
Optimization with Partial Differential Equations 
in Dieudonnd-Rashevsky Form and Conjugate Problems 

LAMBERTO CESARI 

. 

In previous papers [1 a b c d e] we have given existence theorems for problems 
of optimization with partial differential equations and the usual constraints. In 
particular, in [1 d e] we have given existence theorems for the problem of the 
minimum of an integral 

l [z ,  u] = S F(t, z,'.u) d t ,  
G 

(1) t=( t  1 . . . . .  tv), d t = d t  1 . . . d r \  z = ( z  1 . . . . .  zn), u = ( u  t . . . . .  urn), 

in a fixed domain G c E v  with differential equations (side conditions) written in the 
Dieudonnr-Rashevsky form 

cgz i 
(2) a t j - f i j ( t , z , u  ), t~G,  i=1  . . . . .  n , j = l  . . . . .  v, 

usual boundary conditions, and constraints u~U(t,  z)~Em, where the control 
space U =  U(t, z) is a given subset of Era. Here z =(z  1 . . . . .  : )  are state variables 
and u =(u 1 .. . .  , u m) control variables. 

As stated by P. K. RASHEVSKY [6], very general partial differential equations 
and systems can be written locally in the form (2). 

For  instance, second order partial differential equations such as z~,+z~s= 
1 u) can be immediately written in the form f ( t ,  s, z 1, zlt, z~, 

a z2t=v, 2 z3=w z3s=_T_v+f(t,s, za, z2, z 3, z~=z  2, z~=z  3, z s = w ,  , U), 

where z ~, z 2, z 3 are state variables and u, v, w are control variables, m =3, n =3,  
v=2.  Other examples are in [5a b c], [ ld  e], and some further ones are given at 
the end of this paper. Systems of the form (2) have been studied by J. DIEUDO~ 
[2a b], E. DUmNSKY [3], and others, from a completely different viewpoint, as 
particular cases of systems written in the form 

dz  
dt  - f ( t ,  z, u), 

where z, t range in suitable Banach spaces, and dz/dt  is the Fr~chet derivative of z 
with respect to t. 

In [4a] A. I. EGOROV has considered abstract problems of optimization with 
"differential equations" (side conditions) written in the abstract form 

(3) a z = f ( z ,  u), 
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where z, u , f  range in Banach spaces, and A is a linear, generally unbounded, 
operator. A. I. EGOROV has shown that, whenever we can write a suitable linear 
problem which is "conjugate"  to the given problem of optimization with equa- 
tion (3) as side conditions, then abstract forms of the minimum property follow 
(Pontryagin's necessary condition). 

In the present paper we give suitable forms for the "conjugate linear problem" 
for problems of optimization with differential equations in the Dieudonnt- 
Rashevsky form (2). Furthermore, in harmony with A. I. EGoaov [4a], we prove 
the minimum property in local form, under various sets of hypotheses. A. I .  
EGoaov's general assumptions are replaced here by somewhat weaker ones in the 
present situation. For  instance, the solutions of the given equations as well as of 
the conjugate problems need not be unique, and certain continuity hypotheses of 
EGOaOV'S paper need be verified only under a coarser topology for the range space 
(Lp instead of W~). 

For  the sake of simplicity we shall limit ourselves to the case v = 2. Thus, we 
shall write (x, y) for t, andf~ . . . . .  f , ,  gl . . . . .  g, forf~j .  The results below can be 
extended immediately to the case v > 2. 

Q 

Let G be a Sobolev domain in the xy-plane E2, and let us consider the class 
f~ of all pairs z(x,  y ) =  (z 1 . . . .  , z"), u (x, y) = (u I . . . . .  u"), with z~e W~ (G), p > 1 (thus, 
z~Lp(G) ,  ~3zi/ax, Ozt/Oy~Lp(G)), ( i=  1 . . . .  , n), u(x,  y)E U=E, , ,  u j measurable in 
G, j = 1 . . . . .  m, where U is a fixed subset of E m, satisfying differential equations 
and boundary conditions as follows. We require that the pairs z, u in f2 satisfy 
the 2n first order partial differential equations 

(4) O z ~ / O x = f i ( x , y , z , u ) ,  O z i / O y = g i ( x , y , z , u )  a.e. in G 

(i = 1 . . . . .  n), where f i ,  g~ are real valued continuous functions on G x E m x U. Let 
B = O G  denote the boundary of G, and let us assume that B can be divided into 
finitely many nonoverlapping parts Sh, h = 1 . . . . .  N,  which we shall call arcs s 
of B, or sides s of G. We shall assume the usual conventions concerning the 
orientation of the components of B. 

Let a denote the arc length parameter on B starting from fixed arbitrary 
points of B, 0 < a < L ,  where L is the total Jordan length of B. Then a =a (x ,  y) for 
(x, y ) ~ B  (with obvious conventions), and we denote by zi(a), or zi(a(x, y)), 
the values of z i for (x, y ) eB ,  i=1 ,  ..., n. 

We require that the pairs z, u in t2 satisfy the boundary conditions 

[For each h = 1 . . . . .  N and for  every i of  a collection {i}n of  indices i = 1 . . . . .  n 
(5) I depending on h (which may be empty) ,  let 

t z'(a)=c~hi(a ) f o r  ar (a.e.). 

Here the ~h~ are functions on Sn of class Lp(Sh). (See Section 6 for alternate bound- 
ary conditions.) 
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(6) 

We shall consider the problem of the minimum in t2 of the functional 

l[z,u]= ~, ~, I[Ph,(a)zi(a)dx+Qhi(a)zi(a)dy], 
h = l  i = 1  sh 

where Phi(g), Qhi(a) are given functions Phi, ahi~Zq(Sh), for some q > l ,  
q - l + p - l ~ l ;  h = l  . . . . .  N; i=1 . . . . .  n. 

Let us denote by t = t ( a )  the tangent vector along the oriented arc Sh and by 

cos tx, cos ty the cosines directors of t; hence dx =(cos tx) da, dy =(cos ty) da. 
Let 

/ x ,  / x ,  

Hhi(t)=Phi(a)cos(tx)+Ohi(a)COS(ty), i= 1 . . . . .  n, 
so that 

N 

I [ z , u ] = ~  ~ S IIh,(Cr)z'(a)da. 
h = l  i = 1  sh 

If a side Sn of G is a segment parallel to the y-axis [x-axis], then Phi[Qh ~] can be 
given arbitrary values. We may assume them to be identically zero. Boundary 
conditions (5) and the expression (6) for the functional do not interfere, that is, 
we assume that, for every pair h, i with i~{i}h, the corresponding functions 
Phi, Qhi are identically zero. 

