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1. Introduction!. In 1931 Langer initiated and gave the first of numerous
contributions to what has become a successful theory for asymptotic expansions
of the solutions of a differential equation with a turning point. This theory has
been extended and applied to a great many questions by him and by others.
An extensive list of references may be found in L. CEsaRr1's book, Asymptotic
behavior and stability of solutions of differential equations, Chapter IV, Springer-
Verlag, Berlin, 1958.

In this paper we present a general asymptotic theory of ordinary second order
linear differential equations with two simple turning points and containing a
numerically large parameter. In particular, we are concerned with the asymptotic
expansions with respect to complex A of solutions of differential equations of
the form

(1.1) ’fs’z’ —A2P(s, 1)y =0.

We consider this equation for s in a closed, simply connected, perhaps unbounded
region 9, of the complex plane. We assume that for |A|>N and for s€ D, the
coefficient P(s, A) is of the form?

(1.2) P(s, ) = ? pi(s) A7,

where each p, is analytic, and, most importantly, that p,(s) has precisely two
simple zeros, o and B, in the interior of D;.

In a region which includes a turning point, <.e., a zero or singularity of y(s),
the solutions of the differential equation (1.1) depend upon 4 in so intricate a
way as to have quite distinct asymptotic forms in different parts of the region,
being dominant (exponentially large) in some parts and subdominant (exponen-
tially small) in others. The asymptotic series for solutions of (1.1) over a region

! This research was supported by the United States Air Force through the Air
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2 The letters M and N are always to be used as generic symbols for positive
constants.
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which includes just one simple turning point are known and are based upon
Airy functions [2, §]. Thus, it would appear that the behavior of solutions of
{1.*) over the entire region Z,, which contains two simple turning points, is
obtainable by the familiar procedure of evaluating the coefficients in the depend-
ence relations which connect solutions whose behavior is known about one of
the turning points with those solutions whose behavior is known about the other
turning point. Unfortunately, this evaluation is not possible in general; two
linearly independent solutions may have the same dominant asymptotic form,
which makes the inference of the identity of two solutions from the identity of
their asymptotic forms invalid. Thus, a new theory is necessary if we desire to
have uniform asymptotic expansions of solutions of (1.1) over all 2,. LANGER [4]
has derived the leading terms of such asymptotic expansions in the special case
where s is a real variable on a bounded interval, p,(s) is real-valued, and p, (s) =0.
YWe derive the asymptotic expansions to # 41 terms, where # is an arbitrary
non-negative integer, of the solutions of (1.1) under the general hypotheses set
forth in the first paragraph above together with some others of a more technical
nature to be set forth later.

Interest in the problem discussed here stems mainly from possible applications
for the theory derived. In certain regions, the differential equations for the
angular and radial spheroidal functions are of the type (1.1). This is also true
of the Whittaker equation for certain configurations of its parameters. The
spheroidal functions are important in problems concerning scattering by a prolate
spheroid. The Whittaker functions, disguised as Coulomb wave functions, occur
in quantum mechanics. Equations of type (1.1) are also of interest in other
problems of wave motion and diffraction.

Ve have divided the discussion below into three parts. In Part I we transform
the differential equation (1.1) into one more suitable for analysis. We call this
cauouvical form the given equation. We then give an algorithm for the construction
of a related equation whose coefficients resemble the coefficients of the given
equation to an arbitrarily prescribed degree. In Part II we study the solutions
of the related equation. These involve Weber functions of large complex order
and argument. They have been studied by ERDELYI, KENNEDY & MCGREGOR [3].
We make considerable use of their results and have shown that their asymptotic
representations hold uniformly in arg v over a finite range of arg», where v is
the order of the Weber functions involved. We also give an algorithm for re-
cursively determining the terms in the asymptotic expansions of these Weber
functions. In Part III we prove that solutions of the related equation are asympto-
tic expansions to # 41 terms of solutions of the given equation, # being any
.non-negative integer. The method of proof is, as usual, to transform the given
equation into an integral equation of Volterra type, whose kernel involves solu-
tions of the related equation, and to solve this integral equation by the Picard
method of successive iteration. We also give approximations for derivatives of
solutions of the given equation. Our main results are stated as Theorems 1 and 2
of §§ 12 and 13. An especially interesting feature is the occurence of a denumerable
number of characteristic solutions of the given equation. These are bounded and
oscillatory on certain curves joining the turning points and exponentially small
on their extensions beyond the turning points.
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Part I: Construction of the Related Equation

2. The given equation. The analysis to follow involves certain functions
and a mapping connected with p,(s). To simplify their form we adopt a normalized
form of the differential equation (1.1) as the basis of the sequel. This normaliza-
tion was used by LANGER in [4, §§ 2, 3]. Its adoption here will be seen to entail
certain assumptions on p(s).

We consider the mapping from the given region & onto a region Z of the
z-plane defined implicitly by the equation

(21) f@—1)tdt —[pit)dt =o0.
+1 a

An immediate question is whether or not (2.1) defines a mapping at all, and if
s0, is it a schlicht mapping? We can show that (2.1) defines 2 mapping and that
at each point of & it defines a locally one-to-one mapping. The function which
is the left member of (2.1) is analytic in z except at +1 and in s except at « and g.
Its partial derivatives do not vanish except on the lines z=4-1 and s =« or §.
Thus by the implicit function theorem for analytic functions, there exist in
neighborhoods of all points of £, except possibly « and g, analytic solutions
z(s) of (2.1) with inverses s(z). Further, ds/dz=(22—1)}p;¥(s); and hence,
5'(z) 30 except perhaps at +1.

We now examine what happens at the exceptional points « and 8. A com-
putation shows that we may write

(220 f@E—1)dt=(z—1)iDy(2) and fpé Hat=(s—a)iBs),

.1
where @, and B, are analytic in neighborhoods of 41 and «, respectively, and
neither ¢1 (1) nor P, (a) is zero. Thus, we may write

(23) F(z,5) = (2 = 1) @}(2) — (s — o) B}s) =0,
where F is analytic in a neighborhood of (1, ) and neither 0F/6z nor dF/ds
vanishes at (1, ). Therefore, by the implicit function theorem, there exists a
solution z(s) of (2.3), and hence of (2.1), with inverse s(z), which is analytic in
a neighborhood of « and such that z(x) =1 and s'(1)%0.

