
Spectral Theory of Taylor Vortices 
Part L Structure of Unstable Modes 

C.-S, Ym 

Communicated by C. C. LIN 

Table of Contents 

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  218 
2. The Differential System Governing the Formation of Taylor Vortices . . . . . . . .  219 
3. The Transitory Differential Equations . . . . . . . . . . . . . . . . . . . . . .  220 
4. The Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221 
5. The Auxiliary System . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  222 
6. Evolution of the Eigenfunctions of the Auxiliary and Intermediate Systems . . . . . .  224 
7. Evolution of Eigenvalues and Eigenfunctions for the Transitory System . . . . . . .  233 
8. Number of Eigenvalues of the Transitory System between E~ and E~+ 1 . . . . . . .  236 

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  240 

1. Introduction 

In  studying the axisymmetric vortices that  form in the flow (Couette flow) 
between concentric rotat ing cylinders as a result of instability, TAYLOR assumed 
these vortices to be nonoscillatory. This assumption has been made by all subse- 
quent investigators of the subject, but  has never been proved. Furthermore,  
TAYLOR and subsequent investigators have studied only the first mode of these 
vortices. The implicit assumption that  the first mode  must  be the most  unstable 
among  all possible modes has also never been proved. 

The above mentioned vortices have been called Taylor  vortices, and we shall 
adopt  this term here for  simplicity. This paper is a study of Taylor  vortices in 
Couette  flow with the cylinders rotat ing in the same direction. Since the flow is 
known to be stable if the circulation increases outwards,  we shall assume that  
it decreases outwards.  The main purpose of this paper  is to show that  for  cylinders 
rotat ing in the same direction, with the circulation decreasing outward,  all modes, 
stable or  unstable, are nonoscillatory. In  the process of obtaining this main 
result, a good  deal of information is obtained, including the structure of the 
Taylor  vortices when they are unstable.* The theory so developed will be called 
the spectral theory of Taylor  vortices. 

* Some relevant work (for tr>__ - 2  2, 2 being the wave number) falling short of our main 
goal has been done by YUDOVlCn [7] and IVANtLOV & IAKOVlEV [8]; see the end of Section 8. 
The author is indebted to Professor D. D. JOSEPh for bringing these Russian works to his atten- 
tion, after this work had been completed. The results for a>_ -- 2 2 are useful because the structure 
of unstable Taylor vortices are intimately related to the results for tr_> --~.2. 
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DIPRIMA and HABETLER [1] have shown that, for any given Reynolds number 
(the R to be defined later) there are infinitely many eigenvalues for the growth 
rate tr, and that the corresponding generalized eigenfunctions are complete. But 
they did not show that a must be real in the case specified here, nor did they 
show that the eigenvalues of a are simple. 

This paper consists of two parts. Part I gives the structure of unsteady non- 
oscillatory Taylor vortices, and Part II gives the proof that Taylor vortices are 
nonoscillatory provided the square of the circulation decreases outwards. 

From the mathematical point of view this paper can be considered to be a 
study of eigenvalue problems governed by a non-selfadjoint linear differential 
system. Its approach and methodology are therefore not restricted to the partic- 
ular physical problem considered here, but may find applications to a wide 
variety of problems. The theory is a sort of Sturm-Liouville theory for differential 
equations of orders higher than 2, and is a revival of a branch of classical mathe- 
matics. However, it is its bearing on hydrodynamic phenomena that is emphasized 
here. 

2. The Differential System Governing the Formation of Taylor Vortices 

Consider the flow of a homogeneous incompressible fluid in the annular space 
between two infinitely long concentric cylinders, the inner one of which has the 
radius r~ and rotates with angular velocity g21 and the outer one of which has the 
radius r2 and rotates with angular velocity g2 2. The z-axis is assumed to coincide 
with the common axis of the cylinders, and the distance r is measured radially 
from the z-axis. The following dimensionless variables will be used: 

r z 
r ' = - - ,  z ' = - - ,  t '  ~ / ~'21, 

r l  r l  

but henceforth we shall drop the accents on these variables. The mean velocity 
V, in the azimuthal direction, is then given by 

V B 
~1 r~ =Ar  +-'r 

in which 
~2 r~ - ~a r~ (~a - ~2) r~ 

A = ' B - -  ( 1 )  

It should be noted that 
A + B = 1, (2) 

B 
and that A +r- ~ is always positive if the cylinders rotate in the same direction. 

TAYLOR [2] assumed the components of the velocity perturbation due to 
axisymmetric disturbances to have the forms 

u'=u(r)cos2ze ~', v '=v(r)cos2ze '~', 
w'= w(r) sin2 ze "t, (3) 

in which u', v', and w' are the radial, azimuthal, and longitudinal component, 
respectively, 2 is the wave number characterizing the spacing of the rings of 
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disturbance or Taylor vortices, and a is the growth rate, which may be complex. 
We shall write 

a=a, + itr t. (4) 

Using the equation of continuity and the linearized equation of motion, 
TAYLOR obtained 

(L-22-o)(L-22)u=422 RZ (A + B~r ) V, (5) 

( L -  2 2 - a) v = A u, (6) 
in which 

and 

L=D2 + l  =D D(r ), D= d---~' 

R = f21 r2/v, 

v being the kinematic viscosity. The boundary conditions can be expressed in 
terms of u and v, and are 

u=Du=O=v at r = l  and r=r2/rl=b(say ). (7) 

For the derivation of (5) and (6), see LIN [3]. The tr here appears there as trR. 
This amounts to an insignificant change of time scale, which is rZ/v here but t2i 1 
in LIN'S book. Also the u here is 2Ru in LIN'S book. 

It has been assumed by TAYLOR and subsequent workers that for non-negative 
a,, corresponding to growing or neutrally stable disturbances, tr~ is zero. This 
assumption, when true, is often called the "principle of exchange of stabilities." 
The truth of this assumption is very little in doubt. Nevertheless, it has never 
been convincingly demonstrated, although DAVIS [4] showed by an expansion 
that TAYLOR'S assumption is indeed true for a limited range of positive values 
of f22/f21 and a limited range of r2/r 1. TAYLOR'S assumption will be proved for 
f22/t2x>__0 in Part II, with no restriction on geometry. In Part I we shall con- 
centrate on the structure of unstable Taylor vortices. 

