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Abstract 
In this paper we consider the scattering of a wave from an infinite line source by an infinitely 

long cylinder C. The line source is parallel to the axis of C, and the cross section C of this cylinder 
is smooth, closed and convex. C is formed by joining a pair of smooth convex arcs to a circle Co, 
one on the illuminated side, and one on the dark side, so that C is circular near the points of 
diffraction. By a rigorous argument we establish the asymptotic behavior of the field at high 
frequencies, in a certain portion of the shadow S that is determined by the geometry of C in S. 
The leading term of our asymptotic expansion is the field predicted by the geometrical theory 
of diffraction. 

Previous authors have derived asymptotic expansions in the shadow regions of convex 
bodies in special cases where separation of variables is possible. Others, who have considered 
more general shapes, have only been able to obtain bounds on the field in the shadow. In con- 
trast our result is believed to be the first rigorous asymptotic solution in the shadow of a non- 
separable boundary, whose shape is frequency independent. 

Introduction 

Scattering problems for  the reduced wave equation occur frequently in mathe- 
matical physics. I t  is required to find the function U(~o ; k) that  satisfies (A + k 2) U 
=f(~o) in an infinite domain ~ with a boundary  B. On B a linear combinat ion 
of U(~, ; k) and its normal  derivative is prescribed. The solution U(~ o ; k) can be 
written as U(~)(~o ; k ) +  U~ o ; k) where U(~)(~ o ; k)represents the incident field, 
and U~ ; k) is the scattered field. U~ ; k) satisfies (A + k  z) U = 0  in 9 and 
the Sommerfeld radiation condit ion at infinity. 

Since exact solutions of such problems can only be obtained in special cases, 
methods for  construct ing approximate  solutions are of great interest. If the wave 
number  k is large (k=2n/2,  2 = w a v e  length), the modern  geometrical theories of 
optics and diffraction [13, 16, 15, 27, 28] provide what  are conjectured to be 
asymptot ic  approximat ions  in the illuminated and dark  (shadow) port ions of 9 .  

The geometrical theory of optics has been verified in situations where the wave 
equation is separable, and explicit solutions are available. Asymptot ic  expansions 
of these explicit solutions are precisely those postulated by the geometrical theory 
(see e.g. [6, 9]). 

In  the case of scattering by an arbitrary convex cylinder of finite cross section, 
it has been proved that  the field given by the geometrical theory of optics is an 
asymptot ic  solution in the illuminated region. URSELL [26] established this result 
for the case where the normal  derivative of the total field is prescribed on the 
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cylindrical boundary. BABICH [1] considered the Neumann problem with a line 
source not restricted to lie on the cylinder. Using Ursell's method, he derived a 
two term asymptotic expansion of the exact solution, in agreement with the 
geometrical theory. GRIMSHAW [8] extended this result, establishing the formal 
series of geometrical optics as an asymptotic expansion of the exact solution. 
Using different methods, MOgAWETZ & LUDWI6 [21] have done this for the 
Dirichlet problem. In addition they have established the validity of the geometrical 
optics formalism for the case of a point source radiating outside a dosed, convex 
surface, on which the Dirichlet condition is imposed. These appear to be the most 
general results to date. 

The geometrical theory of diffraction has only been confirmed in special cases. 
In the case of scattering by a circular cylinder such confirmation is provided by 
the work of FRANZ [6], IMAI [9], and URSELL [26]. LEVY [17], and also KAZARINOFF 
& RITT [ll] have confirmed the theory for the case of scattering by an elliptic 
cylinder. Similar results for other kinds of separable boundaries have been ob- 
tained in [20, 10, 18, 25, 2]. (It should be noted that the arguments of all of 
the above authors, with the exception of URSELL, are incomplete in that no con- 
sideration is given to error estimates.) In each of the cases mentioned the wave 
equation is separable, and asymptotic expansions are derived from exact solutions. 
CLEMMOW & WESTON [3] have verified the geometrical theory of diffraction for 
a perturbed circular cylinder. However, as k ~ oo the cylinder becomes circular. 

BABICH [1] has shown that the total field is exponentially small on the dark 
side of a convex cylinder, and algebraically small in the rest of the shadow. 
OLIMPmV [22] and GRIMSHAW [8] have sharpened this result by obtaining the 
exponential bound in the whole shadow region. However, in none of these ana- 
lyses have asymptotic representations of the diffracted field been obtained. 

In this paper we consider the scattering of a wave from an infinite line source 
by an infinitely long cylinder C. The line source is parallel to the axis of C, and 
the cross section C of this cylinder is smooth, closed and convex. We require 
that the normal derivative of the total field vanish on C. Mathematically this is 
equivalent to the two dimensional problem of the scattering of a circular wave 
by C, with the normal derivative of the total field required to vanish on C. 

In Part 1 we consider the scattering of a circular wave emanating from ~s, 
by a smooth convex curve C1, which is circular on its dark side, and also near 
the points of "diffraction". These are the points on Ca where the tangents pass 
through ~.  Ca may be thought of as formed by "pasting" a convex "bump"  
B 1 to the illuminated side of a circle Co. (Cf. Fig. 1.) 

We prove that if ~o is a point in the "deep" shadow of C1, and k is large, then 
the total field UI (~o, ~, ; k) is given asymptotically by U 0 (~o, ~s ; k). The letter 
function represents the field at 7 o due to the scattering of the circular wave by Co. 

We then obtain a uniform asymptotic expansion of the field Ua (~o, F, ; k) in 
the form predicted by the formal theory of LEwis, BLEIST~N & LUDWIG [15]. 
From this we derive the non-uniform series expansions of the extended geometrical 
theory of diffraction [27]. 