In order to apply this same technique to (2.1) at s =p, we must assume

normalization of the coefficient p,. The integrals f (t2—1)4"dt and f Pi(n)

are independent of path provided the paths do not enc1rcle the 51ngulant1es of
the integrands. However, it may be that the latter integral vanishes. We assume
the contrary and choose the parameter so that?

-1

) fp ® dt—f(t2—~1)*dt=—%7m'.

We can now apply considerations analogous to those above to reach the con-
clusions that (2.1) has an analytic solution z(s) at (—1, f) with inverse s(2)
3 We do not consider the limiting behavior of the solutions of (1.1) as the turning

points a and # approach each other. F. W. J. OLVER has informed the author by a
private communication that he is examining this limiting behavior.
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whose derivative s’ is nonzero at —1. If arg p, is constant on the line segment
joining o and B, the hypothesis (i) is clearly fulfilled. This is the case treated
by LANGER [4]; and since, in this instance, the mapping defined by (2.1) is one
to one on the line segment joining « to B, it is schlicht in an open neighborhood
of this closed segment.

We have shown that the implicit relation (2.1) defines a mapping from 2
onto a region %, and that it defines a locally one to one mapping of some nelghbor-
hood of any point of &, onto a neighborhood of 2. We require more than
this and assume that

(ii) The relation (2.1) defines a schlicht mapping
2(s): Do 9,
with {—1,1]{ %,
Under this assumption, the change of variables

(2.4a) s =s(2),
_[ds\¥
(2.4b) y(o) ={7f v,
where s satisfies (2.1), transforms the differential equation (1.1) into
(2:5) I 2QE ) u
with

ot =reea s L (-5} (=4

45’2 2s z

where Q is analytic for |A|>N and for z€ 2. We write

Qz 4) =Eq,( 2) A7,

<

In particular,

We henceforward refer to the differential equation (2.5) as “the given equation”.

3. The first approximating equation. The analysis of the given equation
is based upon the construction of an equation which resembles it up to terms of
the form 27*710 1) in the coefficient of #, where » is any non-negative integer
and O(1) denotes a function of z and 4 which is bounded for z€ 2, and for | 1|> N.
The algorithm for the construction of this related equation is similar to the algo-
rithm of McKELVEY given in [6]. The matter at issue in MCKELVEY’S paper
is the approximation of solutions of an equation with a single turning point of
order two. Such a turning point may be thought of as the confluence of two
simple turning points so that similarities in the analyses of the two cases are
not unexpected.

The point of beginning in both instances is WEBER’S equation, which may
be written in the form

(m “lv =o.

dzv [» 2
%]
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We make the transformation
t=(2Az, V({)=zu(),
and WEBER'S equation becomes

d2e
dz?

—A(Az22—r)v =0.
Let a non-negative integer n be chosen once for all. We¢ now choose » so that
(3.1 re=s—c— e 70

where the (arbitrary) constants ¢ and ¢; are yet to be determined. This brings
WEBER’S equation into the form

dzv eo ) s N o el v
(3.2) dst /.'(SZ—" 1) —r¢ T%t‘j/. fle =0 or " —RIz, ;) v =0,
which is our first approximating equation.

4, The second approximating equation. \We next construct an equation
resembling the given equation in both the 4* and 4 terms of the coefficient of .
Formally, this step ir almost identical with the corresponding one in [67. The
idea is to make a change Hf dependent variable

(4.1) Z =pngv +u v

in the first approximating cquation (3.2} and to determinc the functions s,
and ¢, in such a way as to make the new differential equation in Z more closely
resemble the given equation. By differentiating Z twice, employing (3.2) at cach
step to replace v’ by Rwv, and by constructing the climinant for » and #’ among
the three relations connecting £, 7Z’, and 2’ with v and ¢/, we find that the dif-
ferential equation satisfied by functions Z of the form (4.1) is

ez _HdZ ], o

4.2) — -
(4 dz2 T Dy ds D,
wherein
’ -
. e Mo i R
(4.3a) Do(z,2) = ", R N
ik e T A
" . -
. Ho Mg =2 RAY+u RZ
{(4.3b) H(z,2) =" . , " )
iyl 20 -y A
and
dde Jieod) = Mo — g R — i R A+~ RI2 g + 0y RiZ
M 2000 =40y AV 4y RYZ fo +111/4

In so far as 2 is concerned, the functions Dy and H are bounded for || >N
with Dy (z, 0) == 1g — /7 ¢,

We shalt determine 1y and ¢y by the condition that the terms in the coe ficient
JiD, in (4.2) which become infinite with 2 have sum A2gy(z) +4g,(z). Wc recall
that the choice of the constant ¢ in (3.2) is in our hands. Now, a simple d.vision
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shows that

(4.4) .1{_0 =R 4+Dj

to +2pm RAT 4y R'A pg +py RjA ‘

2p0 + pi1 A o+ pafA
Recalling the definition of R from (3.2}, we observe that the coefficient of 4% in
JID, is ¢,. The coefficient of 2 may be computed and is

2uige+ g0 1o
240 Ho

¢ + D5’ (z, ) ‘

or
Dg* (2, o) [l l‘g + 210 11 @ + tof Qo) — (€ 43 Qo + 20 ta ‘Io)] .

Therefore, a sufficient condition that this coefficient be equal to gy is that y,
and u, satisfy the following system of differential equations:

2;“190 +/‘195 = pto(g1 — ©),

2u0 = (g1 —©),
with boundary condition that

Ut — i go =Dy(z, 00) =1.

