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1. In t roduct ion  x. In  t93t Langer initiated and gave the first of numerous 
contributions to what has become a successful theory for asymptotic expansions 
~f the solutions of a differential equation with a turning point. This theory has 
been extended and applied to a great many  questions by him and by  others. 
An extensive list of references may be found in L. CESAm'S book, Asymptotic 
behavior and stability o] solutions o] diHere~tial equations, Chapter IV, Springer- 
Verlag, Berlin, t958. 

In this paper we present a general asymptotic theory of ordinary second order 
linear differential equations witl~ two simple turning points and containing a 
numerically large parameter.  In particular, we are concerned with the asymptotic  
expansions with respect to complex ~t of solutions of differential equations of 
the form 

(t.1) dPY ~PP(s,,~)y=O. 
ds ~ 

We consider this equation for s in a closed, simply connected, perhaps unbounded 
region ~s  of the complex plane. We assume that  ]or [ ~[> N and ]or s E ~ ,  the 
coe[]icient P(s, ~) is o] the [orm 2 

o o  

(1.2) P(s, ~) = Y, p;(s) ~-,, 
0 

where each P1 is analytic, and, most importantly,  that  Po(s) has precisely two 
simple zeros, o~ and r, in the interior o] ~s.  

In a region which includes a turning point, i.e., a zero or singularity of Po(s), 
the solutions of the differential equation (1.1) depend upon ~t in so intricate a 
way as to have quite distinct asymptotic  forms in different parts of the region, 
being dominant (exponentially large) in some parts and subdominant (exponen- 
~iaUy small) in others. The asymptotic  series for solutions of (1.1) over a region 

1 This research was supported by the United States Air Force through the Air 
Force Office of Scientific Research of the Air Research and Development Command 
under contracts No. AF 18(600)-1481 and No. AF 49(638)-192. 

2 The letters /~I and N are always to be used as generic symbols for positive 
constants. 
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wtfich includes just one simple turning point are known and are based upon 
Airy functions [2, 5]. Thus, it would appear that  the behavior of solutions of 
(1.') over the entire region ~ , ,  which contains two simple turning points, is 
obtainable by  the familiar procedure of evaluating the coefficients in the depend- 
ence relations which connect solutions whose behavior is known about one of 
the turning points with those solutions whose behavior is known about the other 
turning point. Unfortunately, this evaluation is not possible in general; two 
li:marIy independent solutions may have the same dominant asymptotic form, 
which makes the inference of the identity of two solutions from the identity of 
their asymptotic  forms invalid. Thus, a new theory is necessary if we desire to 
have uniform asymptotic expansions of solutions of (tA) over all ~s- LANGER [4] 
has derived the leading terms of such asymptotic expansions in the special case 
where s is a real variable on a bounded interval, P0 (s) is real-valued, and.p: (s) ~ 0. 
:?,Te derive the asymptotic expansions to n + t terms, where n is an arbi t rary 
uon-negaiive integer, of the solutions of (1.t) under the general hypotheses set 
forth in the first paragraph above together with some others of a more technical 
nature to be set forth later. 

Interest  in the problem discussed here stems mainly from possible applications 
for the theory derived. In  certain regions, the differential equations for the 
angular and radial spheroidal functions are of the type (t . t) .  This is also true 
of the V,'~littaker equation for certain configurations of its parameters. The 
spheroidal functions are important  in problems concerning scattering by a prolate 
spheroid. The Whit taker  functions, disguised as Coulomb wave functions, occur 
in quantum mechanics. Equations of type {t.t) are also of interest in other 
problems of wave motion and diffraction. 

"We have divided the discussion below into three parts. In Part  I we transform 
the differential equation (t.t) into one more suitable for analysis. We call this 
canonical form the given equation. We then give an algorithm for the construction 
of a related equation whose coefficients resemble the coefficients of the given 
equation to an arbitrarily prescribed degree. In Part  I I  we study the solutions 
of the related equation. These involve Weber functions of large complex order 
and argument. They have been studied by ERD~LYI, KENNEDY & MCGREGOR [3]. 
We make considerable use of their results and have shown that  their asymptotic  
representations hold uniformly in arg v over a finite range of arg v, where v is 
the order of the Weber functions involved. We also give an algorithm for re- 
cursively determining the terms in the asymptotic expansions of these Weber 
functions. In Part  I I I  we prove that  solutions of the related equation are asympto-  
tic expansions to n + t terms of solutions of the given equation, n being any  

�9 n o n - n e g a t i v e  integer. The method of proof is, as usual, to transform the given 
equation into an integral equation of Volterra type, whose kernel involves solu- 
tions of the related equation, and to solve this integral equation by  the Picard 
method of successive iteration. We also give approximations for derivatives of 
solutions of the given equation. Our main results are stated as Theorems t and 2 
of w167 t2 and t3. An especially interesting feature is the occurence of a denumerable 
number of charaCteristic solutions of the given equation. These are bounded and 
oscfllatoi~y on certain curves joining the turning points and exponentially small 
on their extensions beyond the turning points: 
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Part I: Construction of the Related Equation 
2. The given equation. The analysis to follow involves certain functions 

and a mapping connected with P0 (s). To simplify their form we adopt a normalized 
form of the differential equation (1.t) as the basis of the sequel. This normaliza- 
tion was used by  LANGER in [4, w167 2, 3]. I ts  adoption here will be seen to entail 
certain assumptions on P0 (s). 

We consider the mapping from the given region ~ onto a region ~ of the 
z-plane defined implicitly by  the equation 

z s ~: 

(2.t) f (t2 _ t ) ~ a t  - - s  = 0. 
+ 1  r 

An immediate question is whether or not (2.t) defines a mapping at all, and if 
so, is it a schlicht mapping ? We can show that  (2.1) defines a mapping and that  
at  each point of ~ it defines a locally one-to-one mapping. The function which 
is the left member  of (2.1) is analytic in z except at  :t: t and in s except at  ,r and fl. 
I ts  partial derivatives do not vanish except on the lines z ---- • ] and s = ~ or ft. 
Thus by  the implicit function theorem for analytic functions, there exist in 
neighborhoods of all points of ~ ,  except p o s s i b l y ,  and fl, analytic solutions 
z(s) of (2.t) with inverses s(z). Further, ds/dz= (z 2 -  t)6po�89 and hence, 
s'(z)4:0 except perhaps at :]:t. 

We now examine what happens at the exceptional points 0r and ft. A com- 
putat ion shows that  we may  write 

$ $ 

(2.2) f ( t  2 -  t)~dt = (z-- t ) ~ 1 ( z )  and f])~o(t) dt = {s-- ~ ) ~  (s), 

where ~1 and P~ are analytic in neighborhoods of + t and ar respectively, and 
neither q~l (t) nor Pa (~r is zero. Thus, we may  write 

(2.3) F(z ,  s) = (z - -  t)  ~ ( z )  - -  (s - -  ~) ~ ( s )  = 0 ,  

where F is analytic in a neighborhood of (t, a) and neither OF/Oz nor OF/Os 
vanishes at (1, 0r Therefore, by  the implicit function theorem, there exists a 
solution z(s) of (2.3), and hence of (2.t), with inverse s(z), which is analytic in 
a neighborhood of ~ and such that  z ( ~ ) =  ! and s '(t)4=0. 