The case in which the functional is given in the Lagrange form (1) can be 
reduced to the situation above by suitable transformations which are given in 
Section 10 for an interval. 

As usual we say that a pair z, u in t2 is optimal for the functional (6) if 
l[z, u]<I[~, fi] for every pair ~', ~ in f2. 

3. The Hamiitonian 

If 2=(21 . . . . .  2n), /~=(/~l . . . . .  pn) denote any two real vector variables, and 
(x, y)eG, z=(z  1 .... , zn)~E~, u=(u 1 .... , um)~u, we define the Hamiltonian H as 
the real-valued function defined in G x U x E 3 n" 

(7) H(x, y, z, u, 2,/~)= ~ [2j fy(x, y, z, u)+#j gi(x, y, z, u)] .  
j = l  

We shall consider different sets of hypotheses below. In each we shall be able to 
use the first order partial derivatives aft/~zJ=ftzj, ag~/azJ=glzj, i , j = l  .. . . .  n, 
and hence also the first order partial derivatives aH/~z ~, i= 1 . . . . .  n, of H. 

4. The Linear Conjugate Problem 

We shall denote by 2 (x ,y )=(21  . . . . .  2n), [ . l ( x , y ) : ( [ l l  . . . .  , / ' / n )  any pair of 
functions defined in G, 2~, I~W~(G), i=1  . . . . .  n. We shall denote by Ahi(a) the 
expression 

A A 
Ahi(a)= --#~(a)cos(tx)+ 2i(a)cos(ty), a~sh, 

23* 
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where i = 1,. . . ,  n; s = 1 . . . . .  N. We shall assume that 2~,/~, i = 1 . . . . .  n, satisfy the 
system of n first order partial differential equations 

O2i t~#i = ~H i=1 ,  , n ,  ( x , y ) ~ G  (a.e.) 
(8) ax  ~ dy  ~z  i . . . .  

with boundary conditions 

(9) a h i ( C T ) = l " I h i ( r  traSh (a.e.) 

for every h = 1 . . . . .  n, and for every i not in {i}h. Note that we do not assign A h 
on sides Sh for iE{i}h. Note that if a side s is a segment parallel to the x-axis then 

cos(ty) =0, cos ( tx)  = _+ 1, and (9) reduces to 

- - l l i ( f f ) : P h i ( t T ) ,  t T ~ S  h , i~{i}h.  
/ x ,  / ~  

If a side s is a segment parallel to the y-axis, then cos(tx) =0, cos( ty)= _+ 1, and 
(9) reduces to 

2i(tr)--=-Qhi(tr), a E s  h , i~{i}h.  

We say that (8), (9) is the conjugate problem. System (8), or 

~ )ti/t~x-l-t~ l.li/t~y-~ --~'~[2jf  jz,(X , y,  z (x ,  y), u(x ,  y) )+# j  gjz,(x,  y, z (x ,  y), u(x ,  y))],  
J 

( i= 1 . . . . .  n) is linear in 4,/~. Here z(x ,  y), u(x,  y) denotes any given pair in t2. 
Actually, we need consider (8), (9) only when, z, u is a given optimal pair. 

We shall assume below that, for a given optimal pair z, u, the conjugate 
problem (8), (9) has at least one solution 4, # (with h i,/~i e W~ (G), i = 1 .. . .  , n). 

A pair z, u in t2, together with a solution 4, # of the corresponding conjugate 
problem, is said to satisfy the minimum property (Pontryagin's necessary condition 
in local form) provided that 

(10) H ( x , y , z ( x , y ) , u ( x , y ) , 2 ( x , y ) , # ( x , y ) ) < = H ( x , y , z ( x , y ) , u ,  2 ( x , y ) , p ( x , y ) )  

for almost all (x, y ) e G  and all u~ U. 

5. Formula for Increments 

If z, u is a pair in [2, if 4, # is a solution of the corresponding conjugate problem, 
and if z~, u~ denotes any pair in ~, then 

d I = I [ z e ,  u e ] - I [ z ,  u] 

N 
= 

h = l  i=1  sh 

N 

h = l  fr  i~{i}~ sh 

where 
I lh i=O,  z i z i Ai(z~--z i )=O for trash, ie{ i}h 

(11) I lhi=Ahl  for aeSh ,  i~{i}h.  
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Then 
N 

A I = Z ( Z  + ~ . ) I  , i A h i ( Z ~ - z  ) d a  
h = l  i~{i}h i~{i}h sh 

N 

= ~. ~ I [-.,(tr)(z'(a)-z'(G))dx+Z,(a)(z~(e)-z'({r))dy], 
h = l  i=1 sh 

and by Green's theorem 

(12) 

n 

sj( ~ + '~" ~ ( z : - ~ ' ) ~ / ~ , : ~ ,  + ~ .  + \ Ox Oy ] i= 

If we denote byf~., g~. the functionsfl, z~ where the pair z(x, y), u(x. y) is replaced 
by z.(x, y), u.(x, y), then A1 becomes 

(13) 

A~ =I IE  [2,(fi~-f,)+ #,(gi.- g,)] dx d y 
G i 

= jj  [H (x, y, z,, u.,  2, # ) - H  (x, y, z, u, 2, #)] d x d y 
G 

--!s {,, ~ , . ,  z, .~, ~, , , ) - , ,  (x,., z,., ~, ~)] 

+Z (OH(x, y, z, u, X, #)/Oz')(~i- z') 
i 

[OH OH #)](z:_z i )}dxdy ' + ~ [ ~ Z  (x, Y, ~, u~, Z, # )--g-ff~ (x, Y, Z, U, Z, 

=AxI+Ax2+A13, 

where ~. =~(x, y) denotes a point between z(x, y) and z~(x, y) in E.. 
By formulas (12), (13), and comparison with (8), we obtain A2+Ax2 =0 and 

(14) 

where 

(15) 

AI= Alt + A~a =~ [H(x, y, z, u~, A, #)-H(x ,  y, z, u, 2, #)] dx dy+rl, 
G 

11-= A13 =~J  ~ / [ r  X ~ 63H X �9 [--~rzi ( , y,Y.,u~, ,# ) - - -~zi  ( , y,z,u, 2,#)] [z'~-zi] dxdy .  

