ 2. Background Results

We consider the following initial-value problem for positive radial solutions
of (1.1):

W(r) + 2= () +f(u(r)) = 0,

u0) =p>0, u'0)=0.

We denote by u(r, p) the unique solution of (2.1); as in [SW1, 2], p will be con-
sidered a parameter. It was shown in [SW2], that if f satisfies the conditions

<0, (fow' >0, f'@=0, 2.2)

then for generic f, there exists a p > 0 and a function 7T [p, o0) —R such that
for p> p, u(r, p) satisfies the following:

ur,p)>0 if 0=r<T(p) w(T(p)p)=
u(rp<<0 if 0 < r = T(p).
Moreover, u(r, p) satisfies
u,p) >0 if 0=r<T(p), u(T(p),p)=0,
Wr,p)<0 f0<r<T(p), u(T(p),p) =0, 249
u(T(p), p) < 0.
Thus, if we consider the equation |
u(R, p) = 0, 2.5)

then we can solve for p-as a function of Rina, nelghborhood of the point (T( D), D).
Let R= T(p);- then p(R) is-defined in an interval [R,y, R,] containing R. From

@.1)

(2.3)
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(2.5), we have, on this interval

(R, p(R)) + w,(R, p(R)) p'(R) = 0, (2.6)
and .
u"(R, p(R)) + 2u,(R, p(R)) p'(R) + u,(R, p(R)) p"'(R) + (R, p(R)) (p'(R))* = 0.
' 2.7

At R=R, (2.6) gives u,(R, p(R)) p'(R) = 0, and since u,(R, p(R)) <0, we
get _
P'(R) = 0. (2.8)
Thus from (2.7),
u'(R, p(R)) + u,(R, p(R)) p"(R) = 0.
Now from (2.1),

(B, p(®) = — =/ (R, pR) — fulR, p(R)
= —f(0);
thus B L
p"(R) = fl0)/u,(R, p(R)) > O. 2.9)

Furthermore, for R, < R< R, u(R, p(R)) satisfies
u(r,p(R)) >0, O0=r<R, u(R p(R)=0,

(2.10)
u'(r,p(R) <0, O0<r=R.
For R=R, u(r, p(Is)) satisfies-
wr,pR)>0, 0=r<R, u(R p{R)=0, @i
u'(r, p(ﬁ)) <0, 0<r< R, z_g'(f!, p(I—()) = 0. o
Finally, for R< R<R,, u(r, p(T)) satisfies
W(r, p(R) >0,  0=r<RE®, uRR);pR)=0,
u(r,p(R)) <0, RR)<r<R, u(R, p(R)) = 0,
) 3 (2.12)
u'(r, p(R)) < 0, 0<r<R(R), u(RR),pR)=0,

W(r, p(R) >0, RR) <r=R,

where ﬁ(r) and ]z{(R) > ]~2(R) are two smooth functions of R.
We say that a solution u of (1.1) is non-degenerate provided that™ v =0 is
the only solution of the linearized equations
A6(3) + f/(u() o(x) = 0, x€ D,

(2.13)
v(x).=0, x¢€oDk.
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Thus u is non-degenerate if and only if zero is not in the spectrum of the as-
sociated linearized operator; otherwise u is called degenerate. The following
theorem was proved in [SW1]; we shall sketch the proof for the convenience of
the reader, since the techniques in the proof will be used below.

Theorem 2.1. A. Assume Ry = R < R, and let u(:, p(R)) be the corresponding
radial solution of (1.1). Then u is non-degenerate.

B. The solution u(r, p(R)) is degenerate and the function u(r, 6) = u'(r, p(R))
®@,(0) solves (2.13); @, lies in the first eigenspace of the Laplacian on S*~, cor-
responding to the eigenvalue Ay = —(n — 1).