A possible solution of this system is

{4.52) to = cosh &, /‘1=¥,
where
(4.5b) o2) = (22— 1)}, argp=0 for z>1,
and
— i g (8)—¢
(4.5¢) ?(2) —-1 2<p(s)_ds

We deduce from these formulas that g, and g, are analytic in & except at
z=—1 provided y, is defined so as to be continuous at z=1. Without proper
choice of the constant ¢, y, and g, will fail to be analytic at —1. In order to
render them analytic there, we choose ¢ so that
+1 @

s

2Lrld

()

— ~1
) .
/‘ ds
Jogls)
-1

Then #(—1) =0, and ¥ may be written in the form

{4.6) c

_ fa—c
F{z) = —st.
-1

Provided y, is now defined so as to be continuous at — 1, this fact and computa-
tion show that g, and gy are analvtic throughout 2.
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The choice of yy and p, determine Dy, and from (4.5) it follows that
{4.7) g —Higo=1.
The relations (4.7) and (4.3) and the definition (3.2) of R imply that

”

(4.8) Do(2,2) =1+ A (o1 — popty — ¢ p13) — i § 6 AR,
Thus if &, is bounded, it is clear from (4.8) that D, is bounded away from zero
for |A| >N and for z€4,. If 2 is unbounded, we assume

(ili) Dy is bounded away from zero for 2€ 9, and for |A]| > N.

" We observe directly from (4.3) that H =D(,; Therefore, we may make the
change of variable

to remove the first derivative term in equation (4.2). It then takes the form
(4.102) e —[PE 1) +20.) + T ] =0,
where
2(22 __ ——,’],, __3_. D'; 2_ Dlol.
(4.10b) BE-1)+ia+T =4 +3(5) - 5.

The function T is analytic in & as R, y,, and y; are all analytic there. Further,
T is analytic in 4 for | 4| > N; hence, we may write

(4.11) T(z,2) = iot,-(z) A

We call the differential equation (4.10a) “‘the second approximating equation”
for the given equation (2.5). It is important to note the way the constants ¢,
which were introduced in (3.1), enter into the functions ¢;. The ¢; appear in T
wherever R and R’ do. From (4.4) and (4.3a), we observe that aside from the
leading term R in the right member of (4.10b), R and R’ have coefficients of
order 17 or smaller in this right member. It follows that the constant c¢; occurs
linearly in ¢;, always with a coefficient of +1, and is absent from every #; with
7 <i.

5. The related equation. We are now in a position to construct a dif-
ferential equation whose solutions are known and whose coefficients are identical
with those of the given equation up to terms of order A~"~1. Inasmuch as this
construction is already well known [, 6], we present only the results.

With { standing for any solution of equation (4.10a), we set

(5.1a) w="Drt(a¢ +E5),
where
Az, A) =2 a;(2) A7,
(5.1b) :
B(z,2) =2 b;() 277,
0

Arxch. Rational Mech. Anal., Vol. 2 10
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and
a 4422
5. D,(z,-A) =
(5.10) A=y |
72 iz

and choose the functions 4; and b, so that w satisfies a differential equation of
the form

(5.2) e —|roty— 5w =o,

dz? T
where Q(z, 4) is bounded for 2€ 2 and for |4|>N. The proper choices of the
/s and b&;'s are:
_ K ACEXC)
ap(2) =1, by(z) = o2 1 296) ds,

k4

a1(2) =0, b(2) = &:ﬂf [(gs—t) — 241 bo— g1 bo] zgis) )
i

(5.3) and forj=2,...,n,
I
ai@) = [ [ole+ g — e s,
1

b)) = b [ |2 Giorea =t o — Q@ ba gy —
i ¢

j(ﬂ2 ’ 12 dS
= (2l p—2br + 4 g2 b) — a, 29

In order to render the s and b;’s analytic in &, the constants ¢; occurring in
their defining expressions must be properly chosen. This may be done recursively
since ¢; occurs linearly in #; and is absent from each f; with j<ti. The correct
determinations are

1 1
. (K ’ ’ ]
5027"/ (g2 —t3) ;;: “1=}’f[‘13*’?—2‘11b0_‘hbo] o
-1

-1 29 '
(5.4) and forj=2

1

G=7 / [Z @k o= o) ar— qrbj + q1b;1) + (g4 — 1) —
-1 1
1—2

- , nl ds
——% (2 _pmo by +t,'-.1;—2bk) —a, 29’

where

1 —~1
t,*:::lj*c]- and yz( [;i;) .
L y

We now observe that the division by D} in (5.1a) is legitimate if & is bounded,
since D, (z,00) =1. lf & is unbounded, we assume
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(iv) Dy(z, ) is bounded away from zero for 2€ D, and for |A|>N.
The function £2(z, 2) which appears in equation (5.2) is a function whose specific
form may be computed, although it is of no interest to us. It involves the several
functions 4, B, Q, R, ¢,, and ¢,: It is, however, important to note that Q(z, )
is analytic in A for |A|>N and is analytic in z for 2€ %,. We henceforward
refer to the differential equation (5.2) as the related equation. In Part II we
shall single out certain of its solutions and describe their behavior for z€ 4
and |A|>N.
Part II: Solutions of the Related Equation

6. Introduction. The construction just given of the related equation enables
one to know the behavior of its solutions only as well as one knows the behavior
of the Weber functions which are solutions of the first approximating equation
(3.2). These are Weber functions of large complex order and unrestricted argu-
ment, e.g., Dy _1)(}24 2). Their behavior is not yet completely known. ERDELYI,
KENNEDY & McGREGOR have derived the results most useful to us [3]. They
have established approximations to the various functions

(61) ym(xl ‘V) = D(av—l)lz(vﬁ e&mnix), g = (_ 1)m’

with an error involving ». We strengthen their results by showing that their
asymptotic representations hold uniformly in arg» over sectors of the »-plane.
We also extend their representations to asymptotic expansions, the terms of
which are determined recursively by a quadrature at each step.

We obtain the behavior of solutions of equation (3.2) by letting le/% z

in the expansions for the functions (6.1). We then determine the asymptotic
expansions over & of the solutions of the related equation. These are explicit
up to terms involving ¥™. While our results are limited. by the lack of precise
information on the structure of Weber functions of large complex order, ap-
proximations to terms involving »™! are usually adequate in applications. When
they are not, numerical methods for the calculation of the terms of the asymptotic
expansions given in § 8 may be employed to give more precise approximations.

7. Domains in the x-plane. The determination of the regions of validity for
the approximations to solutions of the given equation, which are derived in
Part III, depends upon the character of a function @(x). It is defined by analytic
continuation from its positive values on (1, oo}, which are given by

(7.1) B(x) = [ (&2 — 1)t =1fx<p(;) dt.