6. Alternate Boundary Conditions 

We shall now take into consideration boundary conditions for the original 
problem which are more general than (5). Namely, we shall consider conditions 
of the form 

(16) ~'. o~hi(a) z'(a)=gph(a), a~sn (a.e.) 
i ~ {i}h 
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for given functions ~hi in Lp,(Sh), p'>=p, and given functions ~b h in Lk(Sh) with 
1/k = lip + lip'. Precisely, we shall assume that for every h = 1 . . . . .  N a correspond- 
ing collection {i}n is assigned as before (which may be empty), and that for every h, 
one or more relations (16) are required, say v relations 

(17) ~ ~(h~i)(o)zi(o)=~)h~(a), aEsh(a.e. ),  7=1, . . . ,  v. 
i ~ {i}h 

As before, we assume that the boundary conditions (17) and the expression (6) 
for the functional do not interfere, that is, we assume that for every pair, h,i 
with ie{i}h, the corresponding functions Ph ~, Qhi are identically zero. 

The boundary conditions (17) contain conditions (5) as a particular case. 
Indeed, if/z denotes the number of elements in the collection {i}h , we may well 
require on sn that the # relations are satisfied 

z i ( a ) ~ - ~ ) h i ( a ) ,  a ~ S h ,  i~{i}h, 

all of the form (16), namely ~hj=O for j :~i ,  ~Xh/=l , ~hi~Loo, k=p,  ~h=d~hi6Lp. 
These are exactly conditions (5). 

Under the new conventions we shall define the conjugate problem by means of 
the same linear partial differential equations (8) in the unknown functions 
2i(x, y), Iti(x, y), i=1 . . . . .  n, as in Section 4, with the following extended set of 
boundary conditions 

(18a) Ahi(a)=IIhi(O), O'~Sh (a.e.), ir 

and 

[Abe(o), O~Sh, iE{i}h, are so chosen that for every a~Sh and any two systems 
( 18b)}~ numbers zi(o), i~{i}h, ~'(a), ie{i}h, satisfying relations (17) we have also 

/ Z =0. 
i e {i}h 

Conditions (18 a) are the same as conditions (9). On the other hand, under condi- 
tions (5), zt(a)=~(a)=~bbi(a) for G~Sh and i~{i}h; hence conditions (18b) 
are identically satisfied. Thus, we see that whenever the new boundary 
conditions (17) reduce to conditions (5), then the conjugate problem reduces to 
the one considered in Section 4. Note that wherever on B = d G  conditions (17) 
determine the boundary values of the functions z i then conditions (18b) are 
identically satisfied and do not represent any further restriction on the boundary 
values of ;t i,/~i. 

In the present more general situation, with conditions (17), (18a b) replacing 
(5), (9), we can repeat the argument of Section 5. Indeed, instead of (11), we have 
n o w  

lIhi=O for S~Sh, i~{i}h, 

Ahf(Z~--zi)=o for S~Sh;  l - [ h i = A h i  for a~s h, i~{i}h. 

The remaining argument of Section 5 holds now with no further changes. Let us 
consider examples of conditions (17) other than (5), and corresponding conditions 
(18b). 
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For instance, fo r /~=2  and (17) reduced to zl(cr)-z2(a)=dpn(a), a~sn (hence 
~h 1 = 1, C~ h 2 = - -  1), then requirement (18 b) actually reduces to An 2 (a) = - A  n a (a). 
Indeed, 

An l ( Z 1 --z1) + An 2 ( z2--z2)= Ah l ( Zl ---z1)-- Ah l ( g2-- z 2 ) 

= An l dP- An l CP=O . 

For instance, for # =3 and (17) reduced to the two conditions 

zl(a)+ z2(~r)+ za(a)=O, 2zl(a)+ 3zZ(cr)+ z3(a)=O, fresh, 

then requirement (18 b) reduces to A h 1 ,  An2, A3 orthogonal t o - 2 ,  1, 1. 
In general, for every / t>  1, if we require, say, on z x . . . . .  z ~ a certain number 

v, 1 <v</~, of linear homogeneous relations of the form 

// 

~ ) ( a )  z'(a) = O, , /= 1 . . . . .  v, 
i = 1  

then relations (18 b) reduce to 

p 

ahi(~) Zi(a)=O 
i = 1  

for all systems of numbers zl(a),..., z~(a) satisfying the v linear homogeneous 
relations above. As in Sections 2 and 4 we shall assume that the pairs z, u of the 
nonempty class f2 satisfy the boundary value problem (4), (17), and that for a 
given pair z, u in f2 there are functions 2~, Pi as stated satisfying the boundary 
value problem (8), (18a b). 

7 .  T h e  C a s e  o f  a n  I n t e r v a l  D o m a i n  

For an interval domain, say G=[O<x<a, 0__<y<b], we may prefer to write 
the functional (6) in the form 

(19) 
uj- [i - (P~(x) zi(x, b)+ Qi(x) zi(x, 01) dx 

i = 1  

b 

+ ol (Ri(y) zi(a, y) + S t (y) z'(O, y)) d y ] ,  

where Pi, Qi, R~, Si are given functions, Pi, QleLq(O, a), a i, SieL~(O, b), q> 1, 
p - X + q - l < l .  

Let us assume N = 4  and st=[O<x<a, y=b], s2=[O<x<a, y=0] ,  sa=  
[x=a, O<y<b], s4=[x=0 ,  O<y<b], the four sides of G. Now sl, s2, s3, s4 are 
oriented in the sense of increasing x or y. For every h = 1, 2, 3, 4, and side sh of G 
let {i}h denote any collection of indices i =  1 . . . . .  n. The boundary conditions (5) 
for the original problem are now of the form 

(20) iE{i}n h - l , 2 ,  3,4.  Zi=Ohi on sh, 
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The corresponding boundary conditions (9) for the conjugate problem can now 
be written in the form 

(21) 
ill(x, b)=Pi(x), i~{i},; 

2i(a, Y)=Ri(y), i~{i}3; 

It/(X, O) = -- Q/(x), i~{i}2; 

2/(0, y )=  -S i (y) ,  iqi{i}4. 

As expected, we need not assign the values of any 2 t [#i] on sides y = 0 ,  or 
y=b [x=0,  o r x = a ] ,  and of course we do not assign the values of 2 / , /q  on sides 
s h if ie{i}n, i=l , . . . ,n ,  h=l ,  2, 3, 4. 

Note that in the present situation and with the boundary conditions (20) and 
(2 0 ,  identity (11) of Section 5 can be proved by integration by parts, while 
identity (12), written in the present notations, can be directly verified. 