Proof. Every solution of (2.13) for u = u(:, p(R)) can be written in its
spherical harmonic decomposition

oo

U(l', 0) = Z (ZN(I') qjN(B)’ VXS Sn—ls 0 é r é R,
where @y, belongs to the N'® eigenspace of the Laplacian on S -1, corresponding
to the eigenvalue Ay = —N(N +n—2), N=0,1,2,.... Using this represen-
tation in (2.13), we have, for N = 0, that ay satisfies the differential equation

, n—1, A ,
G+ di + (@) ay =0, .14
and if ¥ =1, ay satisfies the boundary conditions
ay(R) = 0 = ay(0),
while for N =0,
ag(0) = 0 = ay(R).
We begin by proving a,(r) = 0. First, ay(r) satisfies

n—1

a; + ag + () a; = 0. (2.15)

r
Also w(r)= u,(r, p(R)) satisfies

—1
p

WS L P w =0,
2.16)

wO)=0, w0) =1, w®R<O.

Comparing (2.15) and (2.16) gives ao(r) = a;(0) w(r), so that 0 = ay(R) =
ao(0) w(R) implies. ao(0) =0 and thus ay(r) = 0. Next we show ay(r)=0
if N=1. If we let z(r) = «'(r, p(R)), then z satisfies

, n—1 A

z —I—-T—z +(7—l—f'(u))z=0, 0<r<R
.17

z(0)=0, z(r)<<0, O0<r=R.
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Then multiplying (2.14) by r*~!z and (2.17) by r* 'ay gives

d , , _

= [r"~! (ayz — ayz)] = r" Ay — Ay) anz. (2.18)
Now assume that N = 2, an(r) == 0, and that R <R is the first positive zero
of ay; then ax(r) < 0 for 0<r< R, aN(R) = 0 and aN(R) = 0. Integrating
(2.18) from O to R gives the contradiction

R
0= R"'a\(R) z(R) = [ r" 3, — Ay) ayz dr > 0. (2.19)
(1]

Thus ay(r)=0 if N=2. For N =1, we integrate (2.18) from O to R to get
R 1q(R) z(R) =0 so that 4(R) =0. Thus a, =0, and this completes the
proof of (A).

In order to prove (B), we observe that in part (A).if o(r, 0) = 3 ay(r) Pp(6),

N=0
then the same arguments yield ao(r)=0, and ay(r)=0 if N> 1. Moreover,

it is easy to see that a;(r) = u'(r, p(E)) solves (2.14) and a,(R) = al(O) =0
Thus (B) holds and the proof is complete. []

Our next result deals with the solutions u(r, p(R)) in the range R< R<R,.

Theorem 2.2. Let R < R < R,; then the solution u(r, P(R)) is non-degenerate
provided that (R, — R) is sufficient small.

Proof. For u = u(r, p(R)), R< R< R,, we use the expansion v =

Y, an(r) @y(6), as in the previous theorem. For (R, — E) small, we again

NZ0

have u,(R, p(R)) < 0 so that the same arguments as in the proof of the last

theorem (Part A) apply to give a,(r)= 0. Moreover, as u'(R, p(R)) > 0 (by

(2.12)), we conclude, as in the proof of Part A of the last theorem, that a,(r)= 0.
Now for N =2, we have, as before

- [r* Nayz — ayz)] = 1" 3(A; — Ay) anz (2.20)

where z(r) = #/'(r, p(R)). Again assume that ay(r) ==0 and that R =< R is the
first posmve zero of ay. We may assume that ay(r) <0 if 0<r< R. Then

if R<R (¢f. (2.13)), we integrate (2.20) from 0 to R to get

~

R a\(R) z(R) = [ r"~3(A; — Ay) ayz dr > 0.
0
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But as djy(R) =0 and Z(R) < 0, we obtain a contradiction. It follows that
R> ﬁ(R). If we now integrate (2.20) from 0 to ﬁ, we have
70 R

RGR 2Ry =y — ) | [ r"ayzdr + [
0 R®)

rayzdr|. (2.21)

Now for small (R, — R) (¢f. Figure 1), we clearly have both z(R) = O(R, — R)
and

R _
[ r*layz dr = O(R, — R).
'fz‘(R)
On the other hand
R®)
[ rmPayzdr>0
1]
is not O(R, — 15) Thus, for sufficiently small (R, — 72),_(2.21) gives a contra-

diction. It follows that ay(r)=0 for N =2 if (R, — R) is sufficiently small.
This completes the proof of Theorem 2.2. []
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§ 3. The Existence of Degenerate Radial Solutions
for the Perturbed Equation

We consider first the existence problem for radial solutions of (1.4). Such
solutions solve the problem

n—1

'’ + W+ fuw) + ehlyu,r)=0, 0<r<R,
@3G.1)
#'(0) =0=u(R).