The insensitivity of the field U~ (ro, ~s ; k) to the geometry of B~ as k -~ oo is 
predicted by the geometrical theory of diffraction. The fact that we get a uniform 
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Fig. 2 
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asymptotic expansion for U~ (~o, ~ ; k), which is also a uniform asymptotic ex- 
pansion of Uo (70, r~ ; k), corroborates this prediction. 

In Part 2 we consider the more general case where a circular wave, emanating 
from 7s, is scattered by a smooth convex curve C2, which coincides with Co only 
near the points of diffraction. C2 may be thought of as formed by "past ing" 
a convex " b u m p "  B 2 to the dark side of C l (cf. Fig. 2). 

Using the results of Part 1, we prove that if 3o lies in a certain subregion of 
the "deep"  shadow of 6"2 the total field U2(3o, 3~; k) is also asymptotic to the 
field Uo(7 o, 7~; k) associated with Co as k ~ o0. This subregion excludes from the 
shadow the range of influence N of the " b u m p "  B 2 as defined below. We remark 
that ~ includes that part of the shadow where the geometrical theory of diffraction 
predicts that the geometry of B2 should significantly influence the field (cf. Fig. 2). 

As in Part 1 we obtain a uniform asymptotic expansion of U2(Fo, ~; k) as 
k ~ oo in the form predicted by LEwis, BLEIST~IN & LUDWIG. From this we derive 
the non-uniform expansions of the extended geometrical theory of diffraction. 

The fact that the uniform asymptotic expansion we get for 0"2 (70, 3,; k) is 
also a uniform expansion of Uo (30, F~; k) confirms the prediction of the geometrical 
theory of diffraction, that the field should be insensitive to the geometry of B2 
and B~, in the deep shadow outside N. 

Part  1 

Consider the solution U~ (70, 7s; k) of the scattering problem P1: 

(i) ~u+k2u=~(~o,;~), ;o,~se~l; 
(1.1) (ii) O(1) U = 0 ,  ~C1; 

(iii) l imp~lUo-ikUl=O,  p=l~o-71, 7e~x. 
to--* oo 

Here N~ is the exterior of a smooth convex curve C~ formed by "past ing" the 
ends e~ and e2 of a convex arc B~ to the part of the circle lTI = a  "il luminated" 
by a point source at 7s, as shown in Fig. 1.0, (1) denotes differentiation in the direc- 
tion of the outward normal to Ca. 7~ and Fo are the "source"  and "observat ion" 
points respectively. 

We shall establish the following result on the asymptotic behavior of 
U~ (L, 3~; k) as k-~ oo. 

Theorem 1: As k ---* oo 

(1.2) U 1 (7o, 7~; k )=  U 0 (70 , r~; k) [1 + O (exp { - k~a})] ,  

uniformly in F o, ~eSal< (Ts). 

Here a is positive, independent of k, and of 7 o. The function Uo(ro, F~; k) is 
the solution of the scattering problem Po: 

(i) AU+k2U=6(ro, 7~), to, r~>a; 

OU 
(1.3) (ii) O r~ = O, r o = a ; 

(iii) limp&[Uo-ikU]=O, p=17o-71, r>a. 
I" O -'." o 0  
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~(3~) is the "shadow" of CI: 3oe~(3~) if and only if 3oe~,uC t, and the 
straight line through 3o and 3~ cuts C1 at two distinct points. ~ <  (3~) is any closed 
bounded subset of ~ (~). If ~ o e ~  < (3~) we say that ro lies in the "deep"  shadow 
of C1. (Note that the shadow 5eo(3~ ) of the circle Co ={3: ]3[ =a} is identical to 

(~) so that ~ <  (3s)= 6ao < (3~).) (Cf. Fig. 1.) 
In order to compare the assertion of Theorem 1 with the predictions of the 

geometrical theory of diffraction [12], the extended geometrical theory of dif- 
fraction [27, 28], and also with the "creeping wave" theory of LEwis, BLEI- 
STEIN & LUDWIG [15], it is necessary to expand Uo(3o, 3+; k) asymptotically for 
large k. This expansion will also be needed in the proof of Theorem I. 

The solution U o (3o, 3~; k) of the problem Po can be represented as a Fourier 
series with respect to the "radial"  eigenfunctions (kr)+H(~l.)(kr), n = l ,  2, 3,.. . ,  
where H~l)(kr) is the Hankel function of the first kind of order v, and v, = v,(k) 
is the n th zero of the derivative H(~ 1)' (k a). (The "radia l"  expansion of Uo(3o, 3~; k) 
is a Watson transform of the Fourier expansion of Uo(ro, 3~; k) in the "angular"  
eigenfunctions e i"e, n=0 ,  _1,  .--2, _3 , . . .  (cf. [19]). The arguments necessary to 
carry out the Watson transform have been given in [7] and [24].) 

It follows from the analysis of URSELL [26] that the leading term T 1 (3~ ~;  k) 
of the radial expansion is an asymptotic representation of Uo (3o, 3,; k) as k ~ o% 
uniformly in ~o, 3oe5r (3~): 

(1.4) Uo(-~o, ~; k)--T,(7o, ~; k)[l+O(exp{-k~?2<(ro, 0o; rs)})] �9 

Here 0 o =arg 3o, and with no loss of generality we have set arg 3s=0. The positive 
constant ~ is equal to 2 -{~ sin (2n/3)[] q2[- I qi[]a -+ where q, and q2 are the first 
and second zeros (in order of increasing magnitude) of the derivative Ai'(q) of 
the Airy function Ai(q). 