Let us now assume that boundary conditions (19) are replaced by more general 
boundary conditions (17) for the original problem. Conditions (17) will now be 
written in the form 

(22) r on Sh, 7=I , . . . ,V ,  h = 1 , 2 , 3 , 4 ,  
ir {i}h 

where v as usual may well depend on h, and ~ / ,  ~bhr are known functions on sh as 
in Section 6. Let us write the corresponding boundary conditions for the con- 
jugate problem. Conditions (18a) are now replaced by conditions (20). Conditions 
(18b) become 

)" #,(x, b)(z'(x, b)-~/(x,  b))=O, O<_x<_a, 
ie  {ih 

Z 
i e  {i}2 

(23) ~ 2,(a, y)(z/(a, y ) - ~ ' ( a ,  y))=O,  O<y<b,  
i~ {i}~ 

Z 2/(0, y)(z/(O, y)-~/(O,  y))=O,  O<y<b,  
iE {i}4 

where, in each equation, z ~, ~i, ie{i}h, denote any two solutions of the correspond- 
ing equation (22), h = 1, 2, 3, 4. 

In the present situation - G an interval of the xy-plane, Sh, h = 1, 2, 3, 4, the 
four sides of G - we can take into consideration boundary conditions even 
slightly more general than (22) for the original problem. Indeed, we may require 
instead of (22), that 

(24) 

~,/(x) z'(x, b)+ ~ fl~hi(X) z'(x, 0 ) = r  
ie  {i}t ie  {/}2 

E Y~,(Y) z'(a, y)+ E 6~,/(y) z'(O, Y)=Or(Y), 
i e  {i}3 /a  {/}4 

O<x<_a, 7 = 1 , . . . ,  v', 

O<y<a,  y = l , . . . , v " ,  

where v, v" are two integers, and ~ , ,  flT,~, Y~i, 6h~i, t~h ,  ~/7 are given functions on 
[0, a] or [0, b] analogous to the functions ct~/, ~bh~ of equations (17). Let us write 
now the corresponding boundary conditions for the conjugate problem. Condi- 
tions(18a) again are replaced by conditions (21). Conditions (18 b) are now 
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replaced by relations 

Z !ai(x, b)(z'(x, b)-~'(x, b))+ ~. pifx, 0)(z '(x, 0 ) -~ i (x ,  0 ) )=0 ,  
i~ {i}1 i e  {i}2 

(25) • 2,(a,Y)(zi(a,Y)-~'(a,Y)) + Z 21(O,Y)(z'(O,Y)-z'(O,Y))=O, 
i e  {i}3 ie {i}4 

where zi(x, b), it{i}~, zi(x, 0), it{i}2, and ~i(x, b), it{i}~, ~i(x, 0), it{i}2 denote 
any two systems of numbers satisfying the first equations (24), and an analogous 
convention hold for the numbers zi(a, y), i t{i)3,  zi(0, y), i t{ i )4 ,  and ~i(a, y), 
it{/}3,-zi(O, y), it{i},t. 

For instance, if relations (24) are 

zi(x,b)=z~(x,O), zi(a,y)=zi(O,y), i=1  . . . .  , n ,  

then relations (25) can be written in the form 

Izi(x,b)=lai(x,O), 2i(a,y)=2i(O,y), i=1  . . . . .  n. 

Under the new boundary conditions (24), (21), (25), the proofs in Section 5 are 
essentially the same as above. 

8. Hypotheses 

For  the sake of simplicity, in this and following Sections we shall be concerned 
with the problems (original and conjugate) as worded in Sections 2 and 4. We 
leave it to the reader to make the obvious changes for the alternate problems of 
Sections 6 and 7. 

We shall consider different sets of independent hypotheses, say (H1), or (H2), 
or (H3) below. In any case we make the following general assumptions: 

(~) For  a given pair z, u in I2 (a given optimal pair in the proof of the necessary 
condition), the linear conjugate problem (9), (10) has some solution 2, ~u, (with 
z~tWJ(G), i = l  . . . . .  n, u j measurable, j = l  . . . . .  m, 21, ltitI, V~(G), i = l  . . . . .  n, 
q-I +p-l__< I). 

(fl) There are pairs z~, u~ in I2 for every u~ obtained by modifying u as follows: 
take any point (2, y) in the interior of G, a circle R of center (2, ~) and radius 
r > 0 with R c G, any point h t U, any measurable subset E of R, and take u s (x, y) = 
u(x, y) in G-E,  u,(x, y) =t~ in E. 

We list now the alternate specific hypotheses: 

(H1) (linear case). Here we assume p >  I and 

(26)fi=~'.Aij(x, y)zJ+ Ci(x, y, u), gj=~'Bij(x , y)zJ+Di(x, y, u), i= 1, ..., n, 
J J 

where the functions Aij, B~j are continuous in G, the functions Ci, D~ are con- 
tinuous in G x U, and U is compact. 

Actually, much less is needed. Indeed, U may be any subset of Era, and we need 
require only that the functions A~y, B~j are in Lq(G),q-a+p-X<l; that the 
functions Ci, Di are measurable in x, y for every u t  U, with C i, D~tL~(G) for 
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every fixed ue U; 

(27) SS[C, I q d x d y ,  ~S[Di lqdxdy<M 
G G 

for some constant M which may depend on u, and such that for almost all (~, y ) e G  
and every fixed ue U we have 

(28) (rcr2)-l[.~C,(x,y,u)dxdy--,C,(~,y,,u), i = 1  . . . . .  n ,  
R 

as r ~ 0 + ,  and that the same holds for Di, i = I . . . . .  n. F o r p  = 1 we understand that 
(27) is replaced by boundedness of Ci, D t in G, i =  1 . . . . .  n, for every fixed u~ U. 

(H2) (nonlinear case). We assume here p = q  =2.  We assume that the functions 
f i ,  gi are continuous in G x En x U with continuous partial derivatives Ofi/az j =f~z~, 
O g JO z j = g ~ ~J, i, j = 1 . . . . .  n, and that these first order partial derivatives are Lipschit- 
zian with respect to z and u of some constant K(and exponent one) in G x U x En. In 
addition to (fl) we assume that, for every u, as mentioned, there is at least one z, 
with (z~, u~)ef2 and IIz~-ZIIL~ < L  flu,-U[IL, for some fixed constant L. We assume 
that the given functions Pi, Qi, Ri, Si are essentially bounded. In addition to (~) 
we assume that u, 4, It are essentially bounded in G, or l u(x, y)] <m,  12(x, Y)I, 
lIt(x, Y)I < m '  for almost all (x, y )eG and some m, m ' > 0  (though the derivatives 
2i~, 2iy, Itix, Itiy, i= 1 .... , n, may well be unbounded and belong to Lq(G)). 