In  order to apply this same technique to (2A) at s =f l ;  we must  assume r 
- - 1  fl 

normalization of the coefficient Po. The integrals f (#--t)~dg and fp~o(t)dt 

are  independent of pa th  provided the pa':~hs do not encircle the singularities of 
the integrands. However, it may  be that  the lat ter  integral vanishes. We assume 
the contrary and choose the parameter  so that  s 

fl - 1  

(i) f p0~(0 a t  = f (t~ - 1 ) ~ a t  = - �89162 
1 

We can now apply considerations analogous to those above to reach the con- 
clusions that  (2A) has an analytic solution z(s) at ( - - t , f l )  with inverse s(z) 

3 We do not consider the limiting behavior of the solutions of (t A) as the turning 
points a and fl approach each other. F . W . J .  OLVER has informed the author by a 
private communication that he is examining this limiting behavior. 
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(2.5) 

with 

whose derivative s' is nonzero at - -1 .  If arg P0 is constant on the line segment 
joining e and fl, the hypothesis (i) is clearly fulfilled. This is the case t reated 
by  LANGER [4]; and since, in this instance, the mapping defined by  (2.t) is one 
to one on the line segment joining e to fl, it is schlicht in an open neighborhood 
of this closed segment. 

We have shown that  the implicit relation (2.1) defines a mapping from 
onto a region ~ and that  it defines a locally one to one mapping of some neighb6r- 
hood of any point of ~ onto a neighborhood of ~,. We require more than 
this and assume that  

(ii) The relation (2.1) defines a schlicht mapping 

~Cs): ~ ~ , ,  
with [ -  t, t ] < ~ .  

Under this assumption, the change of variables 

(2.4 a) s = s (z), 

(2.4b) y(s) [d~zJ (z), 

where s satisfies (2.t), transforms the differential equation (t.t) int~ 

a~u 2 2 o ( z , ~ . ) u = o ,  
d z  ~ 

1 A*S t..~_ 
O(z,;O =P(s(z) , iOs'2+ z.~ 4s,2 2s' 

where Q is analytic for I,tl>N and for zC ~.-. We write 
oo 

Q (~, ;.) = V qj(z) ~-J. 
O 

In particular, 
qo (z) --  (z' - t ) .  

We henceforward refer to the differential equation (2.5) as "the given equation". 

3. The first approx imat ing  equation.  The analysis of the given equation 
is based upon the construction of an equation which resembles it up to terms of 
the form ; t -"-xO~l)  in the coefficient of u, where n is any non-negative integer 
and O (t) denotes a function of z and ;t which is bounded for z E ~ and for I ; t l>  N. 
The algorithm for the construction of this related equation is similar to the algo- 
r i thm of McKELvEY given in [6]. The matter  at issue in MCKELVEY'S paper 
is the approximation of solutions of an equation with a single turning point of 
order two. Such a turning point may be thought of as the confluence of two 
simple turning points so that  similarities in the analyses of the two cases are 
not unexpected. 

The point of beginning in both instances is WEBER'S equation, which may 
be written in the form 

d~V 
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We make the t ransformation 

t = (2 ,~ ) 'z ,  v ( t )  = v ( z ) ,  

and WEBER'S equation becomes 

d"v _ 2(2z~ _ v) v : 0 
d z.~ 

Let a non-negative integer n be chosen once for all. We now choose v so that  
n 

(~.1) p = 2 - ~  . . . .  x' c /2 - /  2, 
0 

where the (arbitrary) constants  c and c i are yet  to bc determined. This brings 
\VEBF.R'S equation into the form 

d"v [ '" " v (~.2~ d='a --L;"~(Z'~-- 1) =-}.C-;-~ 'Ci) .  : 0  or z" ' - -R(~ ' , ; . )z '  : 0 ,  
0 

which is our first approximat ing equation. 

4. The  second a p p r o x i m a t i n g  equa t ion .  We next  construct  an equation 
resemh]ing the given equation in both the }." and 2 terms of the coefficient of it. 
Formally,  this step i.- almost identical with the corresponding one in f i! .  The 
idea is to make a change ,f dependent variable 

(4.1) Z = H 0 "t' ~-  II 1 "t"/;. 

in the first approximat ing equation (L2) and to determine thc functions !~o 
and ,t,~ in such a way  as to make the new differential equation in Z more closely 
resemble the given equation. By differentiating Z twice, employ'ing (~.2) at each 
step to replace v" by Rv, and I) 3" construct ing the eliminant for v and v' among  
the three relations connecting Z, Z' ,  and Z"  with v and v', we find that  the dif- 
ferential equation satisfied bv functions Z of the form (4.1) is 

d"Z __ H dZ  --  i[--o-Z) = O, 
d:'-' I )o d :  

(4.2) 

wherein 

(4. ~ a) 

(4. ~ b) 

and 

(4.~c 

Do (z, 2) -- ] ,'o 
-- l /q .  2 

H(: ,2)  : !'o 

l ,'q "7" 

s 
,"o § !q  R/2 

!r -r- ! I I / Z  

i .~ p ) . [ 
'{o "- - ! q  1~ z l + !q  R'/2 

2,"0 + ,,~'/2 I 

: t/O' - - ! 1 0 1 ~  : 2!lSl R t. 1 - I - ! 1 1 R / / .  ,H 0 J - / l l R / J .  ] 
�9 , m t I * ] �9 l{: .  Z~ 2!,; -_ ,,q 2-i +/ '114/2 ,,~ + / , , t z  

Ill so far as 2 is concerned, the functions D o and H arc bounded for 121 > x  
with I) o (=, ~ )  =Mo - y ~  qo. 

\Ve shall dc termmc P0 a n d / q  l)y the condition that  the terms in the coe.ficicnt 
] / D  o in (4.2) which become infinite with 2 have sum 2Zq0(z) +2ql (z ) .  Wc recall 
that  the choice of the constant  c in (3.2) is in our hands. Now, a simple d.vision 
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shows tha t  

(4.4) J - - R + D ~ [  1~~ P~+tt~R/~ 
Do 2tto + ,u'l'/a 12o + I t z /~ ,  " 

Recalling the definition of R from (3.2), we observe tha t  the coefficient of X~ in 
J]D o is qo. The coefficient of ~ m a y  be computed  and is 

c + D'dl (z, oo) ] 2p; q~ + l~ q~ Pl q~ t 
2po Po ' 

o r  

D~ 1 (z, oo) [(c po ~ + 2/~0/~i qo + #ot*~ qo) - -  (c/~ qo + 2p;/~1 qo)]. 

Therefore, a sufficient condition tha t  this coefficient be equal to qx is thai  t% 
and  #q satisfy the following system of differential equations:  

2~; q0 + ~,  q; = ~0 (ql - -  c), 

2/~; = Pl  (qI - -  c), 
wi th  boundary  condition tha t  

/~o ~ - - / ~  qo = Do (z, c~) = 1 .  