In the following we shall assume, once and for all, that the cylinders rotate 

in the same direction, so that A + ~ is always positive (at least zero at the outer 

cylinder, if it is stationary). We also assume once and for all that A is negative, 
for it is known (SYNGE [5]) that if A _-> 0 the flow is stable, and we are only inter- 
ested in undamped Taylor vortices. 

o r  

3. The Transitory Differential System 

The differential equations (5) and (6) can be combined to give 

(L-~,2-tr)2(L-22)v=4,~2 R2 A (A-I- B~r ) O, 

(L--22-cr)2(L-~2)v=422ReA [ 1 - B ( 1 -  l~r )]V. 

(8) 

(9) 
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We shall make use of the "transitory equation" 

(L-).2-tr)2(L-22)v=422 R2 A [1-sB(1-1~r )] V. (10) 

When e= 1, (9) and (10) are identical. When 5=0, (10) is sufficiently simple to 
provide us some very important information. Equation (10) is obtained from the 
simultaneous transitory equations 

(L-22-tr)(L-22)u=422 R z [ 1 - e B  

(L-A2-a) v=Au. 

( 1)] 
1 -  7 v, (11) 

(12) 

The singular point r=O for (10) is regular. By use of standard methods it is 
found that (I0) possesses the six fundamental solutions: 

n =  - oo 1 1 = 2  

~b3= ~ a(232_lr 2n-l, ~b4= ~ a(24n)-lr2n-l-j-~11nr, 

~bs= ~ a~'~)_, r 2"-'+~b21nr, ~be= ~ a~6~)_, r 2"-'+~b31nr. 

(13) 

The recursion formulas (not exhibited here) connecting the a's in (13) show 
definitely that for any finite values of 2 2, a, A, B, R, and e, all the six series 
converge uniformly and absolutely in the interval 1-<r_ b. They therefore vary 
continuously with these parameters. They can also be differentiated with respect 
to these parameters any number of times. 

4. The Approach 
Since the subsequent developments and arguments are complex, it is helpful 

to state briefly the method of approach. For this purpose we first define a few 
terms to be used for convenience: 

(a) The original system: this consists of (5), (6), and (7). 
(b) The transitory system: this consists of (1 I), (12), and (7). 
(c) The starting system, which is defined to be the transitory system with 8--0. 
(d) The auxiliary system: this consists of (11), (12), and the boundary con- 

ditions 
u=Lu=O=v at r = l  and r=b .  (14) 

(e) The intermediate system: this consists of (11), (12), and the boundary 
conditions 

u=Lu=O=v at r = l ,  (15) 

u=Du=O=v at r=b .  (16) 
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Our approach will be as follows. First we shall show that, for any e from zero 
to 1, o.i=0 and R 2 is positive for the auxiliary system, as long as 22+o.r is non- 
negative. Then we show that the auxiliary system can be transformed to a homo- 
geneous integral equation of the Fredholm type, with a symmetric kernel, and 
hence has infinitely many real (and non-negative real 22+ o.) eigenvalues of R 2, 
which we shall denote by E~', with n = l ,  2, 3, etc. Next we shall demonstrate 
that each of the eigenfunctions for u and v for the n-th eigenvalue E" has exactly 
n -  1 internal zeros. In the process of this demonstration, we shall show that for 
the same non-negative o + 2  2, eigenvalues E~ for the intermediate system exist 
for any e from zero to 1, and that 

E't' <E'I <E'2' <E; <E'a' <E'3 etc. 

We then show that between E~ and E~+ 1 there is exactly one eigenvalue En 
of the transitory system, so that 

E'I<EI<E'2<E2<E'a<E3<E'4<E4<E' 5 etc. (17) 

There are no complex eigenvalues for R 2 as long as 22+ o. is non-negative. The 
eigenfunctions for u and v corresponding to E n each have n -  1 internal zeros. All 
these eigenvalues are simple for non-negative 22+ o.. 

The proof of the nonoscillation of Taylor vortices when the square of the 
circulation decreases outwards will be given in Part II of our work. 

5. The Auxiliary System 
The boundary conditions (14) can be written in terms of v as follows 

v=Lv=L2v=O at r = l  and r=b, (14a) 

as can be easily verified by using (12). Multiplying (10) by rv* (the asterisk 
indicating the complex conjugate), integrating by parts between 1 and b and using 
(14a) whenever necessary, we have 

-- {']3 + (3 22 + 2 O.) ']2 + ( 22 + O.) (3 22 + O.) '/1 + 22 ( 22 + 0") 2 Jo } 

in which 

J3=$11D(rLv)] 2, J2=IrlLvl 2, J l=II[D(rv) l  2, Jo=Ir[vl 2. (19) 

In obtaining (18) it is convenient to recall that L = D 1 D ( r ) .  The limits of inte- 
r 

gration of the integrals in (18) and (19), being understood to be 1 and b, are omitted 
together with dr. The imaginary part of (18) is 

O'i [2J  2 +(422 + 2o.r) J 1 +222(22 + o.r) Jo'] =0 ,  (20) 

since R 2 and 2 2, as well as A and B, are real. Hence ai must vanish for non- 
negative o.r for the auxiliary system. 
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For real non-negative a, (18) shows that R 2 must be positive, since A is negative. 
We shall now show that there are infinitely many eigenvalues E" for R 2 for the 
auxiliary system. 

Consider the Green's function G(r, ~) satisfying the differential equation 

( L -  22 - tr) 2 ( L -  22) G = 0 (21) 

everywhere except at r = ~, where L3G becomes infinite in such a way that 

rL 3 G d r = 1 (22) 

however small e' is. In other words 

( L -  22 - a) 2 (L - 22 ) G (r, 0 = 6 (r, r  (23) 
F 

in which 6(r, r is the Dirac function. Furthermore G(r, ~) satisfies 

G=LG=L2G=O at r = l  and r=b, (24) 

for all ~. The solution of (10) and (14a) is then 

v(r)=422 R2 A i ~ [1-eB (1 - -~ ) ]  G(r, ~)v(~)d~. (25) 
1 

The Green's function G(r, ~) is symmetric in the sense that 

G(r, ~)= G(~, r). (26) 

To prove (26), consider (23) together with 

( L -  22 - a) 2 ( L -  22) G (r, t/) = 6 (r, t/___~) (27) 
F 

Multiplying (23) by rG(r, rl), integrating between 1 and b, using (24) whenever 
necessary, and writing 

M= {J~ +(322 + Ea)J~ +(22 +a)(322 +a)J~ + 22(22 +tr)2 j~} 
where 

I 

J; = S -~- D [rLG (r, O ] D  [rLG (r, r/)], 

j; = ~ 1 O [r G(r, ~)] D [r G(r, ~/)], 

we have 
M = G(~, ~/). 

Similarly, multiplying (27) by rG(r, ~) and integrating, we have 

M = G (r/, ~). 

Equations (28) and (29) show that 

G(~, ~)= G(~, O, 
which is the same thing as (26). 

J2 = S rLG (r, ~) LG (r, ~I), 

J~) = ~ r G(r, ~) G(r, ~I), 

(28) 

(29) 
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If now we write 

in which 
dp (r)= l / f  (r) v(r), 

is non-negative for 0_< e_< 1, we can write (25) as 

b 

q5 (r) = 4 2 2 AR 21 K (r, r ~b (4) d 4, 
1 

where 

(30) 

(31) 

(32) 

K (r, 4)= ]f f (r) f ( O G(r, 4) (33) 

is obviously symmetric since G(r, 4) is symmetric. According to a well-known 
theorem in the theory of integral equations (TRICOMI [6] pp. 103-105), (32) 
either has an infinite number of eigenvalues of R 2 for nonzero 22, or has a Pin- 
cherle-Goursat kernel and thus has only a finite number of eigenvalues. The 
latter possibility is ruled out by considering the secular equation A = 0 obtained 
by writing 

6 

v(r) = ~ c. gp,(r) (34) 
n = l  

and requiring v(r) to satisfy (14a) and the e's to be not all zero. This A in the 
secular equation is transcendental and not a polynomial in R 2. Hence (32) does 
not have a Pincherle-Goursat kernel, for which A would be a polynomial in R 2. 

These eigenvalues are positive, as we have shown, as long as a is non-negative. 
They must increase toward infinity. For  otherwise there would be a finite limit 
point for these eigenvalues, according to the Weierstrass-Bolzano theorem. 
Since A is a continuous and infinitely differentiable function of R 2, at the limit 
point A and all its derivatives up to the n th order with respect to R 2 are zero, 
no matter how large n is. Thus A would be identically zero, which is absurd. 
Hence the infinite number of eigenvalues increase toward infinity, and further- 
more there can be no finite limit points. 

We shall now study in detail how these eigenvalues are reached. In the process 
of that study important progress will be made toward our original goals. Before 
doing so, however, we shall summarize the results of this section in two theorems: 

Theorem 1. For the auxiliary system a s = 0 if a, is non-negative. 

Theorem2. For non-negative real a + 2  2, the auxiliary system has infinitely 
many positive eigenvalues for R 2, increasing without a finite limit point toward 
infinity, provided 2 2 is positive. 

In the following sections we shall assume once and for all that 2 2 is not zero. 

6. Evolution of the Eigenfunctions of the Auxiliary and Intermediate Systems 

We shall now see how the eigenvalues E" for the auxiliary system are reached 
and how the corresponding eigerffunctions evolve. The development from now 
up to the end of Section 8 is for non-negative cr + 2 2. All the lemmas and theorems 
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up to Theorem 13 will be obtained under this condition, though it will not always 
be explicitly stated. For any real and non-negative tr+22, we start with R 2 = 0  
and impose on (11) and (12) the conditions 

u=Lu=O=v at r = l ,  (35) 

u = 0 = o  and bDv=-i  at r=b. (36) 

Multiplying (11) by ru and integrating between 1 and b, using (35) and (36) 
whenever necessary, we obtain 

where 
- A(Ii + 22 Io)-b Dv(b) Lu(b)=O, 

I 1  o=I u 2, 

(37) 

(38) 

the limits of integration being understood, and dr being omitted for brevity. 
Equation (37) shows clearly that neither Dr(b) nor Lu(b) can possibly vanish for 
R2=0,  and in particular we can indeed demand bDv(b)= - 1  as we did in (36). 
(This remark is necessary to remove the possibility that R2= 0 may be an eigen- 
value for (11), (12), (35), and (36), with Dv(b)=0 in (36) instead of bDv(b)= - 1.) 
If we impose bDv(b) = - 1, we see from (37) that Lu(b) is negative. 

We shall now show that the u and v satisfying (11), (12), (35), and (36) for 
R 2 =0  are positive throughout except at the end-points, where they vanish. We 
know v to be positive near r=b (for r<b), since bDv(b)=- 1. Thus there are 
two points at which v = 0, between which v is positive. Hence u cannot be negative 
throughout (see the arguments in connection with (41)). If u were anywhere 
negative in 1 <r<b there would be at least one minimum, at which u is negative 
and Lu non-negative, and one maximum, at which u is positive and Lu non- 
positive. Then between these two points there must be at least one point where 

Q = ( L - 2 2 ) u  (39) 

vanishes. Since Q vanishes at r = 1, there would be at least two points, say P and 
S, in 1 <r<b where Q vanishes. Now (11) can be written as 

( L -  22 - tr) Q = 0 (40) 

for zero R 2. Multiplying (40) by r Q and integrating between P and S, we have 

- i { l  [D(rQ)]2 +(22 +tr)rQ2}=O, 

which can be true only in the trivial case Q -  0 since 22 + tr > 0. If Q = 0 throughout 
and (35) and (37) are satisfied, we easily conclude that u = 0 = v  throughout. 
Therefore in non-trivial cases u must be non-negative throughout. If u is non- 
negative throughout, then so must be v. For if not, there would be two points where 

15 Arch. Ra.tiorml Mech. Anal., Vol. 46 
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v = 0  and between which v is negative. Multiplying (12) by rv and integrating 
between these two points, one would have 

-S {-l  [D(rv)]2 + ()-2 + a) rv2} = A S u v, (41) 

which is a contradiction (except in the trivial case u = 0 =  v) since A is negative, 
u positive, and v negative between the two points. Hence v must be non-negative 
throughout at R2=0.  

We now consider the two auxiliary systems 

,, (42) 

where 
(L-)-2 _ a) vl = A u 1, (43) 

uI=Lul=O=v 1 at r = l  (44) 

u l = 0 = v  1 and bDv1=-i  at r=b, (45) 
and 

(L- ~,2-tr) (L- 22)u2 =4 22 R2 [1-eB (1-1~r ) ] V2, (46) 

( L -  22 - a) v2 = A u2, (47) 
where 

u2=Lu2~---0=/) 2 at r = l ,  (48) 

u 2 = 0 = v  2 and bDv2=-I at r=b. (49) 

Multiplying (42) by rv 2 and integrating between 1 and b, we have, upon using 
the boundary conditions on v 2 and u 1, 

in which 
S r ( L - ) 2 )  u 1 (L-)-2 _ a) v 2 d r -  b D v2 (b) L u 1 (b) = R 12 din,, (50) 

[ ( 1 ) ]  Jm,=4)-2Ir 1-~B 1-~r vlv2dr. (51) 

Using (47), and bDvz=- 1, we can integrate the left-hand side of (50) further 
and obtain 

-A(I,,t +22 Imo)+ Lu, (b)=R 2 din4, (52) 

where, with limits of integration and dr understood, 

Iml=~l  D(rul)D(ru2), Imo=~rutu2. (53) 
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Similarly, multiplying (46) by rvl and integrating, one obtains eventually 

-A(Im,  + 2: Imo)+ Lu2(b)=R2 Jm4. (54) 

Taking the difference between (54) and (52) and letting R 2 approach R2 z, we have 

d 
dR ~ L u (b) = -/4 (55) 

where 

r 1 1 J4=4225 [ 1 - ~ B ( - - - ~ ) ] v 2 > O .  (56) 

Equation (55) implies 

Theorem 3. l f  u and v satisfy (11), (12), and the boundary conditions (35) and 
(36), then Lu(b) increases with R 2. 

The following lemmas will be useful for later developments: 

Lemma 1. I f  u and v are continuous and satisfy (12) and if u is positive (or 
negative) between two consecutive zeros of v, then v must be positive (or negative) 
between these zeros. 

Lemma 2. I f  u and v satisfy (11) and (12), there cannot be two zeros of Q 
[defined by (39)] between which Q is positive (or negative), provided v is positive 
(or negative) between these zeros of Q. 

Lemma 3. l f  u and v satisfy (12) and v=O= Dv at any point P, then u and v 
must have opposite signs in the neighborhood of P. 

The proof of Lemma I is given by the argument leading to the absurdity of 
(41), since v is either entirely positive or entirely negative between two consecutive 
zeros. The proof of Lemma 2 is as follows. Suppose there were two such zeros, 
say at P and S. Writing (11) as 

(L-22- tr )Q=422 R2 [ 1 - e B  (1-1~r )] V, (57) 

multiplying (57) by rQ and integrating between P and S, we obtain 

- S  { l  [D(rQ)]2+(22+a)rQ2}=422R25r [ 1 - e B  ( 1 - ~ 2 ) ]  vQ, (58) 

which is an absurdity if vQ>O between P and S. Hence Lemma 2 is true. 
Lemma 3 is proved in the following way. If u does not vanish at the point P, 

then (12) states that D2v is of the opposite sign from u at P, where v = 0 = D v .  
Then, since Dv=O at P, v and u must differ in sign in the neighborhood of P. If 
u = 0  at P, then if Dnu is the first derivative of u that does not vanish at P, the 
first non-vanishing derivative of v at P is Dn+2v, and it differs in sign from Dnu 
according to (12). Hence again the lemma is true. 

15" 
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v 

1 P M b 

Fig. 1. Impossibility of the vanishing of Du(1) when Lu(1) vanishes 

Let u and v satisfy the system consisting of (11), (12), (35), and (36). For R 2 = 0  
we have seen that u and v are positive throughout and that Lu(b) is negative. If 
we hold bLu(b) at the value - 1  and increase R 2, working with (50) and the 
corresponding relation for R 2, we see that 

d 
d-~ Dv(b)<O, 

so that Do(b) decreases and will never reach zero. Hence Dr(b) will not vanish 
as long as Lu(b) is negative, as R 2 increases. It  is evident that however small 
the magnitude of Lu(b), the above inequality always holds, so that the possibility 
of Lu(b) and Dr(v) vanishing simultaneously is also ruled out. Holding bDv(b) 
at the value - 1 and increasing R 2, Lu (b) increases according to (55), and we know 
that it will increase to zero as R 2 reaches El', the existence of which is guaranteed 
by Theorem 2. When we have reached a positive value* of bLu(b), say 1, we 
can consider the system consisting of (11), (12), (35), and 

u(b)=O=v(b), bLu(b)=l, 

and increase R 2. We see f rom Lemma 3 that neither D r ( l )  nor  Dr(b) can vanish 
as R 2 increases, before u becomes negative in the neighborhood of 1 or b, respec- 
tively. Hence D u (b) must vanish before D v (b) as R increases. It  can obviously not 
vanish twice before Dr(b) does, since Lu(b) is held positive. 

We shall now show that in the evolution process just described, as long as v 
is non-negative Du(1) must remain positive as R 2 is increased. For  u and v are 
positive throughout to start with (except at the end points where they vanish), 
and v cannot become partly negative before u does. Suppose that D u ( 1 ) = 0  at a 
value of R 2. Then Q is zero at r = 1 as specified, but negative at M (Figure 1). In 
the neighborhood of 1, since u (1)= D u (1)= 0 = L  u (1), and since u is positive in the 
neighborhood of 1 (because we are considering the situation just before u starts 
to become negative near 1), a Taylor series shows that both u and Lu increase 

* Any positive value reached by bLu(b) can always be taken to be 1, since we can then 
abandon the value --1 for bDv(b), and u and v can be multiplied by any constant. See also the 
footnote following Theorem 6. 



Taylor Vortices 229 

V 

p 5 b 

Fig. 2. Impossibility of creation of internal zeros of u 

with r, with Lu increasing faster. Thus Q first increases with r at r= 1. Then 
(Figure 1) there would be a point P between 1 and M, such that Q is zero at P and 
positive between 1 and P. Lemma 2 rules out this possibility, so that the supposi- 
tion D u O ) =  0 is false and Du(1) must remain positive as R 2 increases, at least up 
to R2=E~.  (Later we shall show that D u ( 1 ) > 0  for all R 2, as R 2 increases in the 
process of evolution of the eigenvalues and eigenfunctions, to be described 
below.) 

The proof that u, Du, and Lu cannot all vanish at r =  1 while u is non-negative 
throughout can be used intact to show that u, Du, and Lu cannot all vanish at 
r=b while u is non-negative throughout. We know that Lu(b) vanishes before 
or when R 2 reaches El,  at which value we have Du(b)=O. Since Du(b) and 
Lu(b) cannot both vanish, Lu(b) must vanish before Du(b) as R 2 is increased. 
At R 2 =El ' ,  when Lu(b) vanishes, Du(b) is still negative. We have called the eigen- 
values of the intermediate system Eg. Thus we have just shown that E't'<E~. 
The existence of El  is proved in the following way. If it did not exist, then Du(b) 
would remain negative as R 2 increased, so that, afortiori, Dr(b) would remain 
negative. Then since R 2 is beyond El' and Lu(b) is positive, it will forever increase 
with R z, with D v(b) kept at - 1 ,  say, and will never again vanish, contradicting 
the fact that infinitely many E" exist. Arguing in this way, we find not only the 
existence of El  but also that of Eg. This argument will be repeated for emphasis 
when absolute clarity seems especially important. 

It is easy to show that as R 2 increases from zero to E~, no internal zeros of 
u and v can develop. For  any functions u and v satisfying (11), (12), (35), (36) are 
well-defined and continuous functions of R 2 up to R2=E~, at which Dr(b) 
remains negative (and fixed arbitrarily at - 1). Hence if u were to become negative 
before R2=E~, there would be a R 2 <E~ for which u has a multiple zero of order 
2n (n = 1, 2, etc.) at an internal point. Then two points P and S (Figure 2) would 
exist, at which Q vanishes and between which Q is positive, contradicting Lemma 2. 
If v were to become negative at R 2 =El' ,  there would be a R2< E~ for which v 
has a zero of order 2n (Figure 3), contradicting Lemma 3. 

We have treated the possibilities of u and v becoming negative near the end 
points or in the interior quite separately. It is easy to see that the possibility of u 
and v becoming negative simultaneously in the interior or near one or both of 
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Fig. 3. Impossibility of creation of internal zeros of v 

the end points can be ruled out, a fortiori, and we shall not present any further 
details. 

The results given in the preceding five paragraphs can be summarized in the 
following theorems: 

Theorem 4. For the first mode corresponding to R 2= E'I', u and v are everywhere 
positive between the end points, at which they vanish. Furthermore Du and Dv are 
positive at 1 and negative at b. 

Theorem 5. E~ < E~. 

We shall now let R 2 increase beyond E~ and study the further evolution of u 
and v, which are supposed to satisfy (11), (12), and (35). Since we know that 
Lu(b) is positive at R2=E~, we can now fix bLu(b) at 1 and replace (36) by 

u = 0 = v  and bLu=l  at r = b .  (59) 

Then from (50), instead of (52) and (54) we obtain 

-A(Iml  + 2 z Imo)-Dvz(b)=R~ Jm4 (60) 

and 

- A (Ira1 + 22 Im 0) - -  D Vl (b)  = R 2 Jm 4. (61) 

Taking the difference of (61) and (60), and letting R 2 approach R 2, we have 

d 
dR 2 Dv(b)=J4>O. (62) 

Hence we have 

Theorem 6. I f  u and v satisfy (11), (12), (35), and (59), then Dr(b) increases 
with R 2. 

This theorem is a complement of Theorem 3. 

As we increase R 2, Dr(b) will eventually increase to zero at some finite R z. 
For  if not, Dr(b) would remain negative, and we could fix it at a negative number 
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Fig. 4. Eigenfunctions of the second mode of the auxiliary system 

and increase R 2 indefinitely, and Lu(b) would increase indefinitely according to 
Theorem 3, and we should have only one eigenvalue E~' of the auxiliary system, 
in contradiction to Theorem 2. Furthermore, before Dr(b) vanishes Lu(b) cannot 
again vanish, for otherwise Dr(b) would be negative throughout before Lu(b) 
supposedly vanishes, and fixing b D v (b) at - 1 we see that L u (b) would increase, 
not decrease from its positive value at R2=E~ to zero. Now Dr(b) will increase 
to 1, for if we fix bLu(b) at 1 and increase R 2 toward the second eigenvalue E~, 
which we know to exist, Dr(b) will increase indefinitely*, assuring its passage 
through b-1 at some R 2. Fixing D v (b)at b-1 afterwards, and increasing R 2 further, 
Lu(b) will decrease to zero at R2=E~ without encountering the difficulty of a 
vanishing Dr(b), since, as long as Lu(b) remains positive, Dr(b) can only increase. 
We have then reached the second eigenvalue for the auxiliary system. Further 
evolution of the eigenvalues and eigenfunctions is now clear. 

We have seen that after R 2 passes through E~ and before it passes through 
E~, Du(b) must vanish once and only once. After E[ is passed and before E~ is 
reached, Lu(b) remains positive, so that Du(b) cannot vanish before Lu(b). It 
also cannot vanish simultaneously with Lu(b). The proof of this impossibility is 
by the use of Lemma 2, and is similar to the proof for the first mode (R2= E~), 
the only difference being that one has to pursue the arguments from one "arch"  
of the eigenfunction u to the next to reach the conclusion. (There are two "arches" 
of u for R2=E~, one of which is "inverted", where u is negative.) Hence Du(b) 
vanishes only once between E~ and E~, so that between these there is only one 
E~. The same argument applies to higher modes. 

Just as in the case of the first mode, for the second mode Du(b) also cannot 
be zero. Unlike the first mode, however, the second mode has a positive Du(b) 
because when Du(b) vanishes at R2= E~, Lu(b) is already negative, which implies 
that E~ has already been passed. Hence 

* Toward infinity, since Dv(b)/Lu(b) approaches ~ a s  R 2 approaches E'2". 
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We pause to note that at E~, u and v are still non-negative throughout, since 
the arguments leading to Theorem 4 show that u and v are positive between the 
end points all the way up to E;. During the passage from E~ to E~, Du(b) will 
become positive; then Dr(b)  will become zero and then positive (before Lu(b) 
again vanishes) at E~. The eigenfunctions u and v are as shown in Figure 4. The 
following lemmas hold for u and v satisfying (1 I), (12), (35), and (36) or (59) as 
the evolution progresses. 

Lemma 4. During the transition f rom E't' to E~, Du(1) and D r ( l )  remain 
positive. 

Lemma 5. During the transition f rom E't' to E~, no new zeros o f  u or v can be 
created in the interior o f  the interval 1 <_r<b, nor are multiple zeros possible in the 
interior. 

Lemma 6. .4  new zero o f  u will be created in the form o f  a double zero at r = b 
during the transition f rom E't' to E[, then a new zero o f  v. When E~ is reached, Du 
and Dv  are both positive at  r= 1 and at r= b, and there is exactly one simple interior 
zero for  u, and one for  v. 

Lemma 6 follows from the results given in the paragraph preceeding. The 
proof of Lemma 5 is similar to that given for the transition from R 2 = 0 to R 2 = E~', 
although it is a little more complicated. The same complication is involved in the 
proof of Lemma 4, and requires a kind of an "argument of pursuit".  For  these 
reasons, and because Lemma 4 is crucial later on, we shall give the proof of Lemma 4 
only. 

To prove Lemma 4, we note that D r ( l )  cannot vanish before DUO), by virture 
of Lemma 3. It is then sufficient to show that Du(1) cannot vanish. If it did, Q 
would increase with r (Figure 5) in the neighborhood of 1, because L u (r) increases 
faster than u(r), the point r=  1 being a triple zero. Thus there would be a point P 
between 1 and M at which Q = 0, with Q positive between P and 1. Furthermore, 
there would exist at least one point S such that (i) Q = 0 at S and (ii) Q < 0 be- 
tween S and the nearest zero of Q to the left of S (this zero of Q is shown as P in Fig. 5, 
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though this need not always be the case). Whether P lies to the left or right of 
the internal zero (Z) of v, Lemma 2 would be violated if Du(1)=0,  if not in the 
arch of v then necessarily in its inverted arch (this is the "argument of pursuit"), 
since Q = 0 at r = 1 also. Hence Lemma 4 is true. It can be shown similarly that 
Lemma 5 holds. 

Further evolution of the eigenvalues E~' and the eigenfunctions of the auxiliary 
system and concurrently those of the immediate system is now clear. The same 
types of arguments can be used to establish the following theorems: 

Theorem 7. For the auxiliary system constructed by the process described above, 
Du and Dv are always positive at r= 1. They are negative at r=b for the eigen- 
functions corresponding to E~n- t (n = 1, 2, 3, etc.) and positive for the other eigen- 
functions. The eigenfunctions u and v for E" have each exactly n -  1 internal zeros, 
all simple. 

Theorem 8. For the intermediate system, all the statements in Theorem 7 hold, 
except that Du(b)=O by definition of the system, and E" shouM be replaced by E~. 
Furthermore, Lu(b) is positive for E ~ - I  ( n = l ,  2, 3, etc.), and negative for the 
other eigenfunctions. 

Theorem 9. El' < El < E~ < E~... < E" < E~ < E"+ 1"". 

We shall next show how the eigenvalues of the transitory system evolve as we 
study the evolution of the eigenfunctions of the intermediate system from a 
slightly different point of view. 

7. Evolution of Eigenvalues and Eigenfunctions for the Transitory System 

The development in Section 6 show that there are infinitely many eigenvalues 
E~ (n= I, 2, etc.) for the intermediate system. Furthermore Lu(b) is positive for 
n odd and negative for n even, and Du(1) and Dr ( l )  are both positive. We now 
multiply the eigenfunctions for even n by - 1  so that the new series of eigen- 
functions are characterized by a positive Lu(b) for all modes, positive Du(1) and 
Dr ( l )  for n odd, and negative Du(1) and Dr( l )  for n even. Furthermore we can 
divide the eigenfunctions by the (new) positive Lu(b). Then the eigenfunctions 
of the intermediate system are characterized by 

u(1)=0=v(1) ,  (63) 

u(b)=Du(b)=O=v(b), (64) 

and 

Lu(1)=0,  (65) 

L u (b) = 1. (66) 

The eigenfunctions of the first two modes so specified are depicted in Figures 6 
and 7. 
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Fig. 6. The u function for the first two modes of the intermediate system, the subscript indicating 
the mode 

Fig. 7. The v function for the first two modes of the intermediate system, the subscript indicating 
the mode 

It  is now crucial to demonstrate that there is a continuous evolution of the 
eigenfunctions so specified. That  is, there is a well-defined system whose solutions 
u and v "pass  through"  the eigenfunctions described above as R 2 increases. In 
the process of the evolution of these eigenfunctions by means of this well-defined 
system, the eigenfunctions of the transitory system (and, in particular, those of 
the original system) will evolve, as is evident from the fact that Du(1) changes 
sign repeatedly. 

We may use the system consisting of the differential equations (11) and (12) 
and the boundary conditions (63), (64), and (66). To qualify as a well-defined 
system, however, we have to be sure that Lu(b) never vanishes* as R z increases. 
That  such a system is well-defined will now be shown. 

According to Theorems 7 and 8, Du(1) is never zero for the auxiliary or the 
intermediate system, for both of which Lu(1 )=0 .  Indeed, Du(1) is never zero as 
we increase R 2 through the eigenvalues E" and E~. (The proof for this statement 
is similar to the proof of Lemma 4, although the "argument  of pursui t"  referred 
to before has to be employed.) Thus Du(1) is nonzero not only at these eigenvalues 

* In other words, the system consisting of (11), (12), (63), (64), and Lu(b)=O never has any 
positive eigenvalue for R 2. 
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but between them, throughout the entire range of positive R 2. This means that if 

and 

v(1) = u (1) = 0 = v(b)  = u (b) 

Lu(1)=0, 

(66a) 

then Du(1) cannot vanish. That  is to say, if (66a) holds and 

Du(1)=0 ,  

then Lu(1) cannot vanish. Since there is nothing to impede the symmetry of 
arguments as the roles of the end points r = 1 and r = b are interchanged, we con- 
elude that if (66a) holds and 

O u ( b ) = O ,  

then Lu(b )  cannot vanish. That is to say, (11), (12), (63), (64), and (66) constitute 
a well-defined system. We shall call this system W. 

We now recall that for the new series of eigenfunctions defined by (I 1), (12), 
and (63) to (66), Du(1) and D r ( l )  are positive for odd n in E~ and negative for 
even n. It is important to keep in mind that as R 2 increases from E" to E~+I, the 
sign of Lu(1) remains the same, the only values of R 2 at which Lu(1) vanishes 
being E~ and E~+ 1, for the simple reason that E~ and E'+ 1 are consecutive zeros 
of Lu(1) for the intermediate system. Furthermore, between El  and E~ the sign 
of Lu(1) is positive, because if Du(1) vanishes as u and v vary continuously with 
R 2 from the non-negative u and v at R 2 =E~ ,Lu(1) must be positive there. Similarly 
Lu(1) must be negative between E~ and E~. In general Lu(1) is positive between 
E~,,-1 and E6,, and negative between E6,, and E~m+l, where m is any positive 
integer. 

The well-defined System W is available for evolution of the eigenvalues and 
eigenfunctions of the transitory system. We know that the eigenvalues E~ (n = 1, 2, 
etc.) exist for the intermediate system, and we know the properties of the cor- 
responding eigenfunctions. As we increase R 2 from E~ to E~, since Du(1) changes 
sign in the process, Du(1) must vanish at least once, and furthermore Lu(1) is 
positive, so that there is at least one eigenvalue E1 between E~ and E~, for the 
transitory system, and for which u and hence v are non-negative throughout. 
Similarly, as R 2 increases from E~ to E~+ 1, there must be at least one eigenvalue 
E. between E~ and E~+a, for which Lu(1) has the sign of ( -  1) "-1 and u and v 
both have exactly n -  1 simple (because of Theorem 8) internal zeros*. Hence we 
have 

Theorem 10. For any real a > - 2 2 and ~ in 0 < e <_ 1, real  eigenvalues o f  R 2 
ex i s t  f o r  the transitory system. There is at  least one eigenvalue E.  between E~ and 

* The statement concerning internal zeros of u and v in Theorem 8 holds not merely for 
R2= E,~ (for any n), but also throughout the transition as R 2 varies from En to E,~+ 1. Thissituation 
continues to hold in our present transition from E~ to En+ 1 (by keeping Du(b) equal to zero). 
Hence for any eigenvalue E n between E,] and En+ 1, both u and v have exactly n-- 1 simple internal 
z e r o s .  
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E~+I, and for any such eigenvalue both u and v have exactly n - i  simple internal 
zeros. 

This theorem is a cornerstone of the spectral theory. Since in particular e can 
be 1, we have the 

Corollary. For any real or > - 2  2, real eigenvalues of R 2 exist for the original 
system. 

We shall show later that between E~ and E~+ t there is exactly one eigenvalue 
E n for the transitory system. 

8. Number of Eigenvalues of the Transitory System between E~, and E'+t 
We shall now consider the eigenvalues of the starting system, that is, the 

transitory system with s=  0. Equations (11) and (12) become 

(L-22  -or) (L-)`2)u =4)` 2 R 2 v, (67) 

( L -  22 - or) v = A u. (68) 

The boundary conditions are still (7). If the parameters 22 and R 2 are assumed 
real and positive, it is easy to show that or must be real if A is negative. 

Using an asterisk to denote the complex conjugate, and multiplying (67) by 
ru* and integrating between 1 and b, we have by appropriate integration by parts 
and use of (7) 

I2 + (2)- 2 + or) I t  + 22 ( 22 2t- or) Io = 422 R 2 ~ r v u*, (69) 
where 

I2=SrlLul 2, l x=S l [D(ru ) l  2, Io=~rlul 2, (70) 

the limits of integration being understood and dr being omitted in (69) and (70). 
Using (68) and the boundary conditions on v given in (7), we may write the integral 
on the right-hand side of (69) as 

- J~ - ( 22 + or*) Jo, 

with Jt  and Jo defined by (19). Thus (69) can be written as 

12+(222+or)It+22(22+or)Io= -422R2A-l[Jt+(22+or*)Jo]. (71) 

The imaginary part of (71) can be written as 

orl(lt + 22 Io - A- 1 22 R 2 Jo)  = 0. (72) 

Since A is negative, this says that ori=0 for the starting system, or or is real. Note 
also that, for real or, (71) demands that R 2 be real for real )`2. 

The existence of eigenvalues E" or E g for the auxiliary system or the inter- 
mediate system of the starting system is known, of course, since Theorems 7 to 9 
are valid for any e in 0 < e <  1. Also the existence of E n for the starting system is 



Taylor Vortices 237 

stated by Theorem 10. However, for the starting system we can show that between 
Eg and Eg+ t there is exactly one E,, for any non-negative a + 2 2. 

Fixing o + 2  2 at any non-negative real value, we consider two systems. The 
first consists of 

( L -  22 - a )  (L -22 )  u t =422 R~ vt, (73) 

The second consists of 

( L - ) .  2 - 0-) / )  t =Au t. 

( L -  22 - a) ( L -  22) u 2 + 422 R22/)2' 

(74) 

(75) 

( L -  22 - a)/)2 = A U 2 .  (76) 

In (73) to (76), ut, u2, v~, and v2 satisfy the conditions 

u~(b)=Du~(b)=O=v~(b), ui(1)=O=v~(1) for i=l or 2, (77) 

and one more condition to be specified. 

Multiplying (73) by ru 2 and integrating between 1 and b, and using (76) to 
evaluate the Ul on the right-hand side, we have 

Im2 +(2J,2 +a)Im1+ 22(j,2 +a)Imo + Du2(1)Lut (1) 
= - 4 22 R 2 A - t  [Jmt + ( 22 + a) Jm o], (78) 

where 

Im2=IrLutLu2, Imt--I1D(rut)D(ru2), Imo=S rut  U2, 
(79) 

d, 1 mt=S rD(rvl)D(rv2), Jmo=~rvlv2, 

the m standing for "mixed".  Similarly, multiplying (75) by ru t and integrating, 
using (74) to evaluate the ut on the right-hand side, we have 

lm2 +(2A2 +a)Imt +,~.2(22 +a)Imo + Dut(1)Lu2(1 ) 

= - 4 2 2  R2 A - t  [Jmt 3(22 + a) Jmo]. (8o) 

For the special case of R t = R 2 = 0  , we shall drop the subscripts; then either 
(78) or (80) shows that Du(1) Lu(1) must be negative. We shall, to begin with, 
take Du(1) to be 1 ; then Lu(1) is negative at R = 0 .  The difference of (80) and 
(78) is, for Dut  (1)=1 =Du2(1),  

Lu2(1)-Lul(1)= -422A-l(R2-R2)[J,,t+(22+a)Jmo]. (81) 

If we let Rt approach R2, we have 

d 
d ( ~  Lu ( 1 ) = - 4 22 A- I  [St + (22 + a) Jo], (82) 
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with J1 and Jo defined by (19). This shows that as long as Du(1) is positive and 
fixed at 1, Lu(1) increases with R 2. We know from Section 6 that E~ exists. 
Therefore Lu(1) will increase to zero. We know also that when it becomes zero 
DuO) is still positive. After E~ has been passed, Lu(1) will increase to 1 if Du(1) 
is kept at 1 as R 2 increases indefinitely. For otherwise E 1 would not exist, and 
from Section 7 we know that at least one E1 exists between E~ and E). (Existence 
of E 1 demands that as it is approached, Lu(1) approaches infinity if Du(1) is 
kept at 1.) When Lu(1) becomes 1, we keep it at 1. Then from (80) and (78) we 
have, if both Lux (1) and Lu2(1) are kept at 1, 

Du2(1)-Dul(1)=422A-a(R2-R2)[J,,,1+(22+tr)Jmo], (83) 

which in the limit becomes 

d 2 - d( -~-Du(1)=42 A l[Jx +(22+tr)Jo]. (84) 

Thus Du(1) will decrease monotonically a s  R 2 increases, and since we know E1 
exists, it will decrease to zero. The corresponding value of R 2 is E 1. When E1 is 
passed, Du(1) becomes negative; it will decrease to negative infinity if we fix 
Lu(1) at 1 and increase R 2 toward E~. It will therefore reach - 1 .  Fixing Du(1) 
at - 1 ,  we see that Lu(1) will decrease monotonically, first to zero, when R 2 
reaches E~, and then to - 1 .  The argument continues, and we see that between 
E~ and E~+ 1 there is exactly one eigenvalue E~ for the starting system. We sum- 
marize the result obtained so far in this section in the following theorem: 

Theorem 11. For the starting system, with negative A, tr is real if  R 2 is real, 
and vice versa, and exactly one eigenvalue E, for R 2 exists between E~ and E~+ I. 

We shall now show that for the starting system both the eigenvalues E, and 
E~ are simple, for any positive integral value of n. Their simplicity is indeed 
already evident from (82) and (84). If the secular equation relevant to E~ is 

F 1 (R 2, a, ~) = 0, (85) 

then for E~ to be a multiple eigenvalue it is necessary that both (85) and 

0 2 O-g 2 F(R , o, e)= 0 (86) 

be satisfied. This means that if R 2 varies from E~ to E~,+AR 2 while 

u(b)=Du(b)=O=v(b)=u(1)=v(1), Du(1)= 1, 

then Lu(1) is of the order of (AR2) 2, that is, 

d 
dR 2 Lu(1)=0,  
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which is clearly contradicted by (82) for a >  _)2.  Hence E~ is simple for any 
positive integral value of n. Similarly, (84) shows that En is simple. Hence we have 

Theorem 12. For the starting system and for o> _)`2, the eigenvalues E~ and 
E n are simple. 

Actually a similar demonstration will show that for the starting system the 
eigenvalues E" are also simple. 

Furthermore, the same reasoning (using (55)) shows that the eigenvalues s 
are simple for the auxiliary system, for any e between zero and 1. 

With the help of Theorem 12, we shall now prove 

Theorem 13. For tr >= - 2  2 and 0 <_ e <_ 1, the transitory system has exactly one 
eigenvalue E. of  R 2 between E~ and E'+ I, and it is simple. 

Indeed, if there were more than one E. between E~ and s then as e--,0 
there would be more than one E. between E~ and E~+I for the starting system, 
in contradiction to Theorem 11, if these do not merge and become complex in 
the approach to e =0. If they do merge and remain complex throughout the ap- 
proach to e = 0, the reality of all E. for the starting system would be contradicted. 
If they merge and then reappear as real eigenvalues at e = 0, this would make one 
of the eigenvalues E. at e=0  (for n=  l, 2 . . . .  ) other than simple, in contradiction 
to Theorem 12. The same arguments show that E. must be simple for 0 < e <  1. 
Hence we have proved Theorem 13. 

We note in passing that the secular equation 

F(R 2, 0", e)=0 

for the transitory system represents, for any finite real values of the arguments 
R 2, tr, and e, sheets of continuous surfaces in the space of these parameters or 
variables, by virtue of the fact that the eigenfunctions, and hence F(R 2, a, e), are 
entire functions of R 2, a, and e., and that positive eigenvalues of R 2 exist for 
e=0  and tr>0. 

All the preceding development is for non-negative )2+  tr. Before going on to 
study damped modes with a < -)`2, we shall pause to review what has been done 
and to discuss other related work. The main results we have obtained are (a) that 
for non-negative )`z+ tr there are infinitely many real positive eigenvalues E, of 
R 2, (b) that these are simple and are all the eigenvalues, there being no complex 
ones, (c) that between E~ and E'+ 1 there is exactly one eigenvalue En, and (d) 
that the eigenfunctions u and v for E, each have exactly n - 1  internal zeros. 
After these results were found, my attention was drawn to the work of YUDO- 
vIcn [7] and of IVANILOV & IAKOVIEV [8], where some of my results have already 
been obtained. The approach used here is entirely new for eigenvalue problems 
of order higher than 2, and is predominately elementary in comparison with [7] 
and [8]. The easily found bounds E" may also be of some interest. 

Since we have only dealt with the case of non-negative 22+ tr, we are far 
from having proved the nonoscillatory nature of Taylor vortices. The proof 
given in Part II will show that the preceding development is not necessary in its 
entirety, so far as that proof is concerned. We have given the preceding develop- 
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ment  because it is of much  interest  to know the s t ructure  of Tay lo r  vort ices when 
they are  unstable ,  and  Theo rem 10 gives in fo rmat ion  regard ing  the noda l  po in ts  
( internal  zeros) of such vortices.  
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