(Ha) (nonlinear case). Here we make the same assumptions as in (H2), where 
the first order partial derivatives f~zJ, g~z~, i, j =  1 . . . . .  n, are assumed to be Lip- 
schitzian with respect to z and u with some constant K and exponent ~, 0 < ~ < 1. 
Here we take p > 1, q > 1 with (1 + a ) p -  1 + q -  x = 1. No boundedness assumptions 
for 2, It are assumed here. 

Remark. Other sets of conditions can be taken into consideration, where u 
can be assumed to be not essentially bounded, and p can be taken equal to one. 
(See, for instance, [7] for a hyperbolic system of partial differential equations.) 

9. A Necessary Condition for a Minimum 

Theorem. Under hypotheses (H1), if z, u is a given pair in I2, if 2, It is a solution 
of the corresponding linear conjugate problem, then z, u is optimal if and only if 
z, u, 2, It satisfy the minimum property. Under hypotheses (H2), or (Ha), if z, u 
is a given optimal pair in I2, and if 2, It is a solution of the corresponding linear 
conjugate problem, then z, u, 4, It satisfy the minimum property. 

Proof. (a) Let us assume that hypotheses (H1) hold, and let us prove the suf- 
ficiency of the condition. Indeed under these hypotheses we have ~/=0 and (14) 
yields 

(29) AI=SS [H (x, y, z, u~, 4, l O -  H (x, y, z, u, 4, It)] dx  d y 
G 

for every pair z,, u~ of f2 (and z does not appear in (29)). Then (10) certainly 
implies that the term in brackets in (29) is > 0  for almost all (x, y)eG.  Hence 
A I > 0 ,  or I[z,, u~] >I[z,  u]. The sufficiency property is proved (under hypotheses 
(~1) ) .  
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(b) Again, let us assume that hypothesis (Hx) holds, and let us prove the 
necessity of the condition. For any point (2, .F) interior to G we shall denote by R 
a circle of center (2, fi) and radius r with R~G. Then e=Tzr 2 is the area of R. If 
/3 denotes any point of U, then by us(x, y) we shall denote the function defined by 
taking us(x, y) =u(x,  y) in G - R  and by us(x, y) =fi in R. Let zs(x, y) be a function z 
so that the pair z,, u~ is in f2. Then t/=0, and (14) yields 

o<.4I= jJ [H(x, y, z, us, 2, l a ) -H(x ,  y, z, u, 2,/l)] dx d y,  
G 

where the bracket is zero in G - R .  Then 

o__<~-' a i = ~ - '  .~I [H(x,  x, z, . s ,  ,t, ~ , ) - U ( x ,  y, z, u, ;t, ~,)] dx dy, 
R 

and because of (26) also 

0 <= ~ - I A I  = 8 - 1 I I  [ E  ,~i ( x ,  y)(C i ( x ,  y ,  ~ l ) -  C i ( x ,  y ,  u ( x ,  y))) 
R i 

(30) + Y'#i(x, y)(D,(x, y, ~)-D,(x,  y, u(x, y)))] dx d y. 
i 

If U is compact and the functions Ct(x, y, u), Di(x, y, u) are continuous in the 
compact set G x U, hence bounded in G x U, the expressions 

(31) ~ 2 t (x, y) Ct(x, y, u (x, y)), ~]/l t (x, y)Dr(x, y, u (x, y)) 
t i 

are L~-, hence Lx-integrable in G. By a theorem of Lebesgue there is a subset E 
of points (2, ~) interior to G with m e a s ( G - E )  =0, such that 

-2 II E a, ct d x d y -*Z 2,(~, y) C t (x, ~, u (x, y)) 
R i i 

(32) . - '  II la,(x, y)-a,(y. DI d x d y ~ O ,  i=1 . . . . .  n, 
R 

as e ~ 0 +  for every (2, y)EE, and the same holds for the functions ~ / h  Dt and 
#~, i =  1 . . . . .  n, respectively. On the other hand t 

~-1 ji ~. 2,(x, y) Ct(x, y, u) d x d y -  ~ 2t(~, Y) C,(Y, Y, u) 
R t t 

= e - '  5512t(x, y ) -  2,(x, 7)1Ct(x, Y, u) dx dy 
R 

+ ;~,(~, 7)" ~-1 ~ IG(x, y, u)-ct(~,  7, u)l dx dy=.4~ +Aa. 
R 

Because of the boundedness and continuity of the functions Ct, we conclude that 
A I + 0 ,  A 2 + 0  as e + 0  for every (~ ,y ) eE  and heU,  and the same holds for 
/~, Dt replacing at, Ct. From (30) we conclude that 

~-' At-.E ~t(~, D(ct(~, F, r,)-c,(~, 7, .(7,, 7))) 
i 

+E/~t(~,  y)(Dr(x, y, u)--Ot(~, y, u(~, 7) ) )>0 
1 
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for all (~, P)~E and fie U, or 

H(~, Y, z(~, y), u, 2(~, y), p(~, 7)) 

(33) - H(s Y, z (~, y), u (~, y), 2(~, y), It(i,  7)) > 0 

for the same (~, y)eE and fie U. 
If U is not necessarily compact and Ci, Di are not necessarily continuous, but 

(27), (28) hold, first we note that functions (31) are certainly Ll-integrable in G as 
differences between f ~(x, y, z(x, y), u(x, y)) =Oz~/Ox and Z A~j(x, y)za(x, y), and 

J 
between gi=Ozi/Oy and ~ Bii z j, respectively. By the same Lebesgue theorem 

J 
we can choose E in such a way that (32) still holds together with the analogous 
relation for Iti, Di, in such a way that (28) holds at every (2, y)eE, and in such a 
way that e-l(SSIA,(x,y)-2,(~,-~)lqdxdy-,O, i--1 . . . . .  n, 

R 

as e --, 0 for every (2, .~)eE, together with the analogous relations for the functions 
Iti, i = l  . . . . .  n. Then, using (27), (28) we conclude that again A1 ~ 0 ,  A 2 --*0 for 
every (x, y)eE and all fie U. As before we conclude that (33) holds for every 
(2, y ) e E  and all fie U. We have proved the necessity of the condition under hypo- 
theses (H1). 