A possible solution of this system is 

/l 0 = cosh O, /~x - -  sinh O, 
9 

{4.5 a) 

where 

(4.5b) 

And 

(4.5 c) 

9 ( z ) = ( z * - - l ) L  a r g q = O  for z > l ,  

It 

v~(z) - ( q~(s)-c as. 
- J  2--~i 

i 

We deduce from these formulas tha t  /x o and Pl  are analytic in ~ except at  
z = -  l provided/~1 is defined so as to be continuous at z = t .  Wi thout  proper 
choice of the constant  c,/x 0 and #1 will fail to be analytic at  --  1. In  order to 
render them analytic there, we choose c so tha t  

+ 1  

f ql(s) ds ~(s) 
(4.6) c - -  - ~  

+1 

f ds 
~(s) 

--1 

Then  0 ( - - t ) = 0 ,  and  0 m a y  be written in the form 

O(z) = [ q1(s)--e ds. 
J 2q~(s) 

- - 1  

Provided ,u~ is now defined so as to be continuous at -- 1, this fact and computa-  
tion show tha t  ~u,~ and ,tl 1 are analytic throughout  ~ .  
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(4.t0a) 

where 

The choice of Po and/~1 determine D 0, and from (4.5) it follows that 

(4.7) /,o ~ --/t~ qo = t .  

The relations (4.7) and (4.3) and the definition (3.2) of R imply that  
n 

(4.8) Do(z, 2 ) = t  + 2-x( /zo/ , i - - /~/q--c /~x *) - - i z [ Z c i 2 - i - z .  
o 

Thus if ~ is bounded, it is clear from (4.8) that  D o is bounded away from zero 
for 121 > N and for z E ~ .  If ~ is unbounded, we assume 

(iii) D o is bounded a w a y / t o m  zero/or zE ~, and/or  [21 > N.  

We observe directly from (4-3.) that H = Do7 Therefore, we may make the 
change of variable 

(4.9) r = Do~Z 

to remove the first derivative term in equation (4.2). I t  then takes the form 

d'r [2* (z* -- t) + 2 q, (z) + r(z,  2)] r = 0 
d2.~ 

(4A0b) 22(z ~ -  t) + 2 q l  + T = D ~  + T \ D , /  2Do 
I 

The function T is analytic in ~ as R, tt0, and/z x are all analytic there. Further, 
T is analytic in 2 for 121 > N; hence, we may write 

(4.1t) T(z, 2) -- t/(z) 2 -j. 
o 

We call the differential equation (4. t0 a) "the second approximating equation" 
for the given equation (2.5). It  is important to note the way the constants c~, 
which were introduced in (3.1), enter into the functions t i. The c i appear in T 
wherever R and R' do. From (4.4) and (4.3 a), we observe that aside from the 
leading term R in the right member of (4.t0b), R and R' have coefficients of 
order 2 -1 or smaller in this right member. I t  follows that the constant c i occurs 
linearly in ti, always with a coefficient of + t, and is absent from every t /wi th  
j < i .  

5. The related equation.  We are now in a position to construct a dif- 
ferential equation whose solutions are known and whose coefficients are identical 
with those of the given equation up to terms of order 2 -*-I .  Inasmuch as this 
construction is already well known [g, 6], we present only the results. 

With ~" standing for any solution of equation (4.t0a), we set 

( (SAa) w = D i 4  A ~ ' +  2, / ,  

where 

(5.t b) 

Arch. Rational Mech. Anal., Vol. 2 

a (z, 2) = F, a;(z) ,,1-~, 
0 

B(z, 2) = ~ b/(z) :t -j, 
0 

10 
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and 

).~ A' , + . ! S  
(5.t c) D 1 (z,.2) = , 

A ~ - ~ -  I 

and choose the functions ai and b i so that w satisfies a differential equation of 
the form 

(5.2) a,~ [ , ~O(z ,~ ) -  a(~,~)] dz" - )n+ l  '] W = O, 

where ~2(z, 2) is bounded for z E ~- and for [ 21 > N. The proper choices of the 
a/s  and b / s  are: 

ao(Z) = t ,  bo(z) = -~(z; J 2~(s) ' 
1 

z 

' f E  ' " aa(~)--o, b~(~)=99(zf (q~--t,)--2q~b0 f~b0] as  299(s) ' 
1 

(5.3) and for j = 2, . . . ,  n, 
g 

t f [b" i-2 ] 
~;(~) = - 2 J  t ' - '  + y' (e;--;.- t;_~_,) b, as, 

0 
1 

a 

_ --r (2 t i_k_2 b'k + t i_k_2 bk) - -  a, 299 
0 

In order to render the a/s  and b/s analytic in ~ ,  the constants ci occurring in 
their defining expressions must be properly chosen. This may be done recursively 
since ci occurs linearly in ti and is absent from each t i with f <  i. The correct 
determinations are 

1 1 

c o = y f (q., - -  t*) ,ls f , , . 299 ' ca = Y  [ q 3 _ _ t . _ _  2qxbo__qabo  ] ds  
299 ' 

- - I  - - 1  

(5.4) and for j ~  2 

ci = ~ f (e;-,. 

where 

2 - -  ,. t t b /i-k) a,.-- (2qabi_ t  + qa i-a) + (qi+2--  6*) 
' - '  ] t p~ d s  

__ V (2ii_i~_ 2 bk + li_~_2b~ ) __ a; 2q 9 J 
0 

=( -1. 
t* : = t j - - c  i and y l ~.& 299 

We now observe that the division by DJ in (5.t a) is legitimate if ~ is bounded, 
since Da(z,  ~ ) =  t. If ~. is unbounded, we assume 
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(iv) D1 (z, 2) is bounded away lrom zero/or z C ~ and /or  [ 2[ > N. 

The function O(z, 2) which appears in equation (5.2) is a function whose specific 
form may be computed, although it is of no interest to us. It  involves the several 
functions A, B, Q, R, q0, and ql: I t  is, however, important to note that  O(z, 2) 
is analytic in 2 for 121>N and is analytic in z for z E ~ .  We henceforward 
refer to the differential equation (5.2) as the related equation. In Par t  II  we 
shall single out certain of its solutions and describe their behavior for zE~ ,  
and laI>N. 

Part II: Solutions of the Related Equat ion  

6. Introduction.  The construction just given of the related equation enables 
one to know the behavior of its solutions only as~well as one knows the behavior 
of the Weber functions which are solutions of the first approximating equation 
(3.2). These are Weber functions of large complex order and unrestricted argu- 
ment, e.g., D~(,_1)(~-2 z). Their behavior is not yet completely known. ERD~LYr, 
KENNEDY & MCGREGOR have derived the results most useful to us [3]. They 
have established approximations to the various functions 

(6.t) y , (x ,v )  = D ( ~ , _ , ) / , ( V 2 - v e ~ " " x ) ,  a = ( - -  I ) ' ,  

with an error involving v-L We strengthen their results by showing that  their 
asymptotic representations hold uniformly in arg v over sectors of the v-plane. 
We also extend their representations to"asymptotic expansions, fl~e terms of 
which are determined recursively by a quadrature at each step. 

We obtain the behavior of solutions of equation (3.2) by lettiflg x [/'~ z 
F ~ 

in the expansions for the functions (6.t). We then determine the asymptotic 
expansions over ~, of the solutions of the related equation. These' are explicit 
up to terms involving v -1. While our results are limited, by the lack of precise 
information on the structure of Weber functions of large complex order, ap- 
proximations to terms involving v -1 are usually adequate in applications. When 
they are not, numerical methods for the calculation of the terms of the asymptotic 
expansions given in w 8 may be employed to give more precise approximations. 