Symmetry-Breaking under Small Perturbations 89

We assume in this section that f satisfies conditions (2.2), so that the results of
Theorems 2.1, and 2.2 are valid.
We denote by u,(r, p) the solution of the initial value problem

,  n—1
u; +

u, + flu,) + eh(u, r) =0

r

(.2)
Uy =p>0, u(0)=0. ‘

Associated with this f, we have the function p(R) defined in Section 2. For p =
p(R,), we have (from (2.10)), #'(Ry, p(Ry)) << 0 and #(Ry, p(R;)) = 0. Thus
there is an %> 0 such that «(R, + 7, p(R,)) < 0. Now for |¢| sufficiently
small, solutions of (3.2) are close to solutions of (2.1) on 0= r = R, + 27
Hence for |¢| small, we have u.(R, + %, p(Ry)) < 0 and u (R, + 7, p(Ry)) < 0.
It follows that for such & there exists a continuous function R, (c) satisfying
R,(0) = R, and

us(Rl(B)’ P(R1)) =0, u;(Rl(e), P(Rx)) <0,

3.3)
ur,p(R) >0 for 0 = r; << Ry(e);

(¢f. Figure 2a). Similarly, for p = p(R;), we have a continuous function R,(¢),
defined for |¢| sufficiently small, satisfying R,(0) = R,, and continuous func-

tions R(R), R(R) satisfying (cf., Figure 2b)
u(Ra(e), P(Ry)) = 0, u(Ry(e), P(R2)) > O,
u(r, p(R)) >0 for 0 =r < R(R(e)), u(R(R,()), p(R;)) = O
u(r, p(R,)) < 0 for R(R(£)) < r < Ry(#), (3.4
ul(r, p(R)) <0 for 0< r< R(R,(®)),
W(r, p(R)) >0 for R(Ry(6)) < r < Ry(e).

Now since f satisfies (2.2), / has a smallest positive root, say u,. For & small,
and R; <r =< R,, f(u) + eh(u, r) has a root u;near u. For p near u; the solution
u(r, p) does not meet u = 0, while for large p it meets this line transversally.

\ RiR,Le)) - Rale)

R Le) r RirdeN N

a b
Fig.2aand b

-
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It follows that there is a continuous function E(a), R(O) = R, and a point 7,
near p (recall p(R) = p), such that
u(r,p) >0 for 0=r< R(s), u(R(),p)=0 535
U(r,p)>0 for 0<r< Re), u(RE),5)=D0. '
This follows from (3.3) and (3.4) since the functions R, and R, are continuous.
Now if |e] is sufficiently small, then since #,(R,p) <0 (cf. (2.4)), we have

0 —
5]; u(R(e), p;) < 0. (3.6)

This allows us to solve the equation #(R, p) = 0 for p as a function of R, say
P =p{R), Ri(e) = R < R,(g); (we are using the same notation as before — this
should not cause any confusion). This implies that the solution u(r, p.(R)) of
(3.2) is also a solution of (3.1) if R;(e) = R =< R,(¢). Thus u(r, p.(R)) also solves
(1.4) on this range of R. Now as (2.8) and (2.9) followed from (2.4), we have
similarly

PR() =0, and p/(R(e)) > 0. (3.7

It is also easy to verify that on the range Rl(s) < R< R(s), ur, PR)) enjoys
the same properties as u(r, p(R)), Ry < R< R; see (2.11). Slmllarly, for R(a) <
R = Ry(e), ur, p.(R)) satisfies the same properties as u(r, p(R)) on R<RZR,
(cf. (2.12)).

We can now state the following theorem.