(c) Let us prove the necessity of the condition under hypotheses (H2). Suppose 
that the statement is not true. Then, there is a set E c  G of positive measure where 
(10) is not true (for all fieU). The functions z, u, 2, # are measurable (and Lt- 
integrable) in G; hence the set F of the points (x, y)eG of asymptotic continuity 
has full measure. Hence E n F  has also positive measure, and we take a point 
(~, y ) e E n F  interior to G. Since (s y)eE, there is some fie U and number h > 0  
such that H(x, y, z, u, ~., #) = H(x, y, z, u, ~., # ) -  h 

where ~ =s y), u =u(2,  y), 2 =2(s y), ~ =it(2, y). Since (~, y ) e F  and is interior 
to G, there is a set Eo = G of density one at (~, y) such that 

H(x, y, z(x, y), u, 2(x, y), It(x, y))< H(x, y, z(x, y), u(x, y), 2(x, y), It(x, y)) -h/2 

for all (x, y)eEo. We can choose r > 0  so that the circle R of center (~, y) and 
radius r is interior to G, and such that meas(Eoc~R): meas R> l / 2 .  If e=meas 
R =r~r 2, then we have meas(E o n R) >8/2. 

Let us define the function u~(x,y), (x,y)eG, by taking u,(x, y)=u(x, y) in 
G-Eoc~R, and u,(x,y)=~ in EonR.  Then 

H(x, y, z, u~ , 2, I t)-  H(x, y, z, u, 2, I t)=0 in G -  E o n R,  

< -h /2  in E o c~ R,  

and the integral in the expression (14) of AI is then <( -h /2 )meas (Eoc~R)<  
-he/4. On the other hand, we can take m, m' so that lul, lull<m, I).1, I I t l<m ' 
in G, and then 

~ lug(x, y ) -u (x ,  Y) I dx d y< 2m meas R=2me.  
G 
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If z~(x, y), (x, y)~G,  denotes a solution of (4), (5) satisfying the requirement 
stated in (H2), then 

(i~ I ze(x, y ) - - z ( x ,  y)[2 d x d y ) - ~ < 2 m  Le.  
G 

Finally, 

1'7 [ = [IS ~ [;tj ( f j , ,  (x, y, ~, ~,~) -f~.,, (x, y, =, u)) 
G i j  

+ ~j(gj~, (x, y, ~, u~) -  g~, (x, y, z, u))] I-z~,- z'] d x d Y l 

<2n2 m' KSS(Iz,-zl+lu~-ul)lz~-zldxdy 
G 

<__2n~ m' K[~lz~-zl2 dxdy+(SSlu~-ul2 dxdy)~($ilz~-zlZ dxdy) ~] 
G G G 

(34) <2n2m,K[(LSSlu _uldxdy)2 
G 

+ (2 m JS I u , -  u [ d x d y)}(LS~ [ u~-  u I d x d y)] 
G G 

< 2 n 2 m' K [L 2 (2 m a) 2 + (2 m)~: L(2 m e) -~ (2 m e)] 

= 8 n 2 m 2 m' K L ( L  a 2 + e~). 

Relation (14) now yields 

(35) 0 < A I < - 4-1 h e + 8 n 2 rn 2 m' K L ( L e  2 + e~). 

By taking r sufficiently small (hence e sufficiently small), this relation is contra- 
dictory. We have proved that  (10) holds for almost all (x, y ) e G  and all ue  U. The 
theorem is proved under hypotheses (//2). 

(d) Let us prove the theorem under hypotheses (Ha). The reasoning is the 
same as in (c) but now (34) is replaced by 

it/[ < 2 n  2 K[(SS [2[~dxdy) l /q+(S  j" [p[qdx dy )  l/q] [S~([ z ~ - z  [~=+ 1} p, 
G G G 

+lu -ul=P'lz -ziP')dxdy] I/p', 

where p ' > l  is defined by ( p ' ) - l + ( q ) - l = l .  Then ( p ' ) - l = ( l + ~ ) ( p ) - l ,  or 
(1 + ~ ) p ' = p ,  1 < p ' < p .  If we take m" =ll211L,+ II~llL,, we have 

l~l<2n~m"K[~SIz~-zlndxdy 
G 

+ (SS [ u ~ -  u [p d x d y)~/tl + ~ (S~ [ z ~ -  z[P d x d y)p'/p]l/n', 
G G 

< 2 n  2 m" K[(L~S [u~-u I dx dy) p 
G 

+ ((2 m) ~-~ SS I ~ -  ~ I d x d y)' /~ + ~(LSS lug -  ~ I d x d Y) 'T/ ' '  
G G 

<= 2 n2 m"  K [(2 m Le) p + ((2 m) n -~ (2 m 8)) =/{1 + =~ (2 m Le)P'] ~/p' 

< K 1 ( ep/p' + ~ 1 + ~,/t I +,0 p') = K 1 (~1 +, + ~ 1 +,,/p) 
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for a suitable constant K 1 >0.  Then (35) is replaced by 

O<AI< - 4  -1 he+Kl(el+~+e1+~/t~), 

and the reasoning is now the same as for (H2). 

10. The Functional in Lagrange Form 

If the functional is written in the Lagrange form (1), and G is the interval 
[O<x<a, O<y<b]i then 

a b 

(36) l [z ,  u] = S $f(x, y, z, u) dx dy, 
O 0  

and the following transformations lead to a functional of the form (19). First, 
we introduce an auxiliary variable z ~+ a satisfying the differential equation 

02 zn+ 1 

OxOy -F(x , y , z , u )  

and boundary conditions z "+ 1 (x, 0)=0,  z "+ 1 (0, y) =0,  and then I[z, u] =z  "+ l(a, b). 
Now, let us introduce the variables z" § 2, z,+3 by taking 

~ Z  n+ l ~ 2  n+ 2 OZ n+ 3 
- - Z  n+2 _ _  

Ox ' Ox =v, Ox =F(x,y ,z ,u) ,  
O Z n+ l ~ Z n+ 2 O Z n+ 3 

- - = z  "+3, - - = F ( x , y , z , u ) ,  - - = w ,  
Oy t3y Oy 

(37) 

where v, w are new control variables. For  z "+~, z "+2, z n+3 we have the boundary 
conditions 

z"+l(x,O)=z"+2(x,O)=O, z~+X(O,y)=z"+a(O,y)=O, 

and the functional takes the forms 

(38) 

a b 

I=z"+ l(a, b)=  S z"+2( x, b) dx= S z"+3( a, Y) dy 
0 0 

a b 

= 2 - I I  z"+2(x, b) d x + 2 - 1 I  z"+3(a, y) dy. 
0 0 

If we now consider the vector ~ = (zl, ..., z", z ~ + 1, z" + 2, z" + a) o fn  + 3 state variables, 
and the vector fi =(u 1 . . . . .  u", v, w) of m + 2  control variables, we have a unique 
Dieudonn6-Rashevsky system of 2 n + 6  equations (4) and (37), we have a func- 
tional (38) of the form (19), and a control space U =  UxE2. Here all PL, Qi are 
zero but one which is equal to one (or two equal to �89 each). The set U is not 
bounded even if U is bounded, because, in general, we have no bounds for 
v=az"+2/ax and w =dz"+S/dy. Nevertheless, if we disregard these two equations 
in the system of 2n + 6 equations (second and sixth equations (37)), and we take 
the corresponding multipliers identically to zero (see example (a) below), then v 
and w will never appear in our discussion, and the results above apply with 
trivial changes. 
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11. Examples 
(a) The problem of the minimum of I[z, u] =z(a, b) (z scalar) with differential 

equation 

(39) zxy = f ( x , y , Z ,  Zx, Zy,U), ( x , y ) e G = [ O , a ; O , b ] ,  

boundary conditions z(x, 0) =0, z(0, y) =0, and constraints u~ U can be written 
as the problem of the minimum of the functional I=zl (a ,  b) with differential 
equations 