7. Domains in the x-plane.  The determination of the regions of validity for 
the approximations to solutions of the given equation, which are derived in 
Part  III,  depends upon the character of a function ~b(x). I t  is defined by analytic 
continuation from its positive values on (t, oo), which are given by 

(7.t) qb(x) = f (t 2 - -  t)6"dt = f q~(t) dr. 
1 l 

It  is shown in [3, pp. 469, 470] that q~ is a schlicht mapping of a Riemann sur- 
face 3~ over the x-plane with branch points at -4-t onto a Riemann surface ~q 
over the ~-plane whose branch points are the images of the branch points in 3~. 

Clearly: 

(7.2) 

and for large [x[, 

(7.3) 

re(x) = - ~ - { x ( x ' -  I)~ - tn [x  + r  I)~]}; 

r = -4- �89 x,  [t + o (x-,)] .  
I0" 
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The Weber functions (6A) are entire functions of their argument and their 
order. Hence, in discussing them we may assume that 

(7.4) The x-plane is cut from -- t to + t  a n d ] a r g ~ ] ~ n + e ,  e > 0 .  

These assumptions enable us to avoid considering more than a finite number of 
sheets of the logarithmic Riemann surface ~. 

Let ~x denote the z-plane cut in' accordance with (7.4) and the condition 
[ a r g ( ~ - - t i [ ~ .  The corresponding portion 3z of ~ consists of two sheets joined 

.zi ~ < -7, at~ ~ - --d~ ~-- ~ \ .  \ , . \ \ \ , .  , \ , \ \ \ \ \ ~  aa] #---2,-t 

l "  O " - arg-~=O 

# ~  ,, acg #-0 

x ~ - 1 , a n J x - ~  

Fig. t. The $tlrface 3t 

(7.6a) 

(7.6b) 

(7.6c) 

(7.6d) 

along the ray a r g # = 0  (see Fig. 1). We now 
define certain region~ of ~ on which the be- 
havior of the Weber functions (6.t) is con- 
veniently describable. Let the index m, which 
appears in (6.1), have range 0, ~ t, + 2, 4- 3, 
and let 

C7.5) ~(x,  ~,) = ~ r  

Let y,~ be the point at infinity on ~ in the 
direction a r g @ = - - m z ~ - - a r g v ,  and let e be 
any positive number small enough to make 
the following definition meaningful. We define 
@~ to be th.e largest closed, simply connected 
region @ of ~ such that 

I #(x)[ ~ e, x E @, except that x = 1 and a neighborhood of x = i may 
be in @. 

Each point x in @ may be joined to the image of y .  by an analytic, 
simple curve lying in @ and on which ~g~ is monotone (monotone in- 
creasing from the image of y., to x if m is odd, monotone decreasing if m 
is even). 

The regions @,, are illustrated in [3, p. 482]. In general, except for sectors with 
vertices at x = 4- t  and widths 2e in arg(x-4-t) and the interior of the circle 
at x = - - t  deleted by  hypothesis (7.6b), each region @,~ covers the x-plane. 
Exception occurs, for example, when m = 0 and arg v = 0. 

We denote by @* the reflection of @m in the origin; that is, 

(7.7) ~ * = ( x l e - ~ ' x E ~ ,  if a r g x ~ 0 ,  ea'xC(~m if a r g x ~ 0 } .  

Now 

(7.8) O(e• x) =O(x) q: ~-~i, 

so that @,.~2w@.~ is precisely @.~ plus all but a small sector with vertex at 
x = - - t  and width 2e in arg(x--4)  of the neighborhood of x = - - t  not in @,.. 
The definitions of (~,. and (~* are essentially the same as those given in [3]. 
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8. Asymptotic expansions of Weber  functions.  In this section we describe 
the asymptotic behavior of the Weber functions (6A) over the regions @~ and 
@*. These functions are solutions of the transformed Weber equation 

(8A) a~y : ( : - t )  y = o .  
d x  2 

Since they are entire functions of x~ y~ = y: if m ~ l (mod 4). The Wronskians 
of certain pairs of these solutions are [1, p. 42] 4 

:8.2a) W'(y,~, Ym• x) -- 

q/r(y,~, Y~• x) = e :Fi~i(l+"') 2V ~ e ta , i ,  (8.2b) 

where 

(8.2c) 

and 

(8.2d) 

dg d/ 
~(/,.g,x) =l-d;- -- g - ~ ,  

~ = ( - t : .  

We henceforth adopt the convention that  in formulas in which the double signs 
• or =t= appear, all upper signs or all lower signs are always to be used. I t  follows 
from (8.2) that  any two of the four distinct solutions Ym are linearly independent 
except for v = 0 and certain other integral values of v. If v is not zero, and we 
always consider I vl to be large, the solutions ym and Ym• are linearly independent 
without exception. 

The asymptotic representations for the functions y,,,(x, v) involve the Airy 
function Ai (t), which is defined by the relation 

] /7K[2  (8.3) Ai(t) = ~ t ~ -  tl), 

in which K t is a modified Bessel function of the third kind [3, p. 463]. For each 
admissible m, the function 

V - i ~ :  o, ], o, = : ~', 

has a simple asymptotic expansion for x E@m. This is 

(8 .9  x~,(x,~)=2-t  n - ~ - ~  ~-~(x) e -~ ~, I'(r +•) 03--3rmlg 

o r ( - r+~)r ! (2~) '  +O(8-N-t) '  

xE@,~, m = 0 ,  + t ,  4-2, 4-3.  

The asymptotic series for dX,~/dx for xE@~ may be obtained from (8.5) by  
differentiation. ERDgLYI, KENNEDY & McGREGOR have shown that  the func- 
tions (8.4) are asymptotic representations for the Weber functions (6.1) [3, p. 479]. 
These representations may be extended to asymptotic expansions by  using the 
algorithm given by LANGER in [5] or similar algorithms. We use LANGER'S. 
In the notation of [8], it enables us to construct certain functions 0t i and fli 

4 The formulas in [1] appear to contain' misprints. 
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which are involved in the coefficients of the asymptotic expansions for the Weber 
functions (6A). With reference to equation (8A) the defining expressions of ~i 
and fli specialize. They become: 

~0(x) = t ,  

(8.6a) 
~ ( x )  = o,  

and for ?'~ 2, 

(8.6b) 

x 

~o(X)-  ~(~) 
1 

&(~) = o, 

= t) ~ ' k (t) fli-3 (t)] tit, :~i(x) -2-  L~-*( + 
1 

fli(x) - -  ~o(x) { ~  + k(t) dt  
1 

wherein 

(8.6c) k(x) ~-~'~(x)- and ~(x) = q ~ ( x ) 9 - ~ ( x  ). 
~ ( x t  �9 

Since ~l~/~x-----0, ~ i+ l -~f l~ j+ l=0  for all j~O.  The following order relations are 
easily established. They are important in the extension of the asymptotic 
representations in [3] to asymptotic expansions. For ]x] > N  and ] ~ 0 ,  

(8.7) ~ ; ( x )  = o ( t ) ,  and / ~ ( x )  = O(x-1). 