It is shown in [3, pp. 469, 470] that @ is a schlicht mapping of a Riemann sur-
face X over the x-plane with branch points at -1 onto a Riemann surface 3
over the @-plane whose branch points are the images of the branch points in X.

Clearly,

(7.2) D(x) = §{x(x*— 1) —In[x + (2 — Di]};
and for large ||,
(7.3) D(x) = L 322 [1_ +0(x1)].

10*
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The Weber functions (6.1) are entire functions of their argument and their
order. Hence, in discussing them we may assume that

(7.4)

The x-plane is cut from —1 to +1 and |argy|< 7 +¢, £>0.

These assumptions enable us to avoid considering more than a finite number of
sheets of the logarithmic Riemann surface 3.

Let X; denote the x-plane cut in' accordance with (7.4) and the condition
|arg(#—1)| <. The corresponding portion 3, of § consists of two sheets joined

(7.6a)
(7.6b)
(7.6¢)

(7.6d)

z<~1,0yL =T
Fig. 1. The surface 3,

x Te<=1,00g X =T
‘z—l 3 : IR arg #=—21
N
ok ag =0
o arg $=0
N
ZL F& o org $=2x

along the ray arg® =0 (see Fig. 1). We now
define certain regions of ¥ on which the be-
havior of the Weber functions (6.1) is con-
veniently describable. Let the index m, which
appears in (6.1), have range 0, 4-1, 42, +3,
and let

(7.5) E(x,v) =vD(x).
Let y, be the point at infinity on 3 in the
direction arg® = —mm —argy, and let ¢ be

any positive number small enough to make
the following definition meaningful. We define
@,, to be the largest closed, simply connected
region & of X such that

~dntesargbtmasgn—e, 266,

|% +1|= e,

X€G,

|P(x)]= e, x€®, except that x=1 and a neighborhood of x =1 may

be in @.

Each point x in & may be joined to the image of y,, by an analytic,
simple curve lying in & and on which R¢ is monotone (monotone in-
creasing from the image of y,, to x if m is odd, monotone decreasing if m

is even).

The regions ®,, are illustrated in [3, p. 482]. In general, except for sectors with
vertices at x =41 and widths 2¢ in arg(x 1) and the interior of the circle
at x=—1 deleted by hypothesis (7.6b), each region &, covers the x-plane.
Exception occurs, for example, when m =0 and arg» =0.

We denote by &}, the reflection of ®,, in the origin; that is,

(7.7)
Now
(7.8)

@,‘:‘,:{x]e‘"‘xe@m if argx=0, €260, if argxgo}.

D(ex™ x) =D(x) F ind,

so that &%,,®,, is precisely &, plus all but a small sector with vertex at
% =—1 and width 2¢ in arg(x —1) of the neighborhood of x =—1 not in @,,.
The definitions of ®,, and &) are essentially the same as those given in [3].



Differential Equations with Turning Points 139

8. Asymptotic expansions of Weber functions. In this section we describe
the asymptotic behavior of the Weber functions (6.1) over the regions §,, and
®). These functions are solutions of the transformed Weber equation
dty
dx?

(8.1) — 2 (x2—1)y =0.

Since they are entire functions of %, ¥,,=v; if m=I (mod 4). The Wronskians
of certain pairs of these solutions are [I, p. 42]*

8.2 7 2 = 2lmr et

* a‘) Vs Ymi2s —1'1(—"67'}’1)

—
(82b) W (Vom» Ymars &) = 1710409 33 ghmai,
where
: — 9 af

(8.2¢) W(f:,g’ %) =f—= ax — 8- iz’
and
(8.2d) o= (—1)"

We henceforth adopt the convention that in formulas in which the double signs
- or F appear, all upper signs or all lower signs are always to be used. It follows
from (8.2) that any two of the four distinct solutions y,, are linearly independent
except for » =0 and certain other integral values of ». If » is not zero, and we
always consider |»| to be large, the solutions ¥,, and ,,,, are linearly independent
without exception.

The asymptotic representations for the functions y,,(x,#) involve the Airy
function Ai(#), which is defined by the relation

(8.3) Ai(y) = RVV__ Ky (24),

in which Kj is a modified Bessel function of the third kind [3, p. 463]. For each
admissible #m, the function

B4)  Xpxn9) =p7Ha) (

3 143 3 Al[ 38 \8 m] — pgint
YES (x)) 2(———4 VE) o™, =",
has a simple asymptotic expansion for x€®,,. This is

N rm,
(8.5) X, (x,)= 2~ig—iy—t (p‘i(x) e—0&—mnilé Z I'I;(: j—-;)%(;)r '3(2: 40 (E‘N—l)

x€®,, m=0 +1, +2, +3.

The asymptotic series for dX, /dx for xC®, may be obtained from (8.5) by
differentiation. ERDELYI, KENNEDY & MCGREGOR have shown that the func-
tions (8.4) are asymptotic representations for the Weber functions (6.1) [3, p. 479].
These representations may be extended to asymptotic expansions by using the
algorithm given by LANGER in [4] or similar algorithms. We use LANGER’S.
In the notation of [5], it enables us to construct certain functions «; and g;

2 The formulas in [I] appear to contain misprints.
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which are involved in the coefficients of the asymptotic expansions for the Weber
functions (6.1). With reference to equation (8.1) the defining expressions of «;
and g, specialize. They become:

o, k(t
86 (0 =1." A fp(Af) 2<p(¢ b
o xu(®) =0, Bi(x) =0,
and for7=2,

wm——~fmzo+wm ]at,
(8.6b)

Bix) = {)f{”n+ﬂahm+e&ﬂ@}—ym@4m}

wherein

29{t)°

(8.6¢) E(x) = nfl;'((") and  W(x) =®(x)p~h().

Since ay=,=0, tg;41=Pa;41=0 forall j=0. The following order relations are
easily established. They are important in the extension of the asymptotic
representations in [3] to asymptotic expansions. For [x|>N and j=0,

(8.7) %i(%) =0(1), and fy;(x) =0(x7).