, 2 2 z 3 = f ( x ,  y ,  z ', z 2, Z 3, I1) Z x ~ Z  , Z x = U ,  

(40) 1 3 2 z 3, u), 3 Zy '=Z , z y = f ( x , y ,  z1,  Z 2, Z y = W ,  

boundary conditions z 1 (x, 0) =z 2 (x, 0) =0, z 1 (0, y) =z a (0, y) =0, and constraints 
(u, v, w)e 0 = U x E:. Then the functional 

b a b 
I = z 1 (a, b) = S z 2 (x, b) dx = S z3 (a, y) dy = 2-1 S Z2 (X, b) dx + 2-1 ~ z 3 (a, y) dy 

0 0 0 0 

has the form (19) with P1 =0, P2--�89 P3 =0, Q1---Q2 =Q3 =0, R 1 =0, R 2 =0, 
R3 =�89 $I=$2 =$3 =0. The Hamiltonian is 

H=21 z 2 +22 v+A3f+#l  Z 3 "[-[22f-}'I..t3 W 

with six multipliers. Nevertheless, it is convenient to disregard the second and 
sixth equations (33), and correspondingly take 22 =0 , / t  3 =0 in G. Thus, we have 
the boundary value problem in G=[O<=x<a, O<y<b] 

1 I 2 3 Z x -~ Z 2, Zy = Z 3, Zy = f ,  ZX = f ,  

(41) z l ( x ,  0 ) = z 2 ( x ,  0 ) - 0 ,  ZI(0, y)= Z3 (0, y ) = 0 ,  

and the Hamiltonian has now the reduced form 

H--:,~ 1 z2 -.[-/,/1 z3 -I- (,9],3 -I.-/./,2)f, 

with four multipliers 21, Pl, 23, f l2 .  The control variable is again ueU. The 
conjugate equations (8) and the corresponding boundary conditions (21) are now 

02~ 0#1 =-(23+/z2)fz ,  
Ox t- Oy 

0~t2 = -21  -(23 +#2)f~x, 
(42) ay j  

023 
~x ~-~ --]'/1 --('~3 "~['I2)fzy' 

,~,l(a, y)=O, #1 (x, b)=O, #2(x, b ) = l ,  2a(a, y)=  1. 
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M. B. SURYANARAYANA [7] has studied in detail the present problem (with z a 
vector) and has given sufficient conditions for the existence in Sobolev spaces of 
solutions to the original boundary value problem (41) and the conjugate boundary 
value problem (42). Also, he has shown that if L--2 a +#2 is sufficiently smooth 
and H* denotes the expression H* =Lf, then L satisfies 

~xOy z ~x 

with boundary conditions L x = - OH*/Oz~ for y =b, Ly = - OH*/Oz~, for x =a, and 
L(a, b)=2. This is the special form of the linear conjugate problem used by 
A. I. EGOROV in his previous paper [4b] for the problem of the present example. 

a 

(b) The problem of the minimum of l[z, u]= .[ z(a, y)dy, z scalar, with 
differential equation o 

(43) zx=zyy+f(x, y, z, zy, u), 

boundary conditions z(0, y) =0, z(x, 0) =z(x, a) =0, and constraints u~ U, can be 
b 

written as the problem of the minimum of the functional I= S zx (a, y) dy, with 
differential equations o 

(44) 

1 2 3 Z x ~ Z  2, Z x ~ O  ~ Z x ~ W  , 

1 Z ~ = W ,  3 = Z 2  U) ,  zy=z 3, zy - f ( x ,  y, z l ,z  3, 

boundary conditions . 71(0, y) =z3(0, y) =0, z I (x, 0) =g2(x, 0) =0,  Z I(x, b) = 
z2(x, b)=0, and constraints (u, v, w)~O=UxE2.  Then the functional I has the 
form (19) with PI=P2=P3=O, Q~=Q2=Q3=O, R I = I ,  R2=0, R3=0, SI= 
$2 =$3 =0, and the Hamiltonian is 

H=21 z 2+22v+Aaw+# 1 z 3+pzw+/ t3 (z2- f ) .  

It is convenient to disregard in (44) the second, third, and fifth equations, and 
correspondingly to take 22 =23 =/~2 =0 in G. Thus, we have the boundary value 
problem in G 

1 2 1 3=z2 f (x ,y ,  zl, z3, u), Z x ~ Z  , Z y ~ Z  3, Zy 

(45) zX(x,O)=z2(x,O)=O, zl(x, b)=zZ(x, b)=0,  zl(0, y)=z3(0, y )=0 ,  

and the Hamiltonian has now the reduced form 

H = 2 ,  z 2 + ~1 z3 + # 3 ( z 2 - f )  
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with multipliers 21, Pl, Pa and constraints ue U. The conjugate equations (8) and 
the corresponding boundary conditions (21) are now 

021 ~ y l  
Ox ~- =#3f , ,  

0 =  - - 2 1  - - / ' / 3 ,  

(46) O]A 3 
ay = -/~a + P a f ~ ,  

21(a, y)= 1, p3(x, b)=0,  /~3 (x, 0)=0.  

Note that if we take P3 = - 2 x ,  the Hamiltonian reduces to H=21f+ /~1  z3 and the 
conjugate system to 

O)ttOx ~- c~#lOy = --2tfz , 02t0_7_ =Pl + 2t f~y, 

with boundary conditions 21 (a, y) = 1, 21 (x, 0) =21 (x, b) =0. By eliminating Pt 
we obtain (formally) the equation 

021 02 21 ~ r _~y 
0--S -= ~ - U - - ~ , ~ . + _ _ O t f . ) .  