If Oo<=n, then 2< (r o, 0o; r~) =2( r  o, 0o; r~) where 

(1.5) '~(r~ 0~ r:)=a [O~ c~ (r-~O-) -arc c~ ( a--~-l] " t  r~/j 

If O>n, then 2< (ro, 0o; r,) =,~(ro, 2~-0o; r,) where 

(1.6) 2(ro ,2n-Oo;ro)=a[2n-Oo-arccoS(~o)  ( r ~ ) ]  - arc cos 

2<(ro, 0o; r~)+l/r2~-a2+Vr~--~ is the minimum length of paths in the region 
[3 o [ >_- a from 3~ to ~o, 3o~ 5e o (3s). Clearly, 2 < (ro, 0o; r~) + V ~ -  a 2 + l/r~ 2---Z~ is also 
the minimum length of paths in the region ~ l u C ,  from 3~ to 3 o. (Cf. Fig. 3.) 

Since 2< (ro, 0o; r,) is positive and continuous in ro, 0o for all 3o in the closed 
bounded set 91 < (3~), we have 

(1.7) 2* (r,) = Minimum St< (ro, 0o ; r~) > 0. 
~o e 5 ~ i  ~ (~'.) 

It follows from (1.4) and (1.7) that as k - ,  oo 

(1.8) Uo(; o , ;=; k)=T,(7 o , 7~; k)[1 + 0 (exp { -  k+? 2" (r,)})], 

uniformly in 3o, 3 o e ~  < (3~). 
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The function/'1 (Fo, F s; k) is a linear combination of the functions exp {i v, (k) 0o} 
and exp { - i v I (k) 0o} : 

2 

(1.9) Tl(r'o, ~'s; k)= ~ exp{ivt(k)dpm(Oo)}L(ro, r,; k) 
m = 1  

where ~bl (0) = 0, ~b2 (0) = 2 ~ -  0, and 

1 [1-exp{2r~ivt}]-x H~ (kro)/4(1) kr  (1) - - , ,  ( ~). 
(1.10) L(r o, r,; k)= ika  (,) . a H~p(ka) 

H,, (ka) 

;~dro,O,; rs) 

Fig. 3 

As k ~ oo we have for every positive integer M and N, uniformly in Fo, 
F~eSP~< (F,), (cf. [23, 4, 61) 

exp {i v, (k) q~m (00)} L (r o r,; k) = exp {A (~bm (00) ; k) + Z (r,; k)} 
' [ 1  - exp {A (2 rc; k)}l 

(1.11) 

H e r e  

(1.12) 

�9 L (k a) ~ _ (/~a--~ 
Ai'I (ro, { r,) 

+ (ka)~ ,:o (ka) "/s 
1 

(i) A(6; k)=i[(ka)+(ka)~;~q]4, 

(ii) x(r.; k)=(ka)--~r (-~-)-/(ka)§ (r~) 

(iii) •(ro; k ) = e x p { - - ~ - }  [ (ka ) ' (  ( - ~ ) - i z , .  arccos (-~o). ( -§ (-~-)1, 

(iv) PoU)(ro, ~bm(0o); r,) 

exp(/rq12} 

(v) V(l)(ro)=l, 

I I (_~_0) �89 TI(/) "(to) 

Y ,cx [ A i ( q l ) ] 2  2 _ 1 ((1) 

j = l , 2 ,  
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2 r o  _ ro (,) 

(vii) 2~ ,  ( r  ~ [ V ~  2_ ( a ) ]  \ ~ - / =  i 1 - arc cos , 

t, 

((m)(x) =d~(x)/dx " for m = 1, 2 in (iv) and (vi). 
For j=l ,  2, and n>0  the functions P(,J)(ro, 0o; rs), P~J)(ro, 2~-0o ;  r~) are 

independent of k, and uniformly continuous in ro, 0o, 7oe~ < (7~). 
It follows from (1.8), (1.9), and (1.11) that as k ~ oo, for every positive integer 

M and N, uniformly in L, 7o~9~ 

2 
Uo (r'o, r'~, k) = exp {)~ (r~; k)} ~. exp {A(~.(0o), k)} 

r a m ,  

M (1) )I 
(1.13) Ai(~(ro; k)) / ~ P"~ (ro, t~.____~(0o); r~) ~-0 ( 1 

(ka) ~ [,.--70 (ka) ~ k (u+1)/3 

+ Ai'(~(r~ [,~=o P("2)(r~176 ~-O( 1 )J] 
k(N+ 1)/3 " 

(ka) ~ 

Before proving Theorem 1 we first use the asymptotic expansion of Uo (7~ ~; k) 
given by (1.13) to compare the assertion of the Theorem with the predictions 
of (12), (27), (28) and (15). Thus, if we assume the truth of (1.2), and use (1.13), 
it follows that as k - ,  oo 

(1.14) U1 (ro, ~s; k)=Fu, N(rO, 0o; rs:k), 

uniformly in 70, 7 o e S#I < (Ts), for every positive integer M and N. Here FM, N (r0, 00 ; 
r~:k) denotes the right band side of (l.13). 

The uniform asymptotic expansion of Ul(ro, 7~; k)given by 0.14) has the 
structure of the formal asymptotic solution of the problem P~ that is obtained 
by the procedure of LEwis, BLEISTEIN & LUDWIG. 

If 7 o lies in S:1 < (7~), but not on Ct, then the Airy function and its derivative 
in (l.14) can be expanded asymptotically for large argument as k-+oo. Then 
(I.14) reduces to 

2 co r ) 
(1,15) U,(; o, rs; k)... E D(ro, ~m(0o); r " k ~ l +  x? Q.( o, ~m(0o); r~) 

m=, ~" "[  .% (ka) "13 ~" 
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Here , i 

D(roC~m(Oo);rs:k)={.e --J- 1 } 1 a~ at 
' 4-~ni IqxlAi2(ql) -~  [ rg-a2]  ~ [rs2-a2] + 

�9 exp {i k [~,(!"0, l~m(O0) ; r s ) . .~V~-~Vrs~]}  
�9 exp {i zl k~a-~tA(ro, ~m(O0); re)}, 

with ;~(ro, q~m(Oo); rs) defined by (1.5) for m = 1, and by (1.6) for m=2. 