Theorem 3.1. If |¢| is sufficiently small the following hold:
A) ur, p(R)) solves (1.4), Ri(e) = R= R,(¢)
B) There exists a unique continuous function I%(a) near E(s) such that
ug(r, ps(]é(s))) is a degenerate solution of (1.4), and u,(r, pR)), R= R(s), Ry(e) <
R= Rz(a) is a non-degenerate solution of (1 4).
C) R(e) > R(e) if ehfu,r)<0, and R(e) < R() if eh(u,r)> 0.

Proof. Part A) has already been proved. Now let v be a solution of the prob-
lem
dv +[f'@) + eh(u,r)]v =0, x¢cD}

v(x) =0, |x|]=R 3-6)
where u = u,(r, p.(R)). We expand v in spherical harmonics:
v= i ay(r) Dy(0), 6€S™7', 0=r=R, (3.7)
and we find that ao(r)—satisﬁes
a(','—{—n 1a(,—l— [f') +eh]a, =0, O0<r<R
3.3

al(0) =0, a(R) =0,
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and for N =1, an(r) satisfies

7 n - 1 ’ ’ j’
ay + . ay + [f(u)—i—sh,,—]—r—z;r] ay=0, 0<r<R,
(3.9)
ay(0) = 0 = ay(R),
where Ay = —N(N 4+ n — 2), and u = u(r, p(R)).
Now let
j— 3 R .
Y= u,(r, pAR));
then w satisfies
—1
W +"r—w' +IfW) +eh]w=0, 0<r<R,
(3.10)

w(0)=0, w0=1 wR<O.

Comparing (3.8) and (3.10) gives ao(r) = ao(0) w(r) so that 0 = aqox(R) =
ao(0) w(R) implies ao(0) = 0, and thus aq(r) = 0. Next, for R,(¢) = R = R,(¢e),
let

gr(r) = u(r, pR)).
Then g, satisfies the equation

gz +

n—1 , , Ay
g+ | 1160+ ohy 23] g o, = 0
@3.11)
gr(0) =0, gx(0) = u'(0, p(R)) <0,
where u(r) = u,(r, p(R)). For N =2, the same arguments as in the proofs of
Theorems 2.1, and 2.2 apply and we obtain ay(r)=0 for n=2.

Thus the degeneracy of u(, p.(R)) depends on a;. Let a,(r, p(R)) be the
solution of the problem

n—1

"
a; -+

r

, v
a; + [f’(u) +sh,,+r—§] a,=0, 0<r<R,

(3.12)
a;(0) =0, 4;(0) = 4. (0, p(R)).

Then for R = R(e), wehave gg(r) < 0 for 0 < r < R(e), and gxe(R()) = 0.

Now on 0 =< r < R, as solutions of (3.11) are close to solutions of (3.12), for
sufficiently small |¢|, we conclude that for 0 <r <R

ay(r, p(R)) — ggr(r) = O(e). (3.13)
Now by definition
ua(R: pe(R)) = 0’
so that

Iu, Ot .
7 (R PR + 7 (R, p(R) (R = 0.
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Then differentiating with respect to R gives

d € s 1
TR 7 R DAR) + 5 (R R) PR + 5 [ (R, )| k) = 0

Thus at R = R(), (3.6) and (3.7) imply

d o e e 1
dR au (R pe(R))|R Re) — <R: PS(R)) De (R) > 0.

Thus if R,(¢) and R,(s) are near R(e), then

d ou, i
(60 R) = 5 A (R pR) > 0 for Ry(9) < RS Ry

Now if ¢ is sufficiently small, we have -
d o . :
FuRPR) >0, RS RE Ry,
From (3.13), we have, for small ¢
a1(R1(2), p(R1(9))) = gr,@(R1(8)) + O(e)

— 2 R®), DRE) + 0
<0,
in view of (3.3). Similarly (3.13) and (3.4) give
ax(Rs@), PRAE)) = 1o (Rale)) + OC)
= 2 0 (R(E), PURAE) + O6)

>0,

(3.14)

(3.15)

(3.16)

Now from (3.14)— (3 16), we see that there exists a umque R(s) Ri(s) < R(s) <
R,(¢) for which al(R(s) ps(R(s))) = 0. Thus (r pe(R(s))) is a degenerate solu-
tion of (3.1), and for Ri(e) < R < Ry(e), R =+ R(e) a,(r)= 0. Thus statement

B) in Theorem 3.1 is proved.