The asymptotic expansions given below extend the results in [3]. We omit
their derivation to avoid repetition of work in [3]. The o,'s and Bs are suf-
ficiently small at x = co to guarantee uniform convergence of the integrals which
enter into the derivation. This is the point in the extension of the analysis in
[3] that requires careful attention. The bounds for the error terms in our
expansions are uniform with respect to arg », if arg » lies on a bounded interval.
This also applies to the results in [3]. The reason for this is that the limit a,,
of integration in [3, equation (4.8)] may be fixed provided argy has a range of
length less than s For example, if |argy| <37 —e¢, @, may be chosen as
x=¢ oo; and if |argy— 47| < 3m—e¢, @, may be chosen as x=e~17% oo.
For each such range of arg v, a bound on the integral in [3, equation (4.8)] may
be found which is independent of arg». It follows that for arg » bounded, bounds
for the error terms independent of arg v can be found. This reasoning does not
imply, however, that in the x-plane the regions of validity for the asymptotic
expansions below are independent of argv. They are not, although in the
neighborhood of infinity the boundaries of the regions of validity in the Jr=-
plane are asymptotically independent of arg».

(%) = C, [DY (%, %)]

x {A%(x,) X, (39) [1 + 0pY] + Z2e) Xl ),

(8.82)

for xc®,,; and
Ym (%, 9) = Cm [D;(x: V)J_l‘{ X
B*(x,v) 1X, (

8.8b
(&30 X {A"‘(x, ¥) X (2,%) + =5 ___w Y 4o —z—l)}
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for all x€{x||x—1|<e} and {£(x,»)|<N. In these relations

(8.9a) C,, = 2mbpllov— g=tlov(l-mailtymni]
sob Di(x,v)
@.91) _|4%(x9) »~2 B*(x,v)
__A*'(x,v)—(x2—1) B*(x,7) +-k(x) B¥(x,v)v2 A*(x,9)+v2B* (x,9)]

and

=1 _ i-1 .
(8.9¢) A*(x,v) = Do (x) v, B*¥(x,v) =2 fi(x) v~

0 -0

The functions «;, §;, and % are defined by the relations (8.6), the functions
X, (x,») are described by the formulas (8.4) and (8.5), and o =(—1)™.

One uses the identity

(8.10) Y (%, %) = Ypro (€777 %,7)

to derive the form of y, (x,») when x¢€®,,_,. Taken together the regions @,
and O}, (m =0, -1, +2, +3) cover the x-plane, each point being in two regions
having indices which differ by 1 or 3. Therefore, the expansions (8.8) yield the
asymptotic behavior of two linearly independent solutions of the differential
equation (8.1) for each x. We observe that zeros of the Airy function are not
excluded from the region where the relation (8.8b) is fulfilled. This is the reason
for the altered character of the error term in (8.8b) as compared with the error
term in [3, equation (9.6)], for example. The behavior of dv,,/d x may be found
via the relation

(8.11) ) =y, 1 (1)~ L 2D,(x)
from the expansions (8.8).

It is interesting to note that if » is real, all solutions of equation (8.1) are
oscillatory on the interval —1<<x<<1. This occurs since, for the configuration
of x and » cited, M(&(x,)) =0.

9. Solutions of the related equation. The first approximating equation (3.2)
has solutions

(9-1) Un (5 4) = Dyp-ny(12268"772)  (m =0, 1, £2, +3),

where D, (z) is the standard parabolic cylinder function of order » [1], and where
(9.2) v=A—c— D¢ i
0
Of course, v, =1, if I==m (mod 4). The formula
. /-" N
{9.3) v, (2, A) = }’"(l ! 2,1')
relates the solutions of equations (3.2) and (8.1). In view of this connection,

the asymptotic behavior of the solutions v, (z, ) may now be easily described
with reference to the x-plane. Since

(9.4) X :] f 2

the transition from regions on the x-plane to their images on the z-plane is
elementary.
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By directly applying the theory in [§] to equation (3.2), we could have
described the behavior of certain solutions of (3.2), other than the solutions (9.1),
on regions in the z-plane identical with the regions ®,, and &). However, the
slight simplification in the description of the regions of validity of the asymptotic
expansions, which is gained by this approach, is offset by an increase in dif-
ficulty in deriving these expansions, since equation (3.2) is superficially more
complicated than equation (8.1). For this reason and to take fullest advantage
of the work in [3], we proceeded as we have done.

We compute the Wronskians of the solutions v,,(z, 1) using the formulas (8.2),
(9.3), and (9.4). For future reference, the computed values are:

2Vmretmei
W (Vs Vps» 2) = vy
55

(95) ’f//'(vm,vmil,Z) :eqtim(l-%—av)me;mn;‘

To each solution w,(z, 4) of equation (3.2) there corresponds, through the
relations (4.1), (4.9), and (5.1), a solution w,,(z, 4) of the related equation. The
solutions w,,(z, A) may be written in terms of the functions v, (z, ) as follows:

(9.6) w,, (2, A) = Eqo(2, 2) v,, (2, A) + E(2, A) v, (2, A)/A,
where
_ B R 4 Dg
o Eofe,7) = (D Do) 4 [A o+ - (A5 4 B2 — Hon)
) ~ B 1 Dg
Ei(e, ) = (DoD) Ay + 5 o+ 4 — 170,
Since
9.8) W(w,w,,,2) =W#(v,v,,2),

the linear independence of solutions w, and w,, depends upon that of their cor-
respondents z; and v,,.

For the proofs to follow it is necessary to have at hand the asymptotic
behavior, in first approximation, as |1|— oo, of the solutions w,,(z, 4) of the
related equation together with the behavior of their first derivatives. One finds
this behavior by considering the relations (9.6) in conjunction with the asymptotic
expansions (8.8) and (8.5) and the relation (8.4). When|&(x, »)|< M and|x —1]<e

(9.9a) @, (2 4) =C,0(1), and w,(s,4) =C,0(4).
When |&(—x, v)| <M and |x + 1| <e,
(9.9b) w2, 4) = CppysO(1), and wiy(, A) = Cyp 0 (A).