~ld ro,161{Oo); rs} 

~lro Ca tool; q) 
Fig. 4 

(1.16) 

Here 

The quantity ]//~-a2+]//r2~-a2+A(ro, dPm(Oo);r~) is the length of the 
"optical path" rsfmhmro in NlwCI from rs to ro as depicted in Fig. 4. Vr-~2--'-~ 
is the linear distance from the source rs to the point of "diffraction"f,~ on C~. 
2(ro, qSm(0o); rs) is the distance along C 1 from fm to the point of "shedding" 
hm, and [/ro2--~ is the linear distance from hm to the point of observation to. 

The functions Q,(ro, Cm(0o); re), n = 1, 2, 3 . . . . .  m = 1, 2, are independent of k 
and continuous in ro, 0o for all ~,e 5al < (re)-Ca. As ~o approaches the "caustic" 
C1 each Q, (to, Cm (00) ; rs) becomes infinite together with D (r o, Cm (0o) ; rs: k). 

The functions D(ro, Cm(0o); rs:k), re= l ,  2, are the "diffraction modes" of 
KELLER'S geometrical theory of diffraction. The asymptotic expansion of 
Ut (to, re; k) given by (1.15) is of the form predicted by the extended geometrical 
theory of diffraction. 

Similarly, if FoS~<(Fs)C~C1, then ro=a, and T(a;k)=ql. Since Ai'(ql)=O, 
the expansion (I. 14) reduces to 

2 [ ~O Qn(dPm(Oo).,rs) ] 
Vl(-ro, ~s; k)~m=,Z D(r re:k) i'J~n=~l " (ka)./3 . 

( 3~l "/ 

rs:k)=]]2--~ 1 1 al D(~m(OO); I q l l a i ( q O  Urn---a2] 

�9 exp {i k  m(Oo), r3 

�9 exp {i'~ak~a-}).(a, Cm(Oo); rs)}. 
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The functions Qn(q~m(0o); rs), n = l ,  2, 3 . . . . .  r e = l ,  2, are independent of k 
and continuous in 0o for ~ o e ~  < (Fs)nCl. 

The functions D (r (0o); r~:k), m = 1, 2, are the highest order "creeping wave 
modes"  as discussed by FRANZ & DEPPERMAN [6], and KELLER [12]. 

Using (1.15) and (1.16) in (1.2), we find, as predicted by the geometrical theory, 
that if k is large, and Fo~5~<(F~)-C~ or FoeS~<(F~)nC1, the geometry of B1 
affects only terms of order 

maximum [exp { - k ~ (Im zl) ~t a -  ~ 2 (r o , 0o ; r~)}, 

exp{-k~(Imz~)pa-~2(ro, 2 n - 0 0 ;  r~)}], 

where p is any constant greater than 1. 
We turn now to the proof of Theorem 1. The nature of the result to be proved 

suggests reformulation of the problem P1 as an integral equation expressing 
UI(~ o, ~; k) in terms of Uo(ro, r~; k). Applying Green's second identity [14] to 
these functions on the region ~ l u C ~ ,  we obtain 

(1.17) U,(~o, ~; k)=Uo(~o, ;5; k)+Ii(;o, ;~; k), 
Ot 2~ 

(1.18) I ,(ro,  Fs'~ k)= I -Ji- I d(1)Uo( ~o, ~B,( 0); k)UI(;B,(O), ;s'~ k)ld~B1(O)l. 
0 02 

Here the integration is over the convex arc B 1, which is represented in polar 
coordinates by ;m (0) (rn, (2n) = rnt (0)). 01 and 02 are the values of 0 at the points 
el and e2 where B 1 is joined to C1. 0(, 2) denotes differentiation in the direction 
of the outward normal to C2. 

To prove Theorem 1, we show that as k ~ oo 

(1.19) 12(; 0 , ~,; k )=  O (exp { - k *  a})Uo(;  o , ;,; k), 

uniformly in ~o, roe ~ <  (F~). 
We make use of the following estimates, which hold as k ~ oo : 

1 

uniformly in 0, 0_<0_<2n; 

(1.21) Uo2(~o, rs; k)=O(k~exp{k~(ImZl)a-~tX<(ro, 0o; r~)}), 

uniformly in ~o, roe SPl < (~); 

t?~~ Uo (;o, ; , , (0) ;  k) 
(1.22) 2 

= ~ O(k~exp{-k~(Imz~)a-~2<(ro, r  rm(0))}), 
ra=2 

uniformly in ro and 0, ~osoq'~<(~,), 0<0=<02, 02<-0<-2n. 
The function ~ (0) in (1.20) is the polar representation of C 2. In (1.21) and 

(1.22) the constant I m ~  is positive since z2=2-'~e-Z'~/aql. The positive 
function 2< (to, 0o; r~) is given by (1.5) and (1.6). If 0<0<-02, then 0 0 - 0 > 0 ,  and 
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2(ro, ~bm (I 0o-0l ) ;  re,(O)) in (1.22) is the length of that part of the optical path 
3Bl(O)fm(O)hm3 o in 131-->a, which coincides with Co, as shown in Fig. 5a. If 
02<0<2n, then 0 o - 0 < 0 ,  and 2(ro, ~x(10o-01); rB,(O)) is the length of that 
part of the optical path 3n,(O)f2(O)h2~o in 13[~a, which coincides with Co. 
Similarly, 2(ro, ~(10o-01); ra,(O)) is the length of that part of the optical 
path 3e, (O)ft (O)hl 3o in 131>=a, which coincides with Co (cf. Fig. 5b). 