The asymptotic expansions given below extend the results in [3]. We omit 
their derivation to avoid repetition of work in ~3]. The ~.i's and ~i's are suf- 
ficiently small at x = ~ to guarantee uniform convergence of the integrals which 
enter into the derivation. This is the point in the extension of the analysis in 
[3] that  requires careful attention. The bounds for the error terms in our 
expansions are uniform with respect to arg v, if arg v lies on a bounded interval. 
This also applies to the results in [3]. The reason for this is that the limit am 
of integration in [3, equation (4.8)] may be fixed provided argv has a range of 
length tess than zt. For  example, if [argv] _~ ~ : t - - e ,  a 0 may be chosen as 
x - - e  ~ ~ ;  and if ]argv--{-stI_~-~-~--t,  a 0 may be chosen as x = e  ~ .oo. 
For each such range of arg v, a bound on the integral in [3, equation (4.8)] may 
be found which is independent of arg v. I t  follows that for arg v bounded, bounds 
for the error terms independent of arg v can be found. This reasoning does not 
imply, however, that  in the x-plane the regions of validity for the asymptotic 
expansions below are independent of argv. They are not, although in the 
neighborhood of infinity the boundaries of the regions of validity in the V ~ -  
plane are asymptotically independent of arg v. 

y,~ (x, v) ---- C,~ [D*(x,  v)]-~ • 
(8.8a) B*(~. ~) dX.,(x, ~)~ •  [t + O(v- i - ' ) ]  + ~,, ~ ) ,  

for x C @~; and 

y,~ (x, v) = Cm [Dt (x ,  v) 3 -�89 • 
(8 .8b)  

• A*(x , v )  X , , ( x , v ) +  v~ dx 
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for all xE{x I Ix- - t l<e}  and l~(x,v)l<N. In these relations 

(8.9a) Cm = 2~r�89 v I (o~-~) e - t  [o~(t-,.:,0+~,~q, 
D* (x, v) 

(8.9b) ---_ A*(x,v) v-~ B*(x,v) 1, 
]A* ' (x ,v) - - (x~-- t )  B*(x,v) +k (x) B*(x, v) v-z A*(x,v) +v-z B*'(x,v) ] 

and 

(8.9c) 
i-t i-i 

A*(x, ~) = Z ~(x} ~-', B*(x, ~) = Z flax) ~-'. 
0 . 0  

The functions 0q, fli, and k are defined by  the relations (8.6), the functions 
X~(x, v) are described by  the formulas (8.4) and (8.5), and ~ = ( - - t )  ~. 

One uses the identity 

(8.1o) y,~ (x, v) = y~_~ (e .='~i x, v) 

to derive the form of y,,(x,v) when x6(~__2. Taken together the regions Om 
and 63,* (m = O, • t ,  -4-2, • 3) cover the x-plane, each point being in two regions 
having indices which differ by t or 3- Therefore, the expansions (8.8) yield the 
asymptotic behavior of two linearly independent solutions of the differential 
equation (8.t) for each x. We observe that  zeros of the Airy function are not 
excluded from the region where the relation (8.8b) is fulfilled. This is the reason 
for the altered character of the error term in (8.8b) as compared with the error 
term in [3, equation (9.6)], for example. The behavior of dy,,/dx may  be found 
via the relation 

(8.tt) dD,(X)dx =vD'-x(x)-- 2t x D,(x) 
from the expansions (8.8). 

I t  is interesting to note that  if ,, is real, all solutions of equation (8.t) are 
oscillatory on the interval - -1  < x < 7 t .  This occurs since, for the configuration 
of x and v cited, ~l(~(x,v))=0. 

9. Solutions of the related equat ion.  The first approximating equation (3.2) 
has solutions 

(9.t) v,,,(z, 2) =D,._,(o,_x)(l'22e~"='z) (m = 0 ,  + t ,  + 2 ,  + 3 ) ,  

where D~ (z) is the standard parabolic cylinder function of order v [1], and where 

- -  %" cj 2 - / - x .  (9.2) a, = ). --  c .~ 
0 

Of course, v~ = vi if l ~ m (rood 4). The formula 

relates the solutions of equations (~.2) and (SA). In  view of this connection, 
the asymptotic  behavior of the solutions v,,, (z, 2) may  now be easily described 
with reference to the x-plane. Since 

(9.4) x ] ; 

the transition from regions on the x-plane to their images on the z-plane is 
elementary. 
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By directly applying the theory in [5] to equation (L2), we could have 
described the behavior of certain solutions of (3.2), other than the solutions (9.4), 
on regions in the z-plane identical with the regions (~m and @m*. However, the 
slight simplification in the description of the regions of validity of the asymptotic 
expansions, which is gained by this approach, is offset by an increase in dif- 
ficulty in deriving these expansions, since equation (3.2) is superficially more 
complicated than equation (8.t). For this reason and to take fullest advantage 
of the work in [3], we proceeded as we have done. 

We compute the Wronskians of the solutions z,~ (z, 2) using the formulas (8.2), 
(9.3), and (9.4). For future reference, the computed values are: 

~t'(v, . ,  v,.• ~, z) - ' 

(9.5) 
"ff" (V~,  Vra• l , Z) ~-  e 3-~ n i  ll +a~') V ~  r �89 

To each solution v,,,(z, 2) of equation (%2) there corresponds, through the 
relations (4.4), (4.9), and (5.t), a solution w,,(z, 2) of the related equation. The 
solutions w,, (z, 2) may be written in terms of the 

(9.6) 

where 

(9.7) 

Since 

W m (Z, ,~) = E o ( z , ) . )  v m (z, 2) + E 1 (z, 

B {~,R 
Eo(z,  2) --- (Do Dx)-~  A ~,o-+ y ~ . ~ 

( B ( m +  E~(z, 2) ~- (DoDx)-~ A i~ + ~  

functions v** (z, 2) as follows: 

2) v~ (z, 2)I2, 

,1. 2~ .Do ] 1 " 

(9.8) W'(wt, w~, z) = #"(vt, vm, z), 

the linear independence of solutions wt and w,, depends upon that of their cor- 
respondents vt and v,,. 

For the proofs to follow it is necessary to have at hand the asymptotic 
behavior, in first approximation, as ]21-+ 0% of the solutions w,,(z, 2) of the 
related equation together with the behavior of their first derivatives. One finds 
this behavior by considering the relations (9.6) in conjunction with the asymptotic 
expansions (8.8) and (8.5) and the relation (8.4). When ]~(x, v)] ~ M and ]x -- 41 < e  

(9.9a) u%(z, 2) : CmO(4 ), and w,',(z, 2) = C,,,O(2~). 