If z is bounded, €8, w2, [£(x,%)|>M, and |£(—x,v)|>M, then

(9.10a) W, (2, A) =A,,(2,A) 0273,
(9.10b) Wy (2, ) = w,, (2, 1) O (),
where

(9.10¢) A, (z, A) = vtorgtort=mai) g~of
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If z is not bounded, then the functions E; and E; defined by (9.7) may be un-
bounded. In this case, the relations (9.10a) and (9.10b) are invalid. We therefore
introduce a function & (z) which is continuous, which is nonvanishing for |z| > M
and equal to 1 for |z| < M, and which is the “largest” function such that for each m

(9-41) |5(2) Ay (2, ) w, (2, 1) <N|»|7t and

b(e) A5 (2, 3) 2R < N o4,

when x€8,, o8y, and when |£(x, »)|>M and |£(—x, v)]>M. Thus when the
relations (9.11) apply,
Ay (2, )0 (A7h

(9-12a) 10 (2, 3) = LETE
and
(9.12b) (2, 2) = Am@ DO

T :

Part III: Asymptotic Expansions for Solutions of the Given Equation

10. Final hypotheses on Z,. Our objective is to determine the asymptotic
behavior throughout &, of a pair of linearly independent solutions of the given
equation (2.5). This will be done in the sections to follow. We first link the
behavior of solutions of the given equation to that of solutions of the related
equation by using the familiar method of variation of parameters. Its application
to the given equation yields the integral equation

z
(10.1) w=w+ [ 2a(2) f;’;ﬁj;;‘;(f; 2ole) S8R wieyat,
Za

which is equivalent to the given equation in the sense that an analytic solution
of either one is a solution of the other. In equation (10.1), w, and @, may be
any pair of linearly independent solutions of the related equation, w may be any
solution of the related equation, and z, may be any point in &,. The kernel
in equation (10.1) is, of course, independent of the choice of w, and w, so that
a unique solution # of the given equation is determined by specifying w and z,
in equation (10.1).

The variables z and x and the parameters A and ¥ are always considered to
fulfill the relations (9.4) and (9.2). Thus, given z and A, » and x are determined.
In order to keep the investigation to a reasonable length and to avoid further
notational complications, we make the assumption that

(v) |argd| = .

The second of the conditions (7.4) is thereby fulfilled when |4] is sufficiently
large. There is no loss of generality in assuming that the first of these conditions
is also satisfied. In what follows we fix A, once for all, with | 4| sufficiently large
to fulfill all requirements placed upon it.

The following lemma will be used in the discussion of solutions of (10.1).

Lemma. If

a) o is a closed, simply connected region (whose boundary may depend wpon
a complex parameter 1),
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b) f(z, A) is continuous and bounded for zc and for MI >N,

c) K(z, ¢, 2) is continuous for z€., for t€A, and for |A| >N,

d) there exist a constant M, a point sC, and a set of rectifiable analytic curves
otning the points of L to s such that for all z €L

S| K@, ] |dt] < 3,
then the solution of the integral equation

g@ ) =fed) A Kt g, )dt  (h>0)

has the form

gz ) =f(z4) +47*0(1),

where O (1) denotes a function of z and A which is uniformly bounded for = 57 and
for |A|>N.

The hypotheses of the Lemma guarantee the uniform convergence of the series
which is obtained by successive iteration of the integral equation, and from this
the proof of the Lemma follows.

For the Lemma to apply to the integral equation (10.1), it is necessary that
the kernel in (10.1) be bounded. We now make assumptions on Z sufficient to
establish the boundedness of the kernel. For each 4, let

(10.2) R, ={z|x(5) €0, 0.} (n=0, £1, £2, +13).

In this definition and in the sequel, when a region with subscript larger than 3
or less than —3 appears, the region is understood to be the null set. Because
of the overlapping of the regions (,, and also of the regions (%, one can show
that #,{ %1 Ryyq (=0, +1, £2). It follows from the hypothesis (v)
and the conditions (7.4) that we lose no generality by assuming that # ;#_,
and #,C#,. The regions #, cover % and each point of & is in at lcast two

such regions. Our final assumptions on 4, are:

(vi) Corrvesponding to each region R,,, there is a point z, such that each point
2R, may be joined to z,, by an analytic curve I' lving tn R, and such that on I,
N £ is monotone (nionotone increasing from z, fo z if mn 1s odd, monotone decreasing
from z,, to z if m is even).

(vii) The integrals

are uniformly bounded for zC %, and for |A| >N

The function Q(z, A) first appears in cquation (5.2). The function 4(¢) is defined
by the conditions (9.11). Of course, if 2 is bounded, hypothesis (vii) is auto-
matically fulfilled.

There are certain shadow zones which must be excluded from the regions A2,
in the discussion of subdominant solutions of the given equation. Their images
on the x-plane adjoin the segment — 1< x< 0. Their size and presence depends
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upon arg A. They are defined as follows:
S, ={z]z€.@m, R(o& >N, |E(—x(2)|>N,
(10.3) and the paths joining z tb z,, all pass through
the neighborhood of #,, where |£(—x)| <N}.

The shadow zones are excluded for the reason that the subdominant solutions
of the given equation undergo a change in their asymptotic forms as one crosses
into them. The presence of these shadow zones (see Fig. 2 for an example) is a
phenomenon which has no counterpart in the discussion of asymptotic solutions
of differential equations having just one
turning point.

As we have remarked, we wish to de-~
termine the asymptoticstructure through-
out , of a pair of linearly independent
solutions of the given equation. We first
prove that, for each i, there exists a
solution #,, which is asymptotically re-
presented by w,, in the region #,,—%,,.
We then derive connection formulas
among the solutions #, from which the behavior of the solutions %, may be
derived for all 2€%,. Lastly, we discuss certain characteristic solutions, which
may well be of special interest in applications of the theory.

11. Subdominant solutions when |§( %, v}| > N. For each region £#,,— %,
there is a solution of the given equation which is subdominant, exponentially
small, for z€ (#,,—%,) and R(c&)>0. This solution is unique up to a constant
factor. We now establish its existence and give its asymptotic properties. We
assume for the moment that z¢(%,—%,)~%#,.,. In equation (10.1) let
w,— w,, and w,=w,,,,, let w=w,,, and let the path of integration be a curve I’
which originates at z,. For brevity, we adopt the notation v=§(x(f),») and
E=¢ (x(z),v). If the curve I" should intersect one or both of the regions where
|T(£ )| =N, then R(c&£)=0. Thus, if we replace the subarcs of I" on which
| 7(Z#)| =N by arcs on which | 7 (4 x)| =N, and if we note that on the remaining
portion of I, R(c &) < R (o 7), then we see that on the (new) path of integration
exp[26(£ — )] is bounded.