~.(ro, ~s (leo.el, 

; )  , / --k "~ 

/ "  ~ te~ "]" 

Fig. 5a 

~,~ro ~lllOo-OI)i rB1 

Fig. 5b 

(1.20), which bounds the field UI (3~ 3 s; k) on C1 as k ~ oo, is derived by 
GP.IMSrIAW in [8]. (1.21) follows from the uniform expansion of Uo(3o, 38; k) 
given by (1.13) (cf. Appendix I). 

The argument leading to (1.22) is similar to that used to establish (1.4), and 
subsequently to derive (1.13) from (1.4) (cf. Appendix II). 

Using (1.20) and (1.21), we obtain the following estimate for the integral 
(1.18). As k -* oo, uniformly in ~o, 3o~ 5r (~), 

k) 

= 0 kl I + exp{-k~(Im~)a-~2(ro,4~m(lOo-OI),r",(O) dO. 
m = 1 02 
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If we recall the geometric interpretation of the functions 2(ro, ~bm([Oo-O]); 
rn, (0)) given after (1.22) it is clear that (i) as 0 increases from Oz to 2n the function 
;t(ro, ~ba (I Oo - 0 I); r,, (0)) ( = 2 (ro, O-  Oo ; rn, (0))) increases monotonically from 
~.(r o, 02--00; r/h(02) ) ( = 2 ( r  o, 02 -00 ;  a)), while (ii) 2(r o, qh(10o-01);  r~,(O)) 
( = 2 (to, 2 ~ - ( 0 -  0o); ra, (0))) decreases monotonically to 2 (r o , 0 o; rn, (2 ~)). 

Furthermore, it is clear that as 0 increases from 0 to 0x (iii) the function 
2(to, qSa(10o-0[);rs,(0)) (=2 ( to ,  0o-0 ; r s , (0 ) ) )  decreases monotonically to 
2(ro, 0 o - 0 1 ;  r~,(01) ) (=2( to ,  0o-0~ ;  a)), while (iv) 2(ro, ~2(10o-01); r~,(O)) 
( =  2 (ro, 2 n - - ( 0 o -  O);ra I (0))) increases from 2 (r o, 2 ~ - 0 o  ; r  a, (0)) ( =  2 (ro, 2rc-  
0o; (2 

Consequently, we have for m = 1, 2, uniformly in ~o, ~oZ ~ <  (~), 

(1.24) 

2~ 

(i) I exp{-k~(ImzOa-~2(ro, ~b2([Oo-O[); rB,(O))}dO 
02 

< (27z- 02) exp { -  k ~ (Im za) a -~ 2 (r o , 0 o; rBl (0))}, 
2~ 

(ii) ~ exp{-k~(ImzOa-~2(ro, ~bl([Oo-O[); rBl(O))}dO 
Oz 

-<_ (2 n -  02) exp { -  k ~ (Im zl) a -~ 2 (r o , 0 2 - -  0 0 ; a)}, 
0t 

(iii) ~ exp { - k ~ ( I m z a ) a - ~ 2 ( r o ,  ~2(10o-01);  rB,(O))} dO 
0 

< 0 , .  exp {-- k ~r(Im v a) a -  ~ 2 (ro, 2 ~z-0 o ; ral (2 tO) } , 
Ot 

(iv) ~ exp{-k~(Imzl)a-~2(ro, q~x(lOo-OI); rBl(O))}dO 
0 

<0~ �9 exp {-k'~(Imzl)a-~2(ro, 0o-01 ;  a)}. 

Using the inequalities (1.24) in (1.23), and noting that 2(ro, Oo;rB,(O)) , 
2(ro, 2 n - O o ;  ra l (2n))>max [2(ro, 02 -00 ;  a), 2(r o, 0o-0~ ;  a)], we find that as 
k ~ 0% uniformly in ro, r o ~ <  (r~), 

(1.25) Ia(~o, ~s; k)=O(klexp{-k~(Im~Oa-~2<(ro, 0o)}). 

Here 2< (ro, 0o) =min  2(ro, [ Or,- 0o [; a). 
m = 1 , 2  

We now re-write (1.25) as 

(1.26) I1(7o,7~;k)=0(.k~exp(-k~(Imzl)a-~2<(r~176 Uo(~o,r"~;k), 
Vo(;o, k) 

and make use of (1.21) in (1.26) to obtain the estimate 

I1(;o, ;s; k) 
(1.27) =O(k~exp{-k~(ImzOa-~[;~<(ro, 00) -2<@0,0o ;  rs)]}) UO(Fo, r~; k) 

as k--, ~ ,  uniformly in ro, ro~Sal< (r~). 
Our requirement that B 1 lie entirely in the illuminated region assures that the 

distances ]elfl ], and ]e2f2] from the ends of B 1 to the points of diffraction are 
6a Arch. Rational Mech. Anal., Vol. 33 
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positive, and consequently that 2 < (ro, 00)-  2< (r0, 0o; r,) > min I emfm I > 0. Since 
r a =  1 , 2  

Im ~1 >0,  the factor multiplying k ~ in the exponential of (1.27) is negative, inde- 
pendent of k, and of ~o. Therefore, the entire expression in the order symbol of 
(1.27) is O(exp{-k~o}), where a is positive, independent of k, and of F~ This 
completes the proof of Theorem 1. 