When ]~:(--x, v)] =<M and ]x + 41 <e ,  

(9.9b) w,,,(z, 2)--:C,,• and w',,,(z, 2)=C,,,• 

If z is bounded, xC S * (~m~, ,_~ ,  I~(x, v)] >,1'[, and ]~(--x ,v)]>U, then 

(9A0a) 

(9A0b) 

where 

(9A0c) 

w,. (z, 2) = A. ,  (z, 2) 0 (2-~) ,  

~,,'~ (z, 2) = w,. (z, 2) 0 (2), 

A,, (z, 2) = v ~*" e -~~ . . . .  i) e-,.r 
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If z is not bounded, then the functions E 0 and E~ defined by (9.7) may be un- 
bounded. In this case, the relations (9.10a) and (9.t0b) are invalid. We therefore 
introduce a function b (z) which is continuous, which is nonvanishing for Iz[ > M 
and equal to I for Iz[~ M, and which is the "largest" function such that  for each m 

(9.tt) Ib(z)A-;'(z,Z)w.,(z,.~) I <Yl~l-i and ]b(z)A-~t(z,,~) ~ l <  N]~,[-i, 

when * x E ( ~ w ~  and when [~(x, v ) l > M  and [~(--x,v)[>M. Thus when the 
relations (9.t t) apply, 

(9A2a) w,.(z, ~) -- Am(z'~)O(~-~) 
b (~) 

and 

(9.t2b) " w~(z, 2) -- Ar'*(z'2)O(~t) 
b (~) 

Part III: Asymptotic Expansions for Solutions of the Given Equation 
10. Final hypotheses on ~ .  Our objective is to determine the asymptotic 

behavior throughout ~ of a pair of linearly independent solutions of the given 
equation (2.5). This will be done in the sections to follow. We first link the 
behavior of solutions of the given equation to that  of solutions of the related 
equation by using the familiar method of variation of parameters. Its application 
to the given equation yields the integral equation 

Z 

( to. t)  u = w + f w~(~) wb(t) - wa(t) wb(~) ~(t,~) ~(wa,wb,t) ~,+1 u(t) dt, 
~. 

which is equivalent to the given equation in the sense that  an analytic solution 
of either one is a solution of the other. In equation (10.t), w, and w b may'  be 
any pair of linearly independent solutions of the related equation, w may be any 
solution of the related equation, and z.  may be any point in ~ .  The kernel 
in equation (t0.t) is, of course, independent of the choice of w, and wb so that  
a unique solution u of the given equation is determined,by specifying w and z .  
in equation (10.1). 

The variables z and x and the parameters 2 and v are always considered to 
fulfill the relations (9.4) and (9.2). Thus, given z and ~t, v and x are determined. 
In order to keep the investigation to a reasonable length and to avoid further 
notational complications, we make the assumption that 

(v) ]arg ~tl~ 7r. 

The second of the conditions (7.4) is thereby fulfilled when is sufficiently 
large. There is no loss of generality in assuming that the first of these conditions 
is alsosatisfied. In what follows we fix 2, once for all, with [~t I sufficiently large 
to fulfill all requirements placed upon it. 

The following lemma will be used in the discussion of solutions of (t0.t). 

Lemma. I[ 
a) ~ '  is a closed, simply connected region (whose boundary may depend upon 

a complex parameter ~), 
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b) ](z, 2) is continuous and bounded [or z ~ d  and /or 12[ > N ,  

c) K(z, t, 2) is continuous/or z @sd, /or t E d ,  and [or [ 2] > N,  

d) there exist a constant M,  a point s C,~ r and a set o[ rectifiable analytic curves 
oining the points o[ al to  s such that/or all z E ~  

f"l 2)11dt[ 
s 

then the solution o/ the integral equation 

g(z,2) =/(z,2) +2-kfK(z,t,~.)g(t, 2)dt (k>0) 
s 

has the ]orm 
g(z, 2) ---- /(z, 2) + 2 - k O ( ~ ) ,  

where 0 (!) denotes a /unct ion  o] z and 2 which is uni]orndy bounded/or = ~ d  and 

lot 121 > N .  
The hypotheses of the Lemma guarantee the uniform convergence of the series 
which is obtained by successive iteration of the integral equation, and from this 
the proof of the Lemma follows. 

For the Lemma to apply to the integral equation (t0A), it is necessary that 
the kernel in (t0.t) be bounded. We now make assumptions on ~ sufficient to 
establish the boundedness of the kernel. For each 2, let 

(m=0, +2, 

In this definition and in the sequel, when a region with subscript larger than 
or less than --3 appears, the region is understood to be the null set. Because 
of the overlapping of the regions (~,,~ and also of the regions 6L,*, one can show 
that 3? , , ,~ , ,_1~ '~, ,+a  0 n = 0 ,  + 1 ,  ~2) .  It foUows from the hypothesis (v) 
and the conditions (7.4) that we lose no generality by assuming that ~ s ~ ' _ o  
and &r The regions 07,~ cover ~. and each point of ~. is in at least two 
such regions. Our final assumptions on ~ are: 

(vi) Corresponding to each reglon .~,,,, there is a point z,,, such that each point 
z -~ ~ , ,  may be .joined to z,, by an analytic curve I" lying in ~ ,  and such that on I', 
~.}~ ~ is monotone (monotone increasing/rein z,,, to z it m is odd, monotone decreasing 
/rein z,, to z i/  m is even). 

(vii) The integrals 
. (  1 .Q(t, 2) dt 

b"(t) 
1" 

arc uni[ormly bounded /or z C-~ and /or [2t>.v 
The function .Q(z, 2) first appears in equation (5.2). The function b(t) is defined 
by the conditions (9.11). Of course, if ~ is bounded, hypothesis (vii) is auto- 
maticallv fulfilled. 

The~-c are certain shadow zones which must be excluded from the regions .~.,. 
in the discussion of subdominant solutions of the given equation. Their images 
on the x-plane adioin the segment -- 1-:. x~.:0. Their size and presence depend~ 
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upon arg 2. They are defined as follows: 

S~. = { z l z E M  ~, !}t(a})>N, I~(-x(z)) l>N, 
410.3) and the paths joining z tb z m all pass through 

the neighborhood of M. where I}(--x) l < N ) .  

The shadow zones are excluded for the reason that  the subdominant solutions 
of the given equation undergo a change in their asymptotic forms as one crosses 
into them. The presence of these shadow zones (see Fig. 2 for an example) is a 
phenomenon which has no counterpart in the discussion of asymptotic solutions 
of differential equations having just one 
turning point. 

As we have remarked, we wish to de- 
termine the asymptotic structure through- 
out ~ of a pair of linearly independent 
solutions of the given equation. We first 
prove that,  for each m, there exists a 
solution u ,  which is asymptotically re- 
presented by w,  in the region ~?,~--~9~ 
We then derive connection formulas 

acg 

,q 

Fig. 2. A shadow zone 

1 r = - 2 ~ "  

among the solutions u,~ from which the behavior of the solutions u m may be 
derived for all z E ~ .  Lastly, we discuss certain characteristic solutions, which 
may well be of special interest in applications of the theory. 

11. Subdominant  solutions when I~ 4 -I- x,  v )1 > N. For each region ~ . - -  S/'. 
there is a solution of the given equation which is subdominant, exponentially 
small, for z E (gt . - -  S~,.) and ~R (a ~) > 0. This solution is unique up to a constant 
factor. We now establish its existence and give its asymptotic properties. We 
assume for the moment that  z E d ~ . - - S a , ~ ) ~ . , + l  , In equation 410.t) let 
w.-- w., and wb = w.+x, let w = w. ,  and let the path of integration be a c u r v e / "  
which originates at z.,. For brevity, we adopt the notation l: = ~  (x (t), v) and 

=~(x(z),v). If the curve F should intersect one or both of the regions where 
] ~ ( q - x ) l ~ N ,  then ~t(a~)~O. Thus, if we replace the subarcs of /~ on which 
]1: 44-x) l~  Y by arcs on which I~ (4- x)l = N, and if we note that  on the remaining 
portion of / ' ,  ~R (a ~) <: ~ 4 a ~), then we see that  on the (new) path of integration 
exp [2o (~ -- ~)] is bounded. 