The choices just made determine a solution #,, of equations (10.1) and (2.5).
If we adopt the abbreviations

Um (Z) = A»—nl b (Z) Y (Z, )') ’
W, (2) =41 b(2)w,(z, 2),

where A4,,(z, ) and b(2) are defined by (9.10¢) and (9.11), we can rewrite the
integral equation (10.1) in the form

arg $=-27

Fig. 2. A shadow zone

(11.1)

(11.2) Up =W 0] (P @) Wi ()= W) Wi ) oy 24150000 a1,

In writing (11.2), we have used the evaluations (9.8) and (9.5) of ¥ (w,,, .11, 2).
The relations (9.10), (9.12) and (11.1) imply that for |£(4x,%)|>N and
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2€(Rpy— ) "R,pyq, both W, and W, ., are bounded. We have already observed
that exp[2¢ (£ —7)] is bounded on I". All functions in equation (11.2) are con-
tinuous. In virtue of these facts and hypothesis (vi) of §10, the hypotheses of
the Lemma are fulfilled with respect to equation (11.2). Thus for z¢€ (#,,— %,,)
Rprys |E(£%(2),%)| >N, and [A[>N,

(11.3) U,(2) = W,(z) + A7"720(1).

We can show by analysis analogous to that above that this relation also holds
for z¢ (#,,— %) "R,,—,. In terms of u,, and w,,, the result (11.3) takes the form
Aw(2, 1) O (1) .

(11.4) (2, 3) = 0 2) + 2 EALAT (121> ).
Since (Z#,— L)< Ry 1 oP,r1, (11.4) holds for all z€ (#,—,) such that
[E(£x(2),v)|>N.

We can use the estimates (11.4) and (9.12) to obtain the the form of #,,(z, 1)
directly from the equation found by differentiation of. (10.1). It is

Am(2,2) O (1)

b(e) A+
where the prime denotes differentiation with respect to z.

{11.3) t,,(2, ) = 1w, (2, A) +

12, The solutjons u,,, when |E(+ @, v)| <N. There are two cases to be con-
sidered: |&(x,%)| =N and |&(—x,9)|<N. For the moment we suppose that
|§]<N. We recall that the solution #,, of the given equation and equation
(10.1) is that solution determined by the choices w =w,, and 2, =z, id (10.1),
the path of integration being a curve I. We divide I*in two parts I and I,
on which |7|=N and [7|<N, respectively. As was done in § 11, we replace
any part of I on which |7(—x)| <N by an arc on which |v(—x)| =N. We now
write the integral equation for #,, in the form

(12.1) U, (2) = w,,(2) + [ K(2,8,2) u,,(¢) dt + [ K(z, ¢, A) u,,(¢) dt,
H n I

where -
Sy — @ (2) Wity (8) — Wi () Winea () . 2@, 3)
K(Z, b l) - W(;"m» Wty F) AL

the upper or lower signs being used according as I;(Z,,,, or [ (%,, .

For the sake of argument let /;(#,,,,. On I;, the behavior of u,, is then
described by formula (11.4). Using this result and the relations (9.9a), (9.10),
and (9.12), we find that

[E@ 4Dy dt=ChC,yy [FELOZETOML 2OATLM gy,
L

B eTFimior b2(t) Ant+
Co [re 20e gy 411 202
= s [[00) + 72 0 ()] _5(2(t)) dt.
r,

But R(s1)=0o0n I], except perhaps for an arc on which R (o7} = — N. Therefore
by hypothesis (vii),

(12.2) f K(z,8, ) w,,(t, }) dt =

L

CmO(1)
Cmoll)
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From the estimate (9.9a) and the order relation [d¢=0(4"%), we deduce that
I,

(12.3) JK(z,t,2)dt =A=+8 [ 280(1)dt = A~ "R 0(1).
I I
The estimate (12.2) enables us to rewrite equation (12.1) as

Y A R0(1) + [ Kt d) Mg,
L

The relation (12.3) shows that the hypotheses of the Lemma are fulfilled with

respect to this equation; hence, »

(12.4) U (2, 2) = 0 (2, 2) + Cp 1L (|E(x9)| =),

Since the order relation (9.9a) is independent of arg(z —}/»/4), this result is valid

in a full neighborhood of x =1, or of z=]/v[A, where |£|< N and not just in that

portion of #,, where |£|<N.

We now consider the case |£(—x)]<N. This situation is more complicated.
If, for such z, R (o &) < — N, then the estimate (12.2) no longer holds; and therefore
we cannot determine the behavior of u,, when |£(—x)] <N as we did above for
|€l|=N. We resolve this difficulty by showing that it is only an apparent one.
Let us momentarily suppose that m =72 and R(g§) =< —N. Then R{c&)=N
in the neighborhood of #,,., where |£(—=x)]=<N. By the argument given in
the next paragraph we are able to determine the behavior of #,,, in a full
neighborhood of z = — }/»/4, or of x = —1, where |&(—x)| = N. We are also able
to determine the behavior of #, , in such a neighborhood. Similar considerations
apply to values of m other than +4-2. Thus, we shall always be able to determine
the behavior of two linearly independent solutions of the given equation in a
full neighborhood of z=—1/»/4 where |§(—x)|<N.

As promised above, we now obtain the form of u, if |£(—#)|<N and if,
for such z, R(oc &)= —N. To do this we replace w,,(z) and w,_,(2) in (12.1) by
W,,2(eT"'z) and w,z,(e%"*2), respectively, and similarly replace w,(#) and
w,,,1(f) for T such that | 7(—x)| <N. In virtue of the identity (8.10), the analysis
used in the derivation of (12.4) may be easily modified to yield the conclusion that

ni Cm+s0(1

(12.5) U (2, 2) = Wisp (6772, 7) 4 k20U

when |£(—x, ¥)| < N provided that for such z, R(¢ &)= — N. In (12.5) the upper
signs are to be used if m <0, lower signs if m >0, and either if m =0. As is the
case when |§| <N, we need not impose the restriction here that z lie in £,,.
We need only suppose that the portion of the path of integration on which
|E(—x)| =N is rectifiable. Thus the result (12.5) is valid in a full neighborhood
of 2= —1vjA where |£(—x)|<N.