Part 2 

In this part we consider the solution U2 (to, r~; k) of the more general scattering 
problem P2: 

(i) AV-[-]s 
(2.1) (ii) d~2)U=O, 

(iii) lim p~ ]Up-  i k U] = O, 
to--* oo 

p=lTo-; I ,  ; e ~ 2 .  

Here N2 is the exterior of the smooth convex curve C2 formed by "pasting" the 
ends i~ and/2 of a smooth convex arc B2 to the " d a r k "  side of the convex curve 
Cl (cf. Fig. 2). 3, (2) denotes differentiation in the direction of the outward normal 
to (72. ~s and Fo again denote the "source"  a n d "  observation" points, respectively. 

We shall establish the following result on the asymptotic behavior of 
[/2 (Fo, F~; k) for large k. 

Theorem 2. As k ~ 0o 

(2.2) v2(;o, k)= Vo(;o, ;,; k) B + O(exp{- 

uniformly in F o, Fo~S#2-(Fs)=S#2<(~)-~, where fl is positive, independent of k, 
and of ~o. 

S#2(~s) is the "shadow" of Cz: ro~SP2(r~)if and only if ~o~2t.7C2, and the 
straight line through ~o and ~s cuts C2 at two distinct points. S:2 < (;~) is any dosed 
bounded subset of ~2 (F~). If Fo~ S#2< (rs) we say ro lies in the "deep"  shadow of C2 
(cf. Fig. 2). 

is the region of influence of B2, constructed as follows. Determine the 
smaller of the two circular a rcs f l  ia and f2 h of C2nS:2(F~), say it is f l  is, as 
depicted in Fig. 2. Let iX be a point on f l  i 1, arbitrarily close to il. Next, let i~ 
be the point on (the circular part of) C2c~S#2(Fs) such that if1 i~ I=lf2 i~ I. ~ is 
the region bounded by the tangents to (72 at it, i~, and the arc it il i2 i~ of 

Since 5a2-(F~)~oo~l<(F~), an immediate consequence of Theorem 2 is that the 
uniform asymptotic expansion of Uo(Fo, F~; k) given by the right side of (1.13) 
is also asymptotic expansion of U2(ro, F,; k) as k --, o0, uniformly in Fo, Fo ~ S:2- (Fs). 
This expansion of U2 (to, rs; k) is of the form predicted by the formal theory of 
LEwIs, BLEISTEIN &; LUDWIG. 

If ro lies in ~2-(F,), but not on C2, then the Airy functions in this uniform 
expansion of U2(Fo, Fs; k) can be expanded asymptotically for large argument, 
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leading to the result predicted by the extended geometrical theory of diffraction 
[27, 28], viz the right hand side of (1.15). 

If 3oeSe2-(~)nC2, then this uniform expansion of U2(ro, r,; k) reduces to the 
"creeping wave" expansion [6, 15], viz the right hand side of (1.16). 

Using the non-uniform asymptotic expansions of U2 (~o, 3~; k) just mentioned 
in (2.2), we find, as predicted by the geometrical theory, that if k is large, and 
3oe S~2- ( ~ ) -  C2, or 3oe ~2- (3~)r~C 2 , the geometry of B 1 and B 2 affects only terms 
of the order of the maximum of exp{-k~(Im ~l)#a-~2(ro,  00; r~)} and 
exp { - k~(Im z~)/~ a-~2(ro, 2 n -  00; r~)} where/~ is any constant greater than 1. 

We remark that the region Se2- (3~) is not in general the maximal region where 
Theorem 2 would be expected to hold on the basis of the geometrical theory of 
diffraction. This maximal region consists of 5P2 - (3s), and those points 3 o of 
that satisfy the following conditions: 

(i) There is an optical path P in ~2uC2 from 3~ to 3o that does not inter- 
sect B2, 

(ii) I ~d(F)ldFl< [. re(7)ldTI 
C2 c~ P C2 c~ P '  

where x(3) is the curvature of C2 at 3, and P' is the shortest of the other optical 
paths in N2uC2 from 3s to to. 

It is our intention to consider, in a sequel to this paper, the problem of ex- 
tending our result to this maximal region, and also to determine the effect of 
B 2 on the field U2 (3o, 3~; k) inside ~.  

To prove Theorem 2, we establish the following Lemma: 

As k --* ~ uniformly in to, roe 6a2- (7~), 

(2.3) g,(7~ 7,; k)= k)[1 + O ( e x p { -  

where ct is positive, independent of k, and of 3~ 

Theorem 2 then follows immediately from (2.3), and Theorem 1 since Se2-(3~) 
___ 

Proceeding as in Part l, we reformulate P2 as an integral equation expressing 
U2(3o, ~;  k) in terms of U1(3o, 3s; k). Applying Green's second identity to these 
functions on the region ~2uC2, we obtain the equation 

(2.4) 

where 

(2.5) 

u2( o, 7,; k)= u1(7o, 72; k)+ h(7o, k), 

ol 
I2(7o, 7s; k)= S a~ 2) U1 (7~2(0), 7s; k). U2(7o, 7Ba(0); k) ldT~,(O)l. 

01 

Here the integration is over the convex arc B 2, which is represented in polar 
coordinates by rB2 (0). 0~ and 0~ are the values of 0 at the points il and/2 where 
B2 is joined to CI. a(~ 2) indicates differentiation in the direction of the outward 
normal to B2. 

6b Arch. Rat ional  Mech. Anal., Vol. 33 
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To prove (2.3), we show that as k ~ oo uniformly in Fo, ~oe S#2-(F,), 

(2.6) I2(~o, rs; k)=O(exp{-k~a})Ul(r" o , r2; k). 