We now consider part C). Thus assume that eh,(u, r) < 0. We shall prove
that R(e) > R(s) In view of what we have already shown, this is equivalent
to proving that al(R(s) pe(R(s))) < 0. If: al(R(s), pS(R(s))) = 0, then let ry be
the first positive zero of a,(r, pE(R(e))) Using the same sort of arguments as be-
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fore, we find, from (3.11) and (3.12),

d n—1s.1 L n—1
T [r""'(gray — aigr)l = —r" " 'ehay. ‘

Integrating this from r =10 to r=r, gives

—r§ a0 aifre) = — [ 1" & B r) @) dr <0

But as gg(ro) < 0 and d(ro) =0, we arrive at a contradiction. Thus R(¢) >
R(e) if eh(u,r) << 0. Similarly, we can show that R(s) << R(e) if eh(u,r)> 0.
This completes the proof of Theorem 3.1. [

§ 4. Symimetry Breaking for Selutions of Equation (1.4)

We continue to assume that f satisfies hypotheses (2.2). This implies that the
results of §2 and §3 are valid. In particular Theorem 3.1 is valid, so that

u,(r, ps(li(s))) is degenerate solution of (1.4). Our goal is to prove that the symmetry
actually breaks on this solution. To this end let I = [R,(¢), R,(¢)], and define
the operator

M: {uec C*(D}):u =0 on 6D}}xI— C°D}),
by

Mz, B) (x) = A(z(x) + u(|x| R, p(R))) -+ R*[f(2(x) -+ u| x| R, p(R)))
+ Sh(Z(x) + us(‘xl R, ps(R))z Ix, R)] .

From Theorem 3.1 A), we know that M(O,l R) =-0 for all R¢ 1. Further-
more, as was shown in Theorem 3.1, the linearized operator about the degenerate

solution u,(r, ps(é(a)) has kernel spanned by ay(r, ps(ﬁ(s))) ®,(0), where ()
lies in the eigenspace of the Laplacian on S"~! corresponding to the eigenvalue
Ay = —(n — 1). Hence the equation

0 = M,(0, R(e)) v = Av + R*[f'(u) + shy(u, )] v, (4.1)

where u(r) = us(rli, ps(ﬁ(s))), has an n-dimensional solution set spanned by the
functions

X - ~ .
—;'—al(rR, pRE)Y), i=1,2,...,n;

(c¢f. [SW1,2]). Now as there are no (non-zero) purely radial elements in the

kernel, if bifurcation occurs on (7, ps(ﬁ(a))), then the symmetry breaks.
In order to prove that the symmetry breaks on this solution, we have only to
verify the transversality condition (see [SW2])

[ M.x(0, R) v*(x) dx == 0,
1)’1' ’
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for any solution v of (4.1). Now a computation gives

N “ “ 0 ~ R
M_x(0, R) = 2R[f,(u, )] + R*[f (u, 1)] [—;— e u(rR, p(R))

4.3)
+ PiR) u,(rR, pe(R))] + R? ¢TIR (h,,)
where
felu,r)=f'() + eh(u,r), and f'(u,r)=7f"(u) + ehulu,r).
As in the appendix of [SW3], we need only prove that
A= ofl Mz(0, R) a;(rR, p(R))? r* ' dr + 0. (4.4)

For notational convenience, we set u(r) = ue(rli, pe(ﬁ)), and a(r) = a, (rﬁ, ps(ﬁ)).
Then a(r) satisfies

—1 ~ —1
a”—{—n a'—}—Rz[f;(u,r)]a—n —a=0, 0<r<li,

4.5
a(0) = 0 = a(1).