The choices lust made determine a solution u .  of equations (t0.1) and (2.5). 
If we adopt the abbreviations 

U. (z) = A~ l b (z) u m (z, 2), 
0~.t) 

~V. (z) = A~s 1 b (z) w m (z, :t), 

where A.dz , 2) and b(z) are defined by  (9.10c) and (9.tt), we can rewrite the 
integral equation (10.t) in the form 

(~ t.2) U,~ (z)= W. (z) +f{w,~(z)r W'+l(t)-  W. (t) W.,+x(z ) e 2"r O(l)b,(t)t2(t}A.+ sU'(t) at. 

In writing (t~.2), we have used the evaluations 49.8) and (9.5) of "Bz(w,~, w.+t ,  z). 
The relations (9.t0), (9.t2) and (tt.1) imply that  for [ ~ ( q - x , v ) [ > N  and 
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zC ( ~ , - - S t , )  c ~ , + 1 ,  both W, and W,+ 1 are bounded. We have already observed 
that  exp [2a ($ - -  z)] is bounded o n / ' .  All functions in equation (11.2) are con- 
tinuous. In virtue of these facts and hypothesis (vi) of w t0, the hypotheses of 
the Lemma are fulfilled with respect to equation (t t .2). Thus for z E (~ , , - -  5a,) ~ 
~,.+~, [ $ ( i x ( z ) , v ) ] > W ,  and 1).I>N, 

0t .3)  u,,(z) = ~;.(z) + 2 - - - 2 o 0 ) .  

We can show by  analysis analogous to that  above that  this relation also holds 
for z E ( ~ , - -  S#~,) c~ ~ , , -1 .  In terms of Um and w,,, the result (11.3) takes the form 

A. (~, z) 0 0 ? N) 
(1t.4) u,(z,~) =w,,(z,  2) + b(z)2,+z : ( 1 2 [ >  . 

Since (~m--Sa , ) - ' (~ , ,_a~M,+l ,  (!1.4) holds" for all z E ( ~ , - - S e , )  such that  
I ~ ( ~ x ( z ) , ~ ) l > N .  

We can use the estimates (tl.4) and (9.12) to obtain the the form of u'(z,  2) 
directly from the equation found by differentiation of- (t0.1). I t  is 

, , A , . ( ~ ,  ;t) 0 0 )  
(tl.5) urn(Z,). ) =win(Z, 2) + b(z) 2n+l , 

where the prime denotes differentiation with respect to z. 

12. The solutions um when [~(-I-x,  v ) l ~ N .  There are two cases to be con- 
sidered: Ir and I~(--x,~)l--<_N. For the moment we suppose that  
151 ~ N .  We recall that  the solution u,, of the given equation and equation 
(t0.t) is that  solution determined by the choices w = w ,  and z,  = z  m iri (10.t), 
the pa th  of integration being a c u r v e / ' .  We divide/1-in two parts ~ and 
on which I~I_>_N and I ~ I < N ,  respectively. As was done in w 1~, we replace 
any part  of ~ on which I , ( - x ) [  < N  by an are on which I ~(--xt I = g .  We now 
write the integral equation for u ,  in the form 

(t2A) u,(z) = w,(z) + f K(z , t , j )  u , ( t )d t  + f K(z,t, 2) u . ( t )d t ,  
11 1 ~, 

where 
K(z, t; 2) - -  w.  (z) w.~:l (t) -- w.  (t) w,.• (z) . D(t, 2) 

~ ' (w. ,  w,n:t:x, t) 2 "+x ' 

the upper or lower signs being used according as F x ( ~ , + 1  or F 1 ( ~ , _ ~ .  

For the sake of argument let ~ ( ~ , + 1 .  On/]1, the behavior of u ,  is then 
described by  formula (tt.4). Using this result and the relations (9.9a), (9.t0), 
and (9.t2), we find that  

f f K(z,t, 2) u . ( t ) d t = C ~ C . + x  e~;nTd;~ �9 b,(t) An+ ~ 
1., r, 

Gm g - 2 a r  

But  ~ (av )  > 0  on ~ ,  except perhaps for an arc on which ~(av)  ~ - - N .  Therefore 
by hypothesis (vii), 

c . o o )  
(t2.2) f K(z, t, 2) u.(t,  2) dt -- it,+* 

r, 
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From the estimate (9.9a) and the order relation f d t  =0(~-.~),  we deduce that  
G 

02.3) f K(z, t, ~) dt = ~-(~+~ f ~ 0 0 )  dt = ;~-c"+~0(t). 
r, /-, 

The estimate (t2.2) enables us to rewrite equation (t2.1) as 

Um Wm 
C~ --=-C-~ + 2 - ~ - 2 0 ( t )  + f K(z, t, 2) u~(t) dt Cra 1,, 

The relation (12.3) shows that  the hypotheses of the Lemma are fulfilled with 
respect to this equation; hence, 

o0) (t2.4) ~,(z, x) = ~ , ( z , a ) + c ~ ,  ~,+, (It(x,~)l____N) 

Since the order relation (9.9a) is independent of a r g ( z -  Vv~), this result is valid 
in a full neighborhood of x = 1, or of z = v ~ [ ,  where I tl- N ~ d  not just in that  
portion of ~R~ where ]tl  ~ N .  

We now consider the case I t  ( --  x) l --<-- N. This situation is more complicated. 
If, for such z, ~R (a t) < --  N, then the estimate (12.2) no longer holds; and therefore 
we cannot determine the behavior of u,, when [t  (--x) I ~ N as we did above for 
Jr I <  N. We resolve this difficulty by  showing that  it is only an apparent  one. 
Let us momentari ly suppose that  m = q= 2 and ~ (a t) --~ --  N. Then ~ (a t) >= N 
in the neighborhood of ~ , •  where It(-x)l _<_N. By the argument given in 
the next paragraph we are able to determine the behavior of u,,• in a full 
neighborhood of z = - -  vV~, or of x ~- - -  t, where ] t ( --  x) l ~ N. \Ve are also able 
to determine the behavior of u~• 1 in such a neighborhood. Similar considerations 
apply to values of m other than ~ 2. Thus, we shall always be able to determine 
the behavior of two linearly independent solutions of the given equation in a 
full neighborhood of z : - -  Vv~ where I t  (--x) I ~_ N. 

As promised above, we now obtain the form of u,, if I t  (--x)l ~ N and if, 
for such z, ~R(at )~_--N.  To do this we replace wm(z ) and w,~• ) in (t2.1) by  
w,n• and w,,:~l(e• respectively, and similarly replace win(t) and 
w~• ) for ~ such that  [z(--x)[  < N .  In virtue of the identity (8.t0), the analysis 
used in the derivation of (t2.4) may  be easily modified to yield the conclusion that  

C,,• O(l) (t2.5) u,.(z, ~) = w,.•  + ~.+~ 

when [ ~ (--  x, v) l ~ N provided that  for such z, ~ (a t) > -- N. In  (t 2.5) the upper 
signs are to be used if re<O, lower signs if re>O, and either if m =O. As is the 
case when ] t l < N ,  we need not impose the restriction here that  z lie in ~ , , .  
We need only suppose tha t  the portion of the pa th  of integration on which 
] t  ( - - x ) [ <  N is rectifiable. Thus the result (12.5) is valid in a full neighborhood 
of z = - -  V ~  where [ ~ (--  x)] <= N. 