We make use of the following estimates, which hold as k ~ oo : 

( , ) (2.7) U2(7o, 72(0); k)=O k~17o_~2(0)1. =o(1) ,  

7s 2 (0) 

Fig. 6 

uniformly in O, 0--<0--<2~; 

(2.8) 
U;- ~(7o, r~; k)=O(Uot (7o, r-~; k)) 

= O(k~exp {k~( Im zl) a -§ 2< (ro, 0 o ; r~)}), 

uniformly in ~o, F o e Se2- (~); 

(2.9) 
ol ;s; k)= o(oi Uo(;.,(O), L; k)) 

2 

= E O(k+exp{-k+(Imz,)a-+2(rB:(O), ~b,,(0); r:)}), 
m = l  

uniformly in 0, 0] < 0 <  0~. Here F2(0 ) is the polar representation of C2, and 
FB2(O)=F2(O) for 0~<0<0~.  The definitions of zl, 2<(ro, 0o; rs) and r are 
those given in Part 1. For 0 ] < 0 < 0 ~  the function 2(rB2(0), era(0); rs) in (2.9) is 
the length of part of the optical path Fsf,,h,,(O)FB2(O ) in ~lwC 1 that coincides 
with Ca (cf. Fig. 6). 

(2.7) is the estimate of GPaMSHAW obtained in [8]. (2.8) follows directly from 
Theorem 1, and the estimate (1.21). (2.9) is derived by essentially the same argu- 
ment used to establish Theorem 1 (cf. Appendix III). 
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Using (2.7) and (2.9) in (2.5), we find that as k --. oo 

0~ ) 
(2.10) I2(ro, r,; k )=  Z2 0 (k~ I exp{-kr r,)}dO 

ra=l  \ O~ 

As in Part 1 we remark at this point that the function 2(rn~(0), q~(0); rs) 
(=2(rn=(0), 0; r~)) in (2.10) increases monotonically from 2(rn~(0] ), 0]; rs) as 0 
increases from 0] to 0~. Also the function 2(rB2(0), ~b2(0);r~) (=2(rn~(0), 
2 r r - 0 ;  r~)) in (2.10) decreases monotonically to 2(rn,(O'2), 21r-0~; r,) as 0 in- 
creases from 0] to 0~. 

g! 

Fig. 7 

(2.11) 

Consequently, for m = 1, 2, 

01 
j" exp { - k r (Im z x) a -  ~ 2 (rBz (0), ~bm (0) ; r~)} d 0 

01 

< (0~ - 0;) exp { - k*(Im %) a - ~ 2 (rn~ (0"), ~b,, (0~,); rs) } 

= (0~ - 0~) exp { - kr zl) a -  ~ 2 (a, q~= (0"); r,)}. 

From (2.10) and (2.11) we conclude that as k ~ m, uniformly in ro, ~o ~ 5:2- (F~), 

(2.12) 12 (~o, L; k) = 0 (k[ exp { - kr z,) a -  ~ 2 < (r,)}) 

where 2< (r~) =min 2(a, ~bm(0"); rs). 
r e = l , 2  

We now rewrite (2.12) in the form 

(2.13) I2(~o, ~s; k)=O ( .exp(-k§ 2<(rs)} 
vl(L, L; k) \ ) v1(5, rS; k). 
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Finally, using (2.8) in (2.13) we obtain the result that as k ~ oo, uniformly in ~o, 
Le~-(L), 

h(L, L; k) 
(2.14) =O(ktexp{-k~(Imzl)a-~[2<(r~)-2<(ro, 0o; r~)]}) U1 (~o, r~; k). 

Our requirement that ~oe 5f2- (~) assures that min [f,,h,,(Oo)[ is less than Jill1 I. 
In fact we have (cf. Fig. 7) 

(2.15) [ i , f d -  max min Ifr, hm(Oo)l>[ilfd-li'lfll=lili'd>O. 
-; o e .9~ i ( ~ ~ ) m= 1, 2 

Consequently, 

(2.16) ~,<(rs)-2<(ro,  0o; r~)=lilfl]- rain ]fmhm(Oo)[~[ili'l[>O. 
r e = l , 2  

Since Im zl > 0, the factor multiplying - k  ~ in the exponential of (2.14) is positive, 
independent of k, and of ~o. This concludes the proof of Theorem 2. 

(I.1) 

where 

Appendix I 

To derive (1.21), we first set M, N = I  in (1.13) and then rewrite (1.13) as 

1 (ka) ~ exp { - z ( r , ;  k)-A<(Oo; k)} 
Uo(ro, r~; k) P(ol)(ro, r~) Ai(~(ro; k)) 

[{1+o(1)} 
(ka)#P(ol)(ro, r~) 

Ai'(~(r~ O(  1 )]-1 
-t Ai(~(ro; k)) (ka)~P(ol)(ro, r~) 
�9 [1 + exp {A > (0o; k) - A < (Oo; k)}]-I  

fA(2 i t -  0o; k) 
A > (0o; k) = lA(Oo k) 
A<(0o; k)=A> (27:-Oo; k), 

if 0o_-<~ 

if Oo>=rc, 

and P(ol)(ro, rs)=e(ol)(ro, em(0o); rs) for m = I ,  2. 
As k ~ oo the following inequalities hold uniformly in to, ro >-a (cf. [23, 5]): 

(I.2) 
[1 +l T(ro ; k)I*] - '  1 = o (exp {~ ~(ro;  k))) 

Ai (~' (ro; k)) 

= O (exp { -  Z (ro; k)}), 

(i.3) 

0.4) 

[ 1 + [ T (to; k)] ~] - 1Ai'(~ (ro; k)) = O (exp { - ~ P~ (to; k)}), 

1 
= 0 ( 1 ) .  