We can now compute the integral in (4.4). To this end note that since
P:(R(€)) =0 and R is near R, pJ((R(¢)) = O(¢), so from (4.3),

1 ~
A= [ M0,R a*(r)r" ' dr
0

1 ~ . o . .
= [ {ekrin + Rriwn| % E;uxrk,pe(k))]} @) "t dr + 009,
0
where
1 ~ ~ ~ ~
0@) = [ R, (u,r) pR) u(rR, p(R)) &*(r) r"~' dr
0
1]22 d ] 2 n—1 d)
—]—Of ez—ﬁ(zu)a(r)r r.
But
2Rf! R rLulr = LRy, B Ly
i) + R r) gl = RS 1] = Rfe
so that from (4.5)

1
A= f ?‘11; [Iérfzf;(u, N1 a(r) r* 2 dr + O(e)

- f Refiu,r)— (az(r)r" Y dr + O().
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Using the differential equation in (4.5), we have

A—f——l—[” oyt ][2'" 2) r"laldr + O
_Oﬁa—{—ra peanl ar® 4+ (n—2)r" al dr + O()

1
1
= fE{Zr"a”a’ 4+~ 2rlag” 4+ 2(n — 1) r*~'(@')?
]
+a—Dm—2r"%ad —2n—1)r"2a—(n—1)(@n—2)r 3} dr
+ O(e)

1 : d N2 d n— 4 d R—2,2
=~E-6[<—r(r(a))+(n—2)z;(r Iaa)—(n——l)z;(r 2a)}a'r—l—O(.'s)

_ % W + 06).

But (¢f. (3.10 or (3.11)),
(1) = Ray(R(e), pR(e)
= Ru/(R(), p(R@)) + O()
= R(—f(0) — h(0, R)) + O(e).
Therefore for small |¢|, R
A = Rf(0)* + O(s) > 0,

since f(0) < 0. This proves the transversality condition, and thus the symmetry
breaks on u/(r, ps(ﬁ(s))). We have thus proved the following theorem.

Theorem 4.1. Let f satisfy (2.2), and for small |e| let ur, ps(ﬁ(s))) denote
the degenerate solution of (1.4). Then the symmeiry breaks on this solution.

We close with the following remark. Suppose that ¢k (u, r) > 0; then as we
have seen in Theorem 3.1 C), R(¢) < R(¢). Thus from (2.10) we see that for
small ¢, u;(ﬁ(s), pe(li(s))) < 0. Tt follows that for R near R(¢), the non-radial

solution bifurcating from u(r, Ii(a)) is positive in D%. In [GNN], it was shown
that if eh(u, r) < 0, then positive solutions must be radial; thus their result is
(in a certain sense) the best possible.

§ 5. An Application to Certain Systems

We show here how our results can be used to prove the existence of sym-
metry-breaking solutions for some special systems.
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Consider the system
Au(x) + gu(x)) = 0,
Av(x) + fW(x)) + eh(v(x), u(x)) = 0, x¢€ Dy,
together with Dirichlet boundary conditions
ulx) =0=ov(x), x¢cé&Dki. (5.2)

We assume that f satisfies hypotheses (2.2) and that |¢| is sufficiently small. We
further assume that the problem

Au(x) 4 gu(x)) =0, x€ Dy
u(x) =0, x€éDyg,
admits-a radial solution for a range R¢& [Ry, R,]. In this case the results of §4
can be applied to (5.1), (5.2). To see this, we let u(r, R) denote a radial solution

of (5.3). Then if we use this in the second equation in (5.1), we find that v satis-
fies

(5.1)

(5.3)

Av(¥) + fu(x) + eh(v(x), u(|x|, R) = 0, x¢€ D,
v(x) =0, x¢€dDj.
This equation is now of the form (1.4), and. as the hypotheses of Theorem 4.1
are valid, we see that for sufficiently small |2, (5.4) admits a positive degenerate
solution v,(r, ps(ﬁ(a))) on which the symmetry breaks. Thus there is symmetry
breaking for the system (5.1) on the solution- [u(r, ﬁ(e)), v, pe(fl(a)))].

(5.4)
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