(e) The problem of the minimum of 

a b 

i[z, u] =~ ~fo(x, y, z, zx, zy, . ) d x d y  
bO 

with differential equation 

(47) zxx + zyy=f(x ,  y, z, z x, zy, u), 

boundary conditions z(x, 0)=z(x, b)=z(0, y)=z(a ,  y)=0,  and constraints u~ U, 
can be written as the problem of minimum of the functional I=z l (a ,  b) with 
differential equations 

z~r=fo(x,  y, z, z~, zy, u), 

z ~ +  zyy=f(x ,  y, z, z~, zy, u), 

and boundary conditions z 1 (x, 0) =z 1 (0, y) =0, z(x, O) =z(x,  b) =z(0, y) = 
z(a, y)=0.  Equivalently, by writing z 4 for z, we shall seek the minimum of the 
functional 

a b 

I=z~(a, b)=2-1~ z2(x, b) dx+2-~S z3(a, y) dy, 
0 0 

with differential equations 

1 2 2 t 3 a- ,* x 4, 5 5 6 
Z x = Z  , Z x = V  , Z x = J o ~ X , y ,  z4 ,  z s ,  z6 ,  u ) ,  Zx~-Z  ~ Zx~ l )~  Zx-~W , 

1 4 6 5 (48) zy =z  a, z~=fo(x,  y, z 4, z s, z 6, u), a , Z y ~ - W  ~ Z y ~ Z  ~ Z y ~ W ~  

zy6 = - v +  f ( x ,  y, z 4, z s, z 6, u) , 

Arch. Rat ional  Mech. Anal. ,  Vol. 33 24 
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bounda ry  condit ions z I (x, O) = z  2 (x, O) =0 ,  z 1 (0, y) = z  a (0, y) =0 ,  z4(x~ O) = 
zS(x,  0) =0 ,  z4(x, b )=z5(x ,  b ) = 0 ,  z4(0, y) =z6(0 ,  y) =0 ,  z4(a, y) = z 6 ( a ,  y) =0 ,  
and constraints  (u, v', w', v, w) e U = U x E4. We shall denote  the twelve multi-  
pliers by 21, . . . ,  26 , /21  . . . . .  /26. I t  is convenient  to disregard the second, sixth, 
ninth, and  eleventh equations of (48), and correspondingly  to take 22 =26 =/23 = 
/25 = 0  in G. Then  the Hami l ton ian  is 

H = 21 z2..[.- 2 3 f  o--[- 24 z 5 -]-25 v-3t- /21 z3-[- /22f o-[- /24 Z6 -I-/26 ( -  vWf) 

with eight multipliers, and the constraints  are n o w  (u, v)e U x E t .  Here  P t  =0 ,  
P 2 = l ,  P 3 = 0 ,  P 4 = P s = P 6 = O ,  Q I = Q 2 = Q a = Q 4 = Q s = Q 6 = O ,  R I = 0 ,  R 2 = 0 ,  
R 3 = l ,  R 4 = R s = R 6 = O ,  $1 = $ 2 = $ 3 = $ 4 = $ 5 = $ 6 = 0 .  The conjugate  p rob lem 
is now (formally) 

21x+/21y=0 

#2y = - 2 1  

(49) 23 x = - #1 

2 4 x + # 4 y =  - ( 2 3  + /22) f0z - /26 fz  

25x = --24--/26fzx--(23+/22)fOzx 

#6 y = -- #4 -- #6 f z~, -- (23 +/22)f0 z, 
where 

2 1 ( a , y ) = O ,  2 3 ( a , y ) = l ,  2 s ( a , y ) = l  

# l (x ,  b ) = 0 ,  #2(x, b ) = l ,  /26(x, b ) = 0  

25 (0, y) = O, #6 (x, O) = O. 

We have above  six first order  part ial  differential equations in eight unknowns.  
M. B. SURYANAI~YA~A [7] has proved  the existence of solutions of the conjugate  
p rob lem (49). 

This research was partially supported by AFOSR grant 942-65. 

References 

1. C~A~, L., (a) Existence Theorems for Multidimensional Problems of Optimal Control. 
Differential Equations and Dynamical Systems. Academic Press 1967, 115--132. -- 
(b) Existence theorems for multidimensional Lagrange problems. Journal of Optimization 
Theory and Applications 1, 87--112 (1967). -- (c) Sobolev spaces and multidimensional 
Lagrange problems of optimization. Annali Scuola Normale Sup. Pisa 22, 193--227 
(1968). -- (d) Multidimensional Lagrange problems of optimization in a fixed domain 
and an application to a problem of magnetohydrodynamics. Arch. Rational Mech. Anal. 
29, 81 -- 104 (1968). -- (e) Existence Theorems for Lagrange Problems in Sobolev Spaces. 
Symposium on Nonlinear Functional Analysis, April 16-- 18, 1968, Chicago (to appear). 

2. DmUDONNfi, J., (8) Foundations of Modern Analysis. xiv+ 361 pp. Academic Press 1960. -- 
(b) Deux examples singullers d'6quations diff6rentielles. Acta Seientiarum Mathematicarum 
12, 38--40 (1950). 

3. DtrBINSKY, E., Differential equations and differential calculus in Montel spaces. Trans. Amer. 
Math. Soc. 110, 1--21 (1964). 



Optimization with Partial Differential Equations 357 

4. EC, OROV, A. I., (a) Optimal control in Banach space. Math. Systems Theory 1, 347--352 
(1968). -- (b) Optimal control processes in certain systems with distributed parameters. 
Autom. Telem. 25, 5, 613--623 (1964) =Autom.  Remote Control 25, 557--567 (1965). 

5. LtmiE, K. A., (a) The Mayer-Bolza problem for multiple integrals and the optimization of 
the performance of systems with distributed parameters. Prikl. Mat. Mek 27, 842--853 
(1963) = PMM, Pergamon Press, 27, 1284-- 1299 (1963). -- (b) Optimal control of con- 
ductivity of a fluid moving in a channel in a magnetic field. Prikl. Mat. Mek 28, 258-- 267 
(1964) = PMM, Pergamon Press, 28, 316--327 (1964). -- (c) The Mayer-Bolza Problem 
for Multiple Integrals: Some Optimum Problems for Elliptic Differential Equations 
Arising in Magnetohydrodynamics. Topics in Optimization. Academic Press 1967,147-- 193. 

6. RASHEVSKY, P. K., Geometric Theory of Partial Differential Equations [Russian]. GSTZ, 
Moscow 1947, p. 354. 

7. SURYANARAYANA, M.B., Optimization with Hyperbolic Partial Differential Equations. 
A doctoral thesis at the University of Michigan, Ann Arbor 1969. 

(Received December 13, 1968) 

Department of Mathematics 
University of Michigan 

Ann Arbor 

24* 