Po ")(ro, rs) 
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Furthermore, we have as k ~ 0% uniformly in ro and 0o, r o ~ <  (~), 

(1.5) [1 + exp {Z > (0o; k ) -  a < (0 o; k)}]- ' = O (1). 

To obtain (1.21), we make use of (1.2)-(1.5) in (I.1) and notice that 

exp { - Z  (ro; k ) - z ( r , ;  k)-Z<(Oo; k)} =O(exp {kS(Ira xl)a-S2< (ro, 0o; r~)}). 
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Appendix II  

To obtain (1.22) we first apply the operator a~ 1) to the radial expansion of 
Uo(~ o, ~; k)to obtain a radial expansion of a~ t) Uo(ro, r~; k). Then, using essen- 
tially the same arguments that lead to (1.8), we obtain the result that as k - ,  oo 

(II.1) O(.l)Uo(}o, ~B~(O); k)=a(.')Tl(~o, rn,(O); k)[ l+O(exp{-kS?2**})] ,  

uniformly in 0 and ro, 02-<--0--<2rc, 0--<0--<01, roeSPl< (rs) �9 Here 

(II.2) 

O~"TI(~o,~,,(O); k)= L.(ro, r.,(0); k) 
r., (0) [r;~ (0) + rg, (0)3' 
�9 [ e x p { i v l C 2 = - I O o - O I q } + e x p { i v 1 1 0 o - 0 1 } 3  

4 ivlrB'(O)L(r~ rm(O); k) 
r., (0) I'r;~ (0) + rg, (0)] + 

�9 [ - e x p { i v l [ 2 z c - [ O o - O l ] } + e x p { i v 1 1 0 o - 0 1 } ] ,  

(II.3) 

with 

,~** = rain min ,~< (ro, I0o-  01; r~, (0)), 
~G.7'/' (7,) o_~o~o~ 

o2~_o~2n 

2<(ro, IOo-Ol; r~,(0))= min 2(ro, ~m(100--01); rB,(0)) 
m=1,2  

=~2(ro, I0o-01; ra,(O)) if  

{2(ro,2~-I0o-0t; r~,(O)) if 
10o-01<~ 
10o-01>rc. 

7 is the positive constant that appears in (1.8)�9 
As k--. oo we have for m = l ,  2, uniformly in 0 and ro, 02 <0<27~, 0<0<01 ,  

~ o ~ < ( ~ s ) ,  
i vl (k) exp {i v 1 (k) r - 01)} L(r o , ra, (0); k) 

(II.4) _ Ai(~'(ro; k))Ai(~(rB,(O); k)) 

�9 0 (k s exp {-- k s (Im T1) a s q~m([ 0 o -  01)}), 
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(II.5) 

(II.6) 

(II.7) 

(II.8) 

exp {i Vl (k) q5 m(I 0o - 0 I)) L, (ro, r~, (0); k) 
- +  

L rn, (0) 
�9 Ai(~(ro; k))Ai'(T(r~,(O); k)) 

�9 0 (exp { - k~(Im ~ )  a~ r - 01)}). 

Furthermore, as k ~ 0% uniformly in r, r ~ a (cf. [23, 5]), we have 

[1 + I T(r;  k)I +] Ai (T(r;  k)) = 0 (exp { - + ~+l(r; k)}) 

= 0 (exp { -  k +(Im ~,) a -+ 2(r, O; a)}), 

[1 + I T ( r ;  k ) : - I - tA i ' (~ ( r ;  k))= O (exp {-~t ~+(r; k)}) 

=O(exp{-k+(Im+~)a-+2(a, O; r)}), 

a__. 1 a ~o) ( r )  = 0 ( 1 )  

(1.22) follows from (II.1)-(II.8), and the remark that 

2(ro, em(I 0o-01); r~,(O))=2(ro, O; a)+2(a,  O; rm(O))+a r 

Appendix HI 
To derive (2.9), we start with the following integral equation for 0 (2) U1 (~B1 (0), 

F~; k), derived from (1.17): 

a(. 2) UI (FB,(O), F~; k)=O. (2) Uo(Fn~(O), ~; k)+ Is(~82(O), ~+; k), (III.1) 

where 
2~ 01 

ls(~,.(o), ~,; k)= I + I ac.z)ac.1)Uo(~,2(o), ~,,(o1; k) 
02 0 

(III.2) �9 U, (~B,(0), 5 ;  k)[dFB,(0)[. 

We then make use of (1.20), and the following estimates in (III.1) and (III.2) to 
obtain (2.9). 

As k ~  oo 
2 

0, (2) Uo(Fez(0), rs; k)= ~, O(k+exp{-k~(Imzl)a-~2(rn2(O), ~bm(0); rs)}) 
m = l  

(III.3) = O (k § exp { -  k*(Im Zl) a -  } 2< (rn2 (0), 0; rs)}), 

uniformly in 0, 0~ <__ 0 =< 0~; 
(2) (1) + o. o. Uo(r,,(O),~,,(~); k) 

(III.4) 2 
= ~, O(k~exp{-k+(Imzl)a-~2(r~2(O), em([O--O[); rn~(O))}), 

m = l  
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uniformly in 0 and  0, 0~__<0__<0~, 0 2 ~ 0 ~ 2 ~ z ,  0_~0~01.  In  (III.3) the funct ion  

2<(rBe(O),O;rs)=min2(rB2(O), ~m(O);r~). Note that  in  (III.3) we have ~s~(0) 
m=1,2 

e5#o<(~) if 0~__<0__<0~, while in (III.4) we have Fn~(0)e~o<(~s~(0))~ 5#o<(~s) if 
01<0<0~, 02__<~__<2~, 0__<~<0~. 

The research for this paper was supported by U.S. National Science Foundation Grant 
No. GP-7958. 
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