We can use the estimates of #,, obtained thus far to find the form of u,,(z, 1)
when |£| <N or |£(—«)| < N directly from the equation obtained by differentia-
tion of (10.1). The results are:

' v CnO(1
(12.62)  tin(z, A) = w2, A) + 2 (J&(x ) <N),

’ . i Cum+e0(1 Y
(12.66) w2 3) = o (772, 2) + C=a0UL (15— x| <),

in neighborhoods of z= V#/A and z=—}/A, respectively.
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We summarize our results in a theorem:

Theorem 1. Under the hypotheses (i) through (vil) and corresponding to each
region R,,, the given equation (2.5) has a solution u,, with the following asymptotic
behavior when |A| >N :

a) When 26 (R,,— ) and |E(Lx,v)|>N, u,, is exponentially large or small
according as R(c&) <0 or R(0&)>0 and is described by the formulas (11.4) and
(11.5).

b) When |z —v[A|< e and |E(x,v)| <N or [z +v[A|< e and |E(—x,v)| <N,
%, 1S oscillatory in character and is described by the velations (12.4), (12.6a) and
(12.5), (12.6b), respectively, provided |v|A and —\vjA lie in R, and R(c&)=—N.

c) If v is real, them u,, is bounded and oscillatory for —1=x<1,m =0, +1, +2.

The regions #%,, and %,,, the variables x and &, and the parameters » and o
are defined by (10.2), (10.3), (9.4), (7.5), (9.2), and (6.1), respectively. The
functions and constants appearing in the relations (11.4), (11.5), (12.4), {12.5)
and (12.6) are defined in Parts I and II. The bounds for the error terms in all
of the estimates for solutions of the given equation which have been derived
are uniform in arg A for |arg A| =n. This is so for the same reasons as those
cited in" § 8 for the uniform boundedness of the error terms in the expansions
(8.8a) and (8.8b) with respect to argw.

13. Connection formulas. It remains to give a description of the solutions
u,,(2, 1) when |[£(£%x)]>N and when z is not confined to the specific region
A, as assumed in Theorem 1. The dependence relation among three solutions #;,
#,,, and %, ,, of the given equation may be written in the form

(13'1) ul:Al,mum—i—Bl,mum-i-l'
The coefficients are, of course, given by the formulas

; W1y, Uiy, 2) . Wt uy, 2)
132 A= sy Bim =
Since the given equation lacks a first derivative term, the Wronskians in
(13.2) are all constants and may be evaluated at z =]/»/Z, where x =1 and £ =0.
If each of the solutions #,, #,,, and u,,, , fulfills the relation (12.4), then we may
conclude that
Wy, u;) = W(w,,w;) +C, C,-O(ﬂ.‘"_l) ,

where 2,7 =1[,m, or m+1. Thus by relation (9.8),

_ W (v, Upty) tomiv —n—3/2
Aim= F (s Omaa) + Cpi1Cie 04 )

— W (m, v Yomiv —n—3/2
Bim = roim il €, C el 0 (37,

(13.3)

Since v, =v; if A= (mod 4), the relations (9.5) always suffice to give the values.
of the Wronskians in (13.3). The constants C; are defined by (8.9a).

The indices /! and s for which the formulas (13.1) and (13.3) hold depend
upon arg »; hence, the pairs of linearly independent solutions of the given equa-
tion whose behavior can be determined over all of &, depend upon arg». The
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selection of these fundamental pairs of solutions may be made using Theorem 1
and the connection formulas (13.1). We omit the details of the selection and
state only the results.

Theorem 2. For each value of A such that |arg A| < =, the given equation (2.5)
has a pair of linearly independent solutions whose asymptotic behavior over all of
2, may be found from Theorem 1 and the commection formulas (13.1); namely,

if 0= argr<am U_y, Uy
asargr=x+¢ L. U_g, U

g the fundamental pair is 370
—m<<argv=0 U_y, Uy
—m—e=Sargvs —=m gy, Ug.

14, Characteristic solutions. If }(ov— 1) =%, a non-negative integer,
ym(x’ 'p) = e—}(2k+1)1’ Hk (‘//4k +2 x) ,

where y,,(x, v} is a solution (6.1) of the transformed Weber equation (8.1) and
H,(x) is the Hermite polynomial of order 2. The Hermite polynomials are even
or odd according to the parity of % so that when 3 (ov—1)==4

Y (%:9) = (= 1)* Ypixa(,9).

These facts are reflected in the behavior of the solutions of the given equation.
If jargd|<e,

W (14, ts) = H (Yo, Yaa) + 1P~ b g7 [0 (A=Y — O(A~"~1)].

where the upper or lower signs are to be used according as arg »<C0 or arg ¥>>0.
When » =24 41, #(¥o, ¥.s) =0. Thus, as shown by LANGER [4], for certain
values of 4 the Wronskian % (#,, u,,) vanishes. These characteristic values are
countable in number and are given by the formula

Ay=2k +14+0(4;"7Y).
At the characteristic values,
to(2, &) = (—1)" (2, ) [1 +0(2577Y],

where the upper or lower signs are to be used according as arg (»(4,)) is negative
or positive. We call (s, 4,) a characteristic solution of the given equation.
We can observe the unique behavior of a characteristic solution #,(z, 4,) for
real z by referring to Theorem 1.

Since |R (4, P)| <N for values of z such that — 1< RNz=<1 and [Fz|<N|4[7,
a characteristic solution is oscillatory for z in a strip of width O(4;") centered
on the interval [— 1, 1]. In certain regions outside of such a strip, a characteristic
solution is subdominant and decreases exponentially to zero as |z|— cc. These
regions are sectors of width }= —¢ with vertices at 2= -+ }4,/»(4,) and which
are centered on the real axis. In particular, a characteristic solution is uniformly
bounded for real z. Only characteristic solutions and their multiples have this
property.
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