We can use the estimates of u~ obtained thus far to find the form of u "  (z, ~) 
when I ~ [ <  N or [~  (--x)l ~ N directly from the equation obtained by  differentia- 
tion of (10.t). The results are: 

, , cmo(t)  02.6a) ,,mC~,~)=,..(~,2)+ ~..+, (It(x,~)l~N), 
�9 Cm• 0(t)  (t2.6b) u,,,(z,~.) = w '  'e:F"'z,~) + ~.+, ( l t ( - - x , v ) l ~ N )  

in .neighborhoods of z = ~ and z = -  ]/~X, respectively. 
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We summar ize  our results in a theorem:  

T h e o r e m  1. Under the hypotheses (i) through (vii) and corresponding to each 
region ~,~, the given equation (2.5) has a solution um with the ]ollowing asymptotic 
behavior when [ 21 > N:  

a) When z E (~t,,-- 5P ) and I ~ (4- x, v) l > N, u,, is exponentially large or small 
according as ~R(a~)< 0 or ~R (a ~)> 0 and is described by the /ormulas ( t t .4)  and 
(1t.5). 

b) .When and I*(x, _ N  or lz +PTXl--   and _ N ,  
u,~ is oscillatory in character and is described by the relations (12.4), ( t2.6a) and 
(12.5), (i 2.6 b), respectively, provWed V~2 and -- Vv/2 lie in ~,~ and ~R (a~) > -- N.  

c) I] v is real, then um is bounded and oscillatory ]or -- t ~_ x <= 1, m = O, -4-1, • 2. 

The regions ~m and ~m, the variables x and ~, and the paramete rs  v and  o" 
are defined b y  (10.2), (t0.3), (9.4), (7.5), (9.2), and  (6.1), respectively.  T h e  
functions and  constants  appear ing in the relations (1t.4), ( t l .5) ,  (12.4), (t2.5) 
and  (12.6) are defined in Par t s  I and  I I .  The bounds for the error t e rms  in all  
of the es t imates  for solutions of the given equat ion which have  been derived 
are uni form in arg ~ for l arg 21 _~ ~. This is so for the same reasons as those 
ci ted i n w  .8 for the uniform boundedness  of the error te rms in the expansions 
(8.8a) and  (8.8b) with respect to a rgv .  

13. Connec t ion  fo rmu la s .  I t  remains to give a description of the solutions 
u,~(z, ,~) when [~ ( •  x)[ > N and when z is not confined to the specific region 
07,, as assumed in Theorem t. The  dependence relation among three solutions ul, 
Ur,, and u~+~ of the given equat ion m a y  be wri t ten  in the form 

(t3.1) uz = Az,~u~ + Bz, mu,~+l. 

The  coefficients are, of course, given by  the formulas 

(t3.2) A r m =  ~(Ut~'Urn+~'-Z)-- Btrn = ~(um'uhz)  
' ~ . " ( u , ~ ,  u , ~ + l ,  z )  ' " ~ ( u , ~ ,  u r n + l ,  z )  " 

Since the given equat ion lacks a first der ivat ive  term, the Wronskians  in 
(13.2) are all constants  and m a y  be evaluated a t  z = V ~ ,  where x = 1 and ~ = 0. 
If  each of the solutions ut, u,~, and urn+ 1 fulfills the relation (t2.4), then  we m a y  
conclude tha t  

= + cj o 

where k, j = l ,  m, or m + t .  Thus  by  relation (9.8), 

Al ,. ~'(vl,  Vm+~) ' - -  ~ ( v . , ,  v.,+O + C.,+1 C1 e~' '~"O (2-"-31"),  
(13.3) 

~(v.,,vz) + C.,C, et~,,i.O(2_._3,~). B~,,, - -  ~(v, . ,  v,,+O 

Since vk=v,: if k ~-/" (mod 4), the relations (9.5) always suffice to give the values. 
of the Wronsldans  in (t3.3). The constants  Ci are defined b y  (8.9a). 

The  indices l and  m for which the formulas  (13.t) and (13.3) hold depend 
upon  arg v; hence, the pairs of l inearly independent  solutions of the given equa -  
t ion whose behavior  can be determined over  all of ~ ,  depend upon arg v. The- 
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selection of these fundamenta l  pairs of solutions m a y  be made using Theorem 1 
and the connection formulas (t3.t) .  We omit  the details of the selection and  
state only the results. 

T h e o r e m  2. For each value o/~ such that l arg ~[ ~ re, the given equation (2.5) 
has a pair o/ linearly independent solutions whose asymptotic behavior over all o[ 

may be /ound /rom Theorem t and the connection /ormulas ( t3 . t ) ;  namely, 

q 0 = < a r g v < ~  

~ =< arg,,_< ,x + e 

- - ~ < a r g v _ _ _  0 
the/undamental pair is 

U _ ~  ~ U 1 

U -  3 ~ U 0 

U -  l , U 2 

U 0 , U 3 �9 

14. Charac ter i s t ic  solut ions .  If  -~(r a non-negat ive integer, 

where y,,(x, v) is a solution (6.t) of the t ransformed Weber  equat ion (8.t) and  
H k (x) is the Hermite  polynomial  of order k. The Hermite  polynomials are even 
or odd according to the par i ty  of k so tha t  when -~(av- - t )=k ,  

These facts are reflected in the behavior  of the solutions of the given equation. 
If [ a r g ) l [ <  e, 

~r (u0 ,  u~2) - -  * r ( y o ,  y• + 4 ~- ~t~ e - - "  e -~ ~ ~ [ 0  ( a - ~ - l )  _ 0 ( , l - ~ - ~ ) ] .  

where the upper or lower signs are to be used according as arg v < 0  or arg v >  0. 
When ,, = 2 k  + t ,  ~ (Yo ,  Y•  Thus, as shown by  LANGER [4], for certain 
values of ~ the Wronskian ~//'(u0, u• vanishes. These characterist ic values are 
countable in number  and are given by  the formula 

~k : 2 k  + I  + 0(2~-n-1). 

At the characterist ic values, 

where the upper  o r  lower signs are to be used according as arg (v(~k)) is negat ive  
or positive. We call u0(z, ).i,) a characteristic solution of the given equation. 
We can observe the unique behavior  of a characteristic solution Uo(Z, ~k) for 
real z by  referring to Theorem t. 

Since [ ~ (Zk qg)] < N for values of z such tha t  --  t ~ ~ z  ~ t and [ ~ z [ < N] ~k [ -1, 
a characteristic solution is oscillatory for z in a strip of width  0 (~1) centered 
on the interval  [ - -  1, t] .  In  certain regions outside of such a strip, a characterist ic 
solution is subdominant  and decreases exponential ly to zero as ]z[-+ oQ. These 
regions are sectors of width - ~ - - e  with vertices at  z = - c - V ~ ( ~ , )  and which 
are centered on the real axis. In  particular,  a characterist ic solution is uniformly 
bounded for real z. Only  characterist ic solutions and their multiples have this  
property.  
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