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1. Introduction 

In the theory of optimization, in connection with ordinary and partial dif- 
ferential equations, a number of closure and lower closure theorems have been 
obtained in different contexts and under a variety of conditions and modes of 
convergence. In particular "seminormali ty" conditions (property (Q) and its 
variants) have played different roles. In this paper we first prove closure and 
lower closure theorems for orientor fields in a rather abstract context, all based 
on weak convergence and MAZUR'S theorem (w167 and 5). In the context of orientor 
fields, these theorems can be given the most satisfactory formulation and simplest 
proofs (see, e.g., th. (4.i), (5.i)). Furthermore, in the present new approach, the 
interplay of "seminormali ty" conditions and modes of convergence can be easily 
seen: the stronger the mode of convergence, the weaker are the "seminormali ty" 
conditions that are needed. From these theorems we then derive, as corollaries, 
closure and lower closure statements for Mayer and Lagrange problems (~  6 and 7) 
and lower semicontinuity statements for free problems (w Under suitable 
hypotheses, no seminormality condition (or property (Q)) is needed. Further 
theorems without seminormality conditions, as well as other details, are discussed 
in [3]. In particular, we show that seminormality conditions can be removed, 
not only under standard Lipschitz requirements, as expected, but also under 
much more satisfactory simple growth conditions, as proposed some time ago 
by E. H. ROTHE for free problems. Applications to multidimensional Lagrange 
problems are discussed in [8]. 

2. Notations 

We shall denote by cl Z and co Z the closure and the convex hull of any 
arbitrary subset Z of EN, and we denote by I z I  its Lebesgue measure if Z is 
measurable. 

Let A denote any set of the tx-space E~• t = ( t  x . . . .  , t~), x = ( x  1 . . . . .  x~); 
for any t ~ E  v let A ( t ) = [ x ~ E . l ( t ,  x )~A]  and let A o denote the set of all t for 
which A ( t ) : ~  (14o is the projection of A on Ev). Let G be any measurable subset 
of E~ with finite measure, G c A o ~ E ~ .  For every (t, x ) ~ A  let Q(t, x)  be a given 
subset of the z-space E r, z =  (z 1, . . . ,  z'). 
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We shall consider pairs ~(t)---(~ t . . . . .  ~'), x ( t ) = ( x  1, ..., x"), t~G, of measur- 
able functions on G such that 

(2.1) ~(t)EQ(t,x(t)) ,  t~G (a.e.). 

We call (2.1) an abstract orientor field equation. In most applications, of course, 
is actually related to x by some differential or more general relation. We shall 

mention this situation whenever it is relevant. 
For every (7, ~)~A and 6>0  we denote by N~(t, ~)[N~, ~(~)] the set of all 

points (t, x)eA[(t, x)eA] at a distance -<6 from (7, 2). The following concepts 
of upper semicontinuity of variable sets are of interest here. We say that the sets 
Q(t, x) satisfy property (K) with respect to (t, x) at a point (t, ~)~A (i.e. Kura- 
towsky's upper semicontinuity condition), provided 

(2.2) Q(t, x)=  n el U Q(t, x). 
t~>O (t,x)eN6(~, ~) 

We say that the sets Q (t, x) satisfy property (Q) with respect to (t, x) at a point 
(t, ~)eA, provided 

(2.3) Q(t, x)= N clco U Q(t,x). 
~ > 0  (t,x)6N6(t-,.~) 

We say that the sets Q (t, x) satisfy property (K), or (Q), with respect to x only 
at (t, ~) provided relation (2.2), or (2.3), holds with Na. 7(YO replacing N a ~, x-). We 
shall say that the sets Q(t, x) satisfy property (K), or property (Q), with respect 
to (t, x), or with respect to x only, in a subset A' of A, if the corresponding pro- 
perties hold at every (t, x)eA' .  

Sets Q (t, x) possessing property (K) are closed since they are intersections of 
closed sets; sets possessing property (Q) are closed and convex since they are 
intersections of closed and convex sets. 

We introduced property (Q) in [1 a], where we also proved a number of state- 
ments relating properties (K) and (Q) (property (K) was called property (U) in 
[la]). In [I bcd] we stated a number of criteria in order that the sets which are 
relevant in Lagrange problems have property (Q). For equibounded compact sets 
property (K) reduces to the usual metric upper semicontinuity of sets; for equi- 
bounded compact convex sets property (Q) also reduces to metric upper semi- 
continuity. 

In [1 cd] we proved that property (Q) for Lagrange problems is the extension 
of TONELLI'S and MCSnANE'S seminormality condition for free problems. 

3. Closure Theorems with respect to Uniform Convergence and Variants 

These theorems have been proved in earlier papers [1 ab] for the case v= 1, 
r=n, G= [a, b], a fixed interval in E 1, x absolutely continuous (AC), and r  
x' (t), t~[a, b] (a.e.). 

(3.i) (L. CESARI [I a]). I f  A is closed and contained in E1 x E,, i f  T O is a subset 
o f  Ao o f  measure zero, To~Ao~E1 ,  with G=[a,b]~Ao,  Ho=An(To•  
Ao =.4 n (G x E,), i f  the sets Q (t, x) satisfy property (Q) with respect to (t, x) in 
A o -  H o, i f  x (  t ), xk ( t ), a < t < b, are absolutely continuous, i f  

(t, Xk(t))EA, t~[a, b], X'k(t)~Q(t, xk(t)) , te[a,  b] (a.e.), 
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k =  1, 2 . . . .  , and i f  xk(t) ~ x( t )  uniformly in [a, b] as k ~ oo, then 

(t, x ( t ) )~A,  te[a, b], x ' ( t )eQ(t ,  x(t)), t~[a, b] (a.e.). 

R e m a r k  1. We have shown in ([ le] ,  p. 313) by means  of an example  tha t  
p rope r ty  (Q) " w i t h  respect to (t, x ) "  is essential in (3.i). In the example in [1 e], 
A = [a, b] x [c, d], v = r = n = I, and there is a par t i t ion [a, b] = S1 w $2, with 
Sx c~ $2 = ~ ,  Sx open,  $2 closed, bo th  S~ and $2 of positive measure,  the sets 
Q(t) independent  of x, such that,  if A~=S~x [c, d], i = 1 ,  2, then the sets Q(t) 
satisfy p roper ty  (Q) bo th  in A 1 and in A 2 (but  not  in A), and the content ion of 
(3.i) is no t  true. Thus  in (3.i) p roper ty  (Q) " w i t h  respect to x on ly"  would not  
suffice. Also note  tha t  (in view of w below) in (3.i) the uni form convergence 
Xk(t ) ~ x ( t )  does not  imply  weak convergence of the derivatives x~ toward  x '  in 
L a, as the following trivial example  shows: v = r = n = 1, x (t) = 0, x k (t) = k -  ~ sin k 2 t, 
0 < t < 2 re, k = l, 2 . . . . .  where the derivatives x~ (t) = k cos k 2 t are not  bounded  in 
the L l - n o r m  and certainly do not  converge weakly to zero. 

4. Closure Theorems for Orientor Fields with Respect to Weak Convergence 
of the Derivatives 

We shall use the same notat ions  as in w Thus  points  in the Ev, E,,  E,  spaces 
will be denoted by t=( t  1 . . . . .  tv), x = ( x  I . . . .  , x"), ~=(41 . . . . .  4")- Also, A is a 
subset  of E~xEn, Ao the project ion of A on E,, and A(t)=[x~Enl( t ,  x)eA]. For  
every (t, x ) e A  a subset  Q(t, x) of E,  is assigned. We shall denote by G and To 
given subsets of Ao in E,, TocG;  then A~ and Ho are the sets AG=Ac~(GxE,)  
and H o = A n ( T  o xE~). We shall finally denote  by x ( t ) = ( x  x . . . . .  x ~) and 4 ( 0 =  
(41, ..., 4"), t~G, given functions on G. 

(4.i) I f  G is a measurable set with finite measure and T O has measure zero, i f  
the sets A (t) are closed for t e G - T  o, i f  the sets Q(t, x) satisfy property (Q) with 
respect to x in A ~ - H  o, i f  4(t), x(t) ,  4k(t), Xk(t), t eG, k =  1, 2, ..., are measurable 
functions, 4, 4kE(L1 (G))', i f  

(4.1) Xk(t)eA(t),  4k(t)~Q(t, xk(t)), t ~ G  (a.e.), k = 1 , 2  . . . . .  

and i f  ~k --' 4 weakly in (L 1 ( G ) f  and Xk(t ) --, x ( t )  in measure in G as k --, ~ ,  then 

(4.2) x( t )~A(t ) ,  ~(t)eQ(t,  x(t)), t~G (a.e.). 

P rooL By extract ion of a suitable subsquence we m a y  assume tha t  x~(t) --, x( t )  
pointwise a.e.  in G. Let  T~ be the subset of measure  zero of all teG where xk(t ) 
does not  converge or does not  converge to x(t) ,  or where x( t )  is not  finite. Then 
x ( t ) ~ A ( t )  for  all t e G - ( T o w T ~ ) .  For  every s = l , 2 , . . . ,  let us consider the 
sequence [4~+k(t), teG, k=  1, 2 . . . .  ]. By virtue of the Banach-Saks-Mazur  theorem 
(see S. MAZUR [9], o r  M. DAY [5], p. 46, or  K. YOSIDA [11], p. 120), there is a 

N 

set of real numbers  CtNS)k>0, k =  1, 2, . . . ,  N, N =  l, 2, . . . ,  with ~ ~Nk--~ts)_ 1, such 
tha t  if k = 1 

N 

= E ~Nk4~+k(t), t~G, N = 1 , 2  . . . . .  
k = l  
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then ~ ) ( t ) - *  ~(t) strongly in (L 1 (G)f  (that is, in the Ll-norm in G), this being 
true for every s =  1, 2, .... Then for every s there is also a subset Ts of measure 
zero of points in G, and a sequence of integers N~ s), 2 = 1, 2 . . . . .  with N~ ~) -* oo, 
such that, for t e G - T , ,  ~(t) is finite and ~ ) p - * ~ ( t )  as 2-* oo. Let T denote the 
subset of measure zero in G which is the union of all sets T 0, T~, T,, s = 1, 2 . . . . .  

Now let t o be any point in G - T ,  and take Xo=X(to). Then (to, xk(to))-* 
(t o, Xo)eA, the sets Q(t, x) have property (Q) with respect to x at (to, Xo), 
and, given e > 0, there is some s o such that Ix s (to)-Xo] < e for all s > s o. For  s ~ So 
we have then 

~,+k(to)eQ(to, X,+k(tO)), [X,+k(to)--Xo[<e, k= 1, 2 .. . .  , 

and hence 
N 

C~) ~,+R(to)~CO [3 Q(to, x). 
k= 1 xeN~,  to(XO) 

Finally, for N= Nz and 2 -* oo, we have 

r ~cl co U Q(to, x), 
x e N~,  t o ( x o )  

w h e r e ,  > 0 is arbitrary. By property (Q) with respect to x only at (t o, Xo) we have 
~(to)eQ(to, Xo). We have proved that ~(t)eQ(t, x(t)) for all t e G - T ,  that is, a.e. 
in G. Statement (4.i) is thereby proved. 

Note that in the proof of (4.i) we do not need the full force of property (Q) 
with respect to x. All we need is that there is a subsequence k, such that (i) 
x~,(t)-*x(t) pointwise a.e. in G and (ii) for almost all teG we have 

Q(t, x(O)  N cl co  . 
h = l  s 

The same remark holds for theorem (4.ii) below. 

Remark 2. In the situation of w with v= 1, r=n, G =  [a, b], a fixed interval 
in Ex, x, xk absolutely continuous, and ~(t)=x'(t), ~k(t)=x~(t), tE[a, b] (a.e.), 
then the weak convergence ~k--* ~ (that is, x~--* x' weakly in L 1 ([a, hi)) required 
in (4.i) together with the convergence XkO)-* XO) at least at one point t, certainly 
implies the uniform convergence Xk--*X in [a, b]. Indeed for every t~[a, b] we 

t 

have XR(t)=xk(t)+~_X~(Z)dz, and the weak convergence x~-*x' in L1 implies 
t 

the pointwise convergence of xi(t) at every t. On the other hand, by a theorem 
of DUNFORD-PETTIS [6] (see also R. E. EDWARDS [7], p. 274) the functions x~, are 
equiabsolutely integrable in [a, b]; hence the functions Xk are equiabsolutely 
continuous in [a, b] and the convergence Xk-*X is therefore uniform. In this 
situation, if we have A closed, property (Q) with respect to x in A - Ho, (t, Xk (t)) ~A, 
t~[a,b], x~(t)~Q(t, Xk(t)), t~[a,b] (a.e.), and x~-*x' weakly in (La(G))" as 
k -*  oo, then certainly (t, x(t))~A, t~[a, b], and x'(t)eQ(t, x(t)), teta, b] (a.e.). 

(4.ii) Let the hypotheses of (4.i) hold, except that the sets Q(t, x) satisfy only 
property (K) with respect to x in A ~ -  Ho, the functions ~, x, ~k, X~ are only measur- 
able in G, and ~k(t)--*~(t), Xk(t)-*x(t) pointwise a.e. in G. Then the conclusion 
of (4.i) also holds. 
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Proof. Let T~ be the subset of measure zero of all teG where Xk(t) does not 
converge to x(t), o r  ~k(t) does not converge to ~(t). Since A is closed we have 
(t, x(t))eA a.e. in G, as in the proof of (4.i). The set T=TouT~ also has measure 
zero in G. For  every t oEG-T  put Xo=X(to), and note that, given e>0 ,  there is 
k o > 0  such that  [Xk(to)--Xo[<e for all k>__k o. Then, for k>=ko, f rom ~k(tO)K 
Q(to, Xk(to)) we derive 

~k(tO) ~ U Q(to, X), k >=ko. 
X e N~, t o (XO) 

Finally, as k ~ ,  
~(to)~Cl U Q(to, x). 

x~N~, to(XO) 

This relation holds for all e > 0; hence by property (K) at (t o, Xo) with respect to 
x only, we have 

r (~ el U Q(to, x)=Q(to, Xo). 
e > 0  xeN~, to(XO) 

We have proved that  ~(t)eQ(t, x(t)) a.e. in G. 

Remark3 .  Theorem (4.iii) below concerns the case where the pairs ~k(t), 
Xk(t), t~G, satisfying ~k(t)eQ(t, Xk(t)), t6G (a.e.), k =  1, 2, .. . ,  with ~k ~ r weakly 
in (LI(G))', and Xk(t)~x(t)  pointwise a.e. in G, can be replaced by modified 
pairs ~ ( t ) ,  x(t), t~G, satisfying ~k(t)eO(t, x(t)), t~G (a.e.), k =  1, 2 . . . . .  where 
~k still converges to ~ weakly in (L1 (G))" as k ~ oo and thus &k(t) = ~k(t)--~k(t) ~ 0 
weakly in (LI (G))" as k ~ ~ .  This situation actually occurs in a large class of 
problems (see Remark  8 in w below); in this situation the sets Q(t, x) need be 
assumed only convex and closed (the properties (Q) or (K) are not required). 

(4.iii) Let the hypotheses of  (4.i) hold, except that the sets Q(t, x) are assumed 
to be only closed and convex for every (t, x )eA~-Ho,  the functions ~, ~k~(L1 (G)f , 
x is only measurable, xk(t)=x(t) for all t and k, and r  weakly in (LI(G))'. 
Then the conclusion of (4.i) also holds. 

Proof. Let Tx be the subset of measure zero in G defined in the proof of (4.i) 
relative to the weak convergence of ~k to ~ for s =  1. Then the set T - - T  o u T 1 
also has measure zero in G. For  every t o~G-T  let Xo=X(to), and note that  
~1 +k(to)~Q(to, Xo), k= 1, 2 . . . . .  where the set Q(to, Xo) is convex. Hence by using 
the numbers c~1~ > 0, k = 1 . . . .  , N, defined in the proof of (4.i) we have 

N 

c~r Xo) for all N. 
k = l  

For  N=N~ 1), 2--* oo, the first member  of this relation approaches ~(to). Since 
Q(to, Xo) is closed, we have ~(to)~Q(to, Xo). We have proved that r x(t)) 
a.e. in G. 

Remark 4. D. E. COWLES [4] introduced properties (Qp) intermediate between 
property (Q) and property (K). These intermediate properties can also be used 
in connection with the closure and lower closure theorems of the present paper. 
as P. KAISER will show in [8]. 
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5. Lower Closure Theorems for Orientor Fields with Respect 
to Weak Convergence of the Derivatives 

We shall use essentially the same notation as in w and in w Thus points in 
E~, E n, E,+ 1 spaces will be denoted by t=( t  1 . . . . .  H), x = ( x  1 . . . .  , x~), (z ~ z ) =  
(z ~ z 1 . . . . .  z'), or (/7, ~)=(~/, ~1 . . . . .  ~), respectively. Also as before .4 is a subset 
of E~xE. ,  A o is the projection of .4 on E~, and .4( t )=[xeE.[( t ,  x)e.4]. A subset 
Q(t, x) of E,+I is assigned for every (t, x)e.4. Again we shall denote by G and To 
given subsets of .40 in E~; then .4~ =`4 c~(Gx E.) and 1to=.4 c~(T o x E~). We shall 
denote by x ( t ) = ( x  1 . . . .  , x n) and (~(t), ~(t))=(?~, ~1 . . . .  , ~), t~G, given functions 
on G. 

(5.i) I f  G is a measurable set with finite measure, and To has measure zero, i f  
the sets `4(t) are closed for t ~ G - T  o, i f  the sets Q(t, x) satisfy property (Q) with 
respect to x in A o - H o ,  and i f  ~(t), x(t) ,  tlk(t), ~k(t), Xk(t), 2(0 ,  2k(t), tEG, 
k =  1, 2, ..., are measurable functions, ~, ~k~(L 1 (G)f  , tlk~L1 (G), such that 

(5.1) xk(t)eA(t) ,  (tlk(t), ~k(t))eQ(t, xk(t)), t~G (a.e.), k = l ,  2 . . . . .  

(5.2) - oo < i =  lim j t lk(t)dt<oo , 
k~oo G 

(5.3) ~k ~ ~ weakly in (L~ (G)f, xk(t) ~ x( t )  in measure in G as k ~ oo, and 

(5.4) llk(t)>=2k(t), 4, 2keL~ (G ), 2~-~ 2 weakly in L~(G), 

then there is a function ll(t), t~G, t leL ~ (G), such that 

(5.5) x( t )sA( t ) ,  (tl(t),~(t))~Q(t,x(t)), t~G(a.e . )  and I t l ( t )d t<i .  

In this formulation of (5.i), 2 k ~ 2 weakly in L1 (G); hence [I hi II 1 is a bounded 
sequence, and the part i > -  oo of requirement (5.2) is a consequence of (5.4). 

Remark 5. Lower closure theorems are usually applied in situations where it 
is well known that 

i =  lim J tlk(t)dt < oo. 
k~oo G 

Functions 2, 2 k satisfying (5.4) of statement (5.i) are easily found (consequently 
i > - oo) if we know, for instance, that one of the following conditions is verified: 

(ct) There is a real valued function ~b(t)>0, tEG, ~ L  1 (G), such that we have 
z~ -~b (t) for every (t, x )eA~ and (z ~ z ) ~ . ( t ,  x). 

Indeed, we have then tlk(t)>--__2k(t)= --~(t) ,  t~G, k =  1, 2 . . . . .  and 2 =  - ~ .  

(fl) There is a real valued function ~(t)__>O, teG, ~eLx (G), and a constant 
T> 0  such that for all (t, x)EA6 and (z ~ z)~Q(t, x) we have z~ - ~ ( t ) - y  Izl. 

Indeed, we have then tlk(t)>=2k(t)= --~(t)--V[~k(t)],  t~G, k =  1, 2 . . . . .  Since 
~ k ~  weakly in (LI(G))" by hypothesis, by the Dunford-Pettis theorem the 
functions ~k are equiabsolutely the integrable in G. Hence by the same theorem 
the sequence [ ~k (t)[, t~ G, k--  1, 2, . . . ,  is weakly compact in L1 (G), and there is, 
therefore, a subsequence [ks] such that 2k~ (t) = -- ~ (t)--  ~ [ ~k~ (t) [, t ~ G, k = 1, 2, . . . ,  
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is weakly convergent  in L1 (G) toward  some funct ion -~b ( t ) -  7(r (t), tr ( t ) >  0, t e G. 
We can thus apply  (5.i). 

(y) The  funct ions x and Xk are in (Lp(G))", Ilx~-xllp--,O as k--* ~ for  some p, 
l < p < o o ,  and there is a real valued funct ion ~k(t)>0,  teG, @~Lx(G), and a 
pa i r  of constants  7, y ' > 0  such tha t  for  all (t, x)eA o and (z ~ z)eQ(t, x) we have 
z ~  - ~ ( t ) -  7'lxlP- Ylzl. 

The a rgumen t  is similar to the one above,  since Ilxk-xllp--*O implies 

11 Ix~l~-IxlPlll -*0; 

thus the sequence 2k (t) = -- ~ (t) -- 7'1Xk (t) I p -  7 I Ck (t) I, t ~ G, k = 1, 2, . . . ,  certainly 
possesses a weakly convergent  subsequence in L~ (G). Instead of the requi rement  
x, xk~(z~(a))", UXk--Xllp--'O, we may  require X~k, XiELp,(G), IIx~,-x'll~,--*0 for 
different Pi, 1 < p i < o o ,  i = 1  . . . . .  n. This r emark  holds th roughout  this and the 
fol lowing sections. 

(6) The functions Xk are in (L~(G)) ~, IIx~ll~_-<Zo, ~k~(t~(a))', II~klloo<tl for  
given constants  Lo, L~, and there exists a real valued funct ion O ( t ) > 0 ,  teG, 
O e L  1 (G), and a real valued m o n o t o n e  nondecreasing funct ion tr(~), 0 <  ~ < + 0% 
such tha t  for  all (t, x)eA and (z ~ z)eQ(t, x) we have z ~  - ~ , ( t )  t r ( I x t + l z l ) .  

The  a rgumen t  is similar to the one above.  
In  R e m a r k  5 below we shall show by means  of an example  tha t  conclusion 

(5.5) m a y  not  hold wi thout  requirement  (5.4) 

Proof  of (5.i). L e t j k =  ~h(t)dt ,  k =  1, 2 . . . . .  By taking a suitable subsequence 

we m a y  assume thatjk--*i and Xk(t)--*x(t) pointwise a.e.  in G as k ~  oo. Here  
- o o < i < o o ,  so that ,  if p~ denotes the m a x i m u m  of IJk--i[ for  k > s + l ,  we have 
ps---~O as s---~ oo. 

Let  T~ be the subset  of measure  zero of all teG where Xk(t) does not  converge, 
or  does not  converge to x(t), or x(t) is not  finite. Then x( t )eA(t)  for  all t ~ G -  
(To u T~). Fo r  every s = 1, 2 . . . . .  let us consider the sequences 

2,+k(t),  ~+k(t), tEG, k= 1, 2 . . . . .  

which converge weakly to 2(t) ,  r  in (LI(G)) "+1 as k ~  co. As in the proof  of 
(4.i), by Mazur ' s  t heorem there is a set of real numbers  e(u~)k~0, k = l  . . . .  , N, 

N 

N =  1, 2, . . . ,  with ~ ~Nk--~(~)-- ,,' such that  if 
k = l  

N N 

CNk~s+k(t), t~G, N - - l , 2  . . . . .  ~)(t)= y, (') c~,~,+~(t), ~)(t)= y~ (') 
k = l  k = l  

then ) ,~)- ,  2 s trongly in L~ (G) and ~ ) ~  ~ strongly in (L~ (G)f ,  this being true 
for  every s = 1, 2 . . . . .  Then,  for  every s, there is also a subset T~ of measure  zero 
of points  teG, and a sequence of integers N~ ~), h =  1, 2 . . . .  , with Nh(')~ oo, such 
that ,  for  t~G--T~ bo th  2( t )  and ~(t)  are finite and 2ts~ ) ( t ) - ,A( t ) ,  (t~O(t)-,~(t) as 
h--, oo. Let  T denote  the subset  of measure  zero in G which is the union of all 
sets T 0, T~, T~, s = 1, 2 . . . . .  Note  tha t  

rlk(t)~2g(t), t~G, ~tlk(t)dt=jk, k----1,2 . . . . .  
G 
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so that, for all s =  1, 2 . . . . .  N =  1, 2 . . . . .  we also have 

(5.6) t/~)(t)___>2~)(t), t~G, i-p~< ~tl~)(t)dt<=i+p~. 
G 

For N =  N~') and h ~ oo, relations (5.6) and Fatou's lemma imply 

tlr 2(t), t~G, 
h.-~ oo 

Stl~)(t)dt< lim Jtl~](t)dt<=i+p,, s = l , 2  . . . . .  
G h--,~ G 

Thus t/(~)(t) is finite a.e. in G and of class Lx(G). 
Let T~ denote the set of measure zero of all points teG where r/(')(t) is not 

finite. If 
t/(t) = lim r/~')(t), teG, 

$---~ oo 

then again we have 
tl(t)>2(t), t~G, Stl(t)dt<=i. 

Thus, ,/(t) is finite a.e. in G and of class L1 (6). Let T6' denote the set of measure 
zero of all points t~G where q is not finite. 

Let T denote the set of measure zero in G which is the union of all sets To, 
Td, T~', T~, T;, s = l ,  2 . . . . .  Let to be any point in G-T,  and put xo=x(to). Then 
(to, xk(to))~(to, xo)r the sets Q(t, x) have property (Q) with respect to x at 
(to, Xo), and given e>0  there is some so such that Ixs(to)-Xol<=e for s~_so. For 
S>So we have now 

(~,+k(tO),~s+k(O)eO.(to, X,+k(tO)), IX~+k(to)--Xol<e, k = l , 2  . . . . .  

and hence 

[ ~ c,,). t t , (5.7) u 
= k = 1 / x r  N~, to(xo) 

Finally, for N =  N~ ~) and h--, 0% the points in the first member of (5.7) form a 
sequence possessing (~/(to), ~(to)) as an element of accumulation in E,+ 1 (both 
t/(to) and ~ (to) are finite). Thus 

(5.8)  (to))ecl co U s>=so. 
xeN~, to(xo) 

Note that q(to)= limt/(s)(to) is finite, so that (~l(to), ~(to)) is certainly a point of 
$- -*  oo 

accumulation of the sequence (~l(~)(to), ~(to)), s=l ,  2,....  Since the second 
member of (5.8) is closed, we have 

(t/(to), r co U Q(to, x). 
xeNn, to(XO) 

Since e > 0 is arbitrary, by property (Q) we have 

(//(to), ~ (to)) ~ (3 el co D (~(to, x) = (~(to, Xo). 
e > 0  xeNt, to(XO) 

24 Arch. Rat .  Mech.  Anal . ,  Vol. 55 
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We have shown that (q(t), ~(t))eQ(t, x(t)) for t e G - T ,  that is, a.e. in G. State- 
ment (5.i) is thereby proved. 

Theorem (5.i) has alternate forms of some interest. To formulate them we need 
a few more notations. For every (t, x)eA let Q(t, x) denote the projection of 
Q(t, x) on the z-space E,. Thus, (z ~ z)~Q(t, x) implies zeQ(t, x), and for every 
zeQ(t, x) the set A(t, x, z)= [z~ [(z ~ z)eO(t, x)] is not empty. For every 
(t, x)eA let A'(t, x, z )=In f  [z~ ] (z ~ z)eQ(t, x)] and 

A"(t, x, z)= Sup [z~ I (z ~ z)eQ(t, x)]. 

Thus, for every (t, x)eA and zeQ(t, x) we have 

- c o  < a' ( t ,  x, z) < a " ( t ,  x, z ) <  co, 

where A' and A" cannot both be - co or both be + co at any point. 
We shall denote by {a, b} any closed interval in El, finite or infinite, that is, 

any interval of one of the forms [a, b], [a, + co), ( - c o ,  b], ( - c o ,  + co). Note 
that if (~(t, x) is convex, then also Q(t, x) is convex, and for every z~Q(t, x) the 
set A (t, x, z) is an interval in E 1. Moreover, if the set (~ (t, x) is convex and closed, 
then for every z~Q(t, x) we have A(t, x, z)={A'(t, x, z), A"(t, x, z)}. 

We may extend the functions A', A" to all of Ev x E, x E, by taking, say, 
A'(t, x, z)=A"(t,  x, z)=  - co for all (t, x, z) which are not of the form (t, x)eA, 
zeQ(t, x). Whenever the sets Q(t, x) are closed and convex, the set valued function 
(t, x) ~ (~ (t, x) is defined by the real valued functions A', A" (with possible values 
- o o  and + co). Instead of introducing the usual general concept of measurable 
set valued functions, we shall simply say here that the set valued function (t, x) --} 
Q(t, x) (with values (~(t, x) closed and convex) is B-measurable provided the real 
valued functions A', A" are B-measurable. 

We say that the sets (~ (t, x) have the upper property provided that for every 
(t, x)~A and (s z)eQ(t, x) any o therpoin t  (z ~ z) with z~163 ~ also belongs to 
Q(t, x). Thus for closed convex sets Q(t, x) with the upper property, we have 
- co ~ A' (t, x, z) < A" (t, x, z )=co  for all (t, x)eA and zeQ(t, x). 

A real valued functionf(t) ,  tEQ, is said to be of class L -  (G) [L + (G)] provided 
f i s  measurable on G and its Lebesgue integral ~f(t)dt exists and is either finite 

G 

or - c o  [+  co]. Note that f o r f e L - ( G )  we a l l o w f t o  attain the value - c o  in any 
measurable subset of G, and the value + co in a set of measure zero. An analogous 
convention holds f o r f e L  + (G). 

We can now formulate the following further theorems which are analogous 
to statement (5.i): 

(5.i)' Let the hypotheses of(5.i) hold, except that the set valued function (t, x) 
Q(t, x) is B-measurable, and (5.4) is replaced by 

qk(t)~_Ak(t), Ak(t)~_Ak+~(t), 2k(t)--~2(t) pointwiseask--~oo, 
(5.9) 

(~k(t), ~k(t))~Q(t, xk(t)), t~G (a.e.), k= 1, 2 . . . . .  

Then there is a function tl (t), teG, ~leL-(G), q (t) finite almost everywhere in G, 
such that (5.5) holds. 
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Note that in (5.9) the functions 2, 2k are measurable, but not necessarily 
L-integrable in G. Thus (5.9) implies that the functions 2 k have finite values a.e, 
in G, while 2 may have the value - o o  even in a set of positive measure, and 2, 
2keL-(G) (with S2(t)dt<_i, as will be shown in the proof). If 2eLl (G) ,  then 

G 

also the function t / in  statement (5.i)' is of class L 1 (G). As will become apparent 
in the proof of (5.i)' the following requirement can replace (5.9): 2, ~k6L - (G), 
tlk(t)>2k(t), 2k(t)-+X(t ) pointwise a.e., (2k(t),~k(t))eQ(t, xk(t)), t eG(a .e . ) ,  
S2(t)dt<=i. 
G 

(5.i)" Let the hypotheses of (5.i)' hold, except that we make the additional re- 
quirement: 
(5.9)* There is another sequence of functions 2"(t) ,  2~'(t), teG, k= 1, 2, ..., with 

t/k(t)__<2~'(t), 2~'(t)__<2:,'+l(t), 2~ ' ( t )~2" ( t )po in tw i seask~oo ,  
and 

(2~'(t), ~k(t))EQ(t, Xk(t)), teG (a.e.), k = l ,  2 . . . . .  

Then the conclusion of(5.1) '  holds with tl~L 1 (G). 
In particular, we can guarantee that t/EL~ (G) if we know that the sets Q(t, x) 

have the upper property. 

P r o o f  of (5.i) ' .  We proceed as in the proof of (5.i), except now we apply MAZUR'S 
theorem to the sequences ~s+k(t), teG, k= 1, 2 . . . .  , and we define, as in the 
proof of (5.i), the real numbers c~I ~ 0, the integers N~ '), and the sets T~ of measure 
zero, s =  1, 2, . . . .  

Note that the functions 2k(t ), 2 (0 ,  teG, are only measurable now. Never- 
theless, the relations tlk(t)~2t~(t), 2k(t)_~2~+l(t), 2~(t)J,2(t) imply tlk(t)~ 
2k(t)_>2(t), teG, k =  1, 2 . . . . .  Since the functions t/k are of class L,  (G), we con- 
elude that the functions 2~, 2 are of class L - (G) ,  where 2 may have the value 
- oo in a set of positive measure. Moreover, for every k we have 

- ~  <- ~ 2(t)dt<= ~ 2k(t)dt<= j tlk(t)dt~_i+pk, 
G G G 

where the first two integrals may have value - oo. For  s =  1, 2 . . . .  and N =  1, 2 . . . . .  
let 

3/ 

E tEG, 
k = l  

so that 

If we now define 

w e  h a v e  a g a i n  

2 4 *  

-oo<=2(t)<=2~)(t)<=2~+l(t)<=tls+l(t), t~G. 

EtS)(t)= lira (s) 2~(t), t r  s - - l ,  2 ..... , 
k-~r 

E ( t ) =  lim E(')(t), teG, 
8--~ csD 

-oo~2(t)~E(')(t)~X,+l(t)~tl,+~(t),  tr 
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Since 2~(t)~2(t) as s ~ o o ,  we conclude that  -oo<2( t ) - -L ' ( t )<oo  for  every 
teG, and that  

- oo <= S2(t) d t=  SE(t) dt<_<_ i. 
G G 

Note  that  for  every (t, x ) e A o - H o ,  the sets (~(t, x) have proper ty  (Q) with 
respect to x;  hence they are closed and convex. Therefore  for  every zeQ(t ,  x) 
we have (z ~ z) e (~ (t, x) for  every real number  z ~ - oo < z ~ < 0% with A' (t, x, z) < 
z ~ < A" (t, x, z). Let  

L . ( t ) = A ' ( t ,  x(t), ~(t)), L* ( t )=A"( t ,  x(t), ~(t)), t~G. 

Since A', A"  are B-measurable,  both  L .  and L* are measurable in G. We shall 
prove below that  

(5.10) -oo<=L.(t)<=2(t)<L*(t)<=oo, t e G - T .  

Let  to be any point  in G - T ,  and put  Xo=X(to). Since xk(to)-~Xo as k ~  o% we 
see that ,  given e > 0, there is some So such that  s >So implies I Xk (t0)-- XO [ < e. 
Hence,  

(2s+k(to), r e Q(to, xs+k(to)) ~ S~(to) 

for  every k = l,  2 . . . .  , and s > So, where 

S,(to) = e l  co U (~(to, x). 
xeN~, to(XO) 

Then  for  every h = 1, 2 . . . .  and s > So we also have 

(5.11) <~) (2N,,(to), ~'~(to))~ S (to), 

where ~ ) ( t o ) ~ ( t o )  as h ~ .  If 2(to) is finite, so are the numbers L'(~)(to), 
S>So, and for  every S>So there is a sequence of integers [ho,] such that  h~,~ oo 
and 2 ~  )(to) ~ L '  (') (to). Now (5.11) written for  h = h,o yields as co ~ oo 

(/-~ O) (to), ~(to))~S~(to), s>=so. 

As e ~ 0 and s ~ ~ we have, by proper ty  (Q), 

(2 (to), ~ (to)) ~ ~ S, (to) = (~ (t o, Xo) 

and hence - oo < L .  ( t)<2(to)<L*(to)< ~ .  
If 2 ( t o ) = - - o %  choose any fixed point  (~o, ~(to))eO~(to, Xo) ' and another  

point  z ~ 1 6 3  ,~ Then  there is some sx > s  o such that  for  s>st  we have 

- oo =2(to)<_L'(~)(to)<Z~176 ; 

and again, for  every s>s t  there is a sequence [ho] of integers, and real numbers  
~o,, 0 < ~o, < 1, such that  ho, ~ 0% 2~'~)o, (to) ~ L '  r (to), 

E'(~)(.t~.=2,,ho , ~ / <  P) (to)<Z~176 

~ 2~).0 (to) + (1 - ~,o) s176 = z ~ 

~(s) (z ~ ~o, gN,., (to) + ( 1 .  ~o) ~ (to))e S.(to). 
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As co ~ oo, we have 
(z ~ r 

and this holds for every e > 0. Thus again, by property (Q), we have 

(z ~ ~ (to))~ (q ss(to)= O. (to, Xo), 
8 > 0  

and this holds for every z ~ - Go < z ~ < 5 ~ In other words, L ,  (to)-- 2 (to) = - oo. 
Relation (5.10) has been proved for every t eG-T .  

Since 2 e L - ( G ) ,  then for every integer/~ > 0 the function 

[2(t)]_~=max (~.(t), --p), teG, 

is of class LI(G ), and we can choose ~t so large that ~[2(t)]_udt<i. Having 
G 

proved that - o o  <2(t)<L*(t), t~G, we may define ~/(t), teG, by 

(5.12) ~/(t)=A(t) if -#<=2(t)<L*(t)<~, 

(5.13) r / ( t )= - #  if - o o < 2 ( t ) <  -#<L*(t)<oo,  

(5.14) ~l(t)=L*(t) i f - o o < 2 ( t ) < = L * ( t ) < - l ~ .  

Then - oo <~/(t)=< [2(t)]_~; hence ~/~L- (G) and S~(t)dt<=i. On the other hand, 
G 

we can have 2(t)=L*(t)=oo at most in a set of measure zero, so that ~/(t) is 
finite almost everywhere in the set of points teG where (5.12) occurs. Also, 
L* ( t )>  - o o  by definition; hence ~/(t) is always finite in the set of points where 
(5.14) occurs. Thus (r/(t), ~(t))eQ(t, x(t)) a.e. in G. 

Proof of (5.i)".  The functions 2", 2~' are only measurable, and the relations 
rlk(t)<=A~'(t)<=2~'+ 1, 2~'T2" imply ~lk(t)<2~'(t)<=2"(t)<oo, teG, 2", 2~,'eL+ (G); 
the function 2" may have the value + oo in a set of positive measure in G. More- 
over, we have 

i--pk < ~tlk(t) dt< ~2'k'(t)dt< S2"(t) dt< oo. 
G O G 

As in the proof of (5.i)' we put 

/J'~'~(t) = lim : " ~ ) ~ , ~  . . . .  -~N, ~-/, s---l, 2, 
h'-~ oo 

E ' ( t ) =  lim E'(s)(t), 
s---~ oo 

so that 

teG, 

teG, 

tls+ l(t)=As+ t(t)<=I2'ts)(t)< A" (t)< oo, 

Since 2~'(t)l"A"(t), t~G, as s ~  oo, we conclude that 

<_ . . . . .  <_ - o o _ E  ( t )=Z ( t )_oo ,  teG, 
r r  H i<SE (t)dt=S2 (t)dt=oo. 

G G 

Finally, we can prove as in (5.i)' that  

- ~ <L. ( t)<2(t)<2"(t)<L*(t)~ oo, 

tEG. 

t eG-T .  
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Now we have 2eL-(G) ,  2 " e L  + (G); we define/t as in the proof of (5.i)', and we 
define t/(t), t~G, by 

(5.15) t t  __  t / ( t )=2( t )  if - - /~<2( t )=2 (t)_<c~, 

(5.16) 

(5.17) rl(t)=2"(t) if -oo<=2(t)<=2"(t)<-i~. 

If S 1, $2, $3 denote the sets of points teG where the cases (5.15), (5.16), (5.17) 
occur, then 2(t)__>-# on S 1 and the fact that ; teL-(G) implies 2eLl(Sx). Also 
/7 is a constant on $2. Finally 2"eL+(G),  2"__<-/~ on $3 so that 2"eLl(Sa) ;  
hence r/eL 1 (Sa). Thus qeL I(G). The relation r/(t)~ D~(t)]_u implies .Itl(t)dt<=i 
as in the proof of (5.i)', but now we know that r/eL t (G). 

Note that if the sets Q(t, x) have the upper property, then we can take 2~'(t)= 
Max [r/l (t) . . . . .  r / k ( t ) ]  , teG, k= l, 2 . . . . .  and the sequence ).~,' satisfies all require- 
ments of (5.i)". 

Remark 6. In statement (5.i), the requirement (5.4) cannot be disregarded, 
even if we replace (5.2) by the stronger condition S [ t/k (t) [ dt < Mo. This is shown 

G 

by the following example. Take v = n = r = l ,  0_<t<_l, 0_<x_<l, Q( t ,x )=  
[(z~176 if 0__<t<l, 0_<x_<l, t + x < l ;  O(t ,x)=[(z~176 
z=0]  if 0 ~ t <  l, 0<x__< 1, t+x>= l ;  Q(1, x ) = E t  x {0}. Then all sets Q(t, x) are 
closed half lines, or lines, and have property (Q) with respect to x everywhere. 
Let us take ~k(t) = ~(t) =0,  Xk(t)=k- ~, x(t) =0, 0_--< t__< l, tlk(t) =0  for 0_--< t <  1 - k -  1 

1 1 

and for t =  1, t/k(t) = - k f o r  1 - k  - t  __<t< 1. Then Srlk(t)dt= -- 1 and ~ttik(t)ldt= 1, 
0 0 

k = l ,  2 . . . . .  For x ( t )=0 ,  0 < t < l ,  we must have t/(t)=>0 for all 0=<t<l .  Hence 
1 

~ll(t)dt>=O, and relations (5.5) cannot be satisfied. 
O 

This example also shows that condition (5.9) cannot be disregarded in (5.i)'. 
Here the sets Q(t, x) have the upper property, and condition (5.9)* is certainly 
satisfied. 

(5.ii) Let the hypotheses of  (5.i) hold, except that the subsets Q(t, x) of  E,+ I 
satisfy only property (K) with respect to x in A c -  Ho, and ~k(t)--~ ~(t) pointwise 
a.e. in G as k --, oo. Then the conclusion of (5.i) also holds. 

Again, as for statement (5.i), functions 2, ~'k satisfying (5.4) can be found 
immediately (with the consequent inequality i > -  ~ )  under the conditions (~), 
(fl) with 7 = 0, (7) with ~ = 0, and (~) of Remark 5 above. 

Conditions (fl) and (7) with 7 > 0 do not apply, however. To see this we may 
consider the counterexample of Remark 6 with the following modification. 
Define Q(t,x) as in Remark6 for 0__<t<l, 0 < x < l ,  t + x < l ,  and for t = l ,  
0<x_<l ,  but take instead Q ( t , x ) = [ ( z ~ 1 7 6  -1] for 0 < t < l ,  
0 < x < l ,  t+x>__l. Correspondingly, choose ~lk(t) a s  in Remark6,  and put 
~k(t)=tlk(t), ~(t)=0,  0 < t < l .  NOW ~k(t)--'~(t) pointwise in [0, 1] as k - , ~  
and condition (fl) holds for ~k(t)=0, 7= l, yet the conclusions of (5.i, ii) do not 
hold. 
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Remark 7. Theorem (5.iii) below concerns the case where the sequences t/k(t ), 
~k(t), x~(t), tEG, k = l ,  2 . . . . .  satisfying (~/k(t), s xk(t)), teG(a.e .) ,  
with ~k-*~ weakly in (LI(G))', lim~l~(t)dt=i, xk(t)-*x(t) a.e. in G as k--, oo, 

G 
can be replaced by a modified sequence ~k(t), -~(t), x(t), t~G, k = l ,  2 . . . . .  
satisfying (~k(t),-~k(t))~Q(t, x(t)), tr (a.e.), where ~k still converges to 
weakly in (L~(G)) r and lira ~k(t)dt=i .  In other words, we need to know that 

G 
t~k(t)=~(t)--~(t)--,O weakly in (L~ (G))" and ,5~ weakly in 
L~ (G) as k-~ or. This situation actually occurs in a large class of problems (see 
Remark 12 below), and in this situation the sets Q(t, x) need be assumed only 
convex and closed (properties (Q) or (K) are not required). 

(5.iii) Let the hypotheses of (5.i) hold, except that the subsets Q(t, x) of E,+ t 
are only assumed to be closed and convex for every (t, x )eAo-Ho,  where ~--,~ 
weakly in (L~ (G))" as k--* oo, and x~(t)=x(t) for all t and k. Then the conclusion 
of  (5.i) holds. 

For this statement (5.iii) too there are functions 2, 2~ satisfying (5.4), with 
consequent inequality i > - o o ,  under the same conditions (~t), or (fl) with ~>0, 
or (~) with ~>0,  or (6) of Remark 5 above (exactly as for (5.i)). 

6. Closure Theorems for Mayer Problems 

We shall use essentially the notation of w Points in Ev, E,, Era, E, spaces 
will be denoted by t = (t l . . . . .  tv), x = (x 1 . . . . .  x~), u = (u! . . . . .  u~), and z-- (z I . . . . .  z'), 
or ~=(~1 . . . . .  ~'), respectively. Also as before A is a subset of E~xE,, A o is the 
projection of A on E,, and A(t)=[x~E,l(t,x)EA]. A subset U(t,x) of Em is 
assigned for every (t, x)~A, and we put M =  [(t, x, u)[(t, x)~A, uEU(t, x)]~E, x 
E, x Era. Here f(t, x, u )= ( f l  . . . .  , f , )  is a given function on M, and, for every 
(t, x)~A, Q(t, x) will denote the subset of E, defined by 

Q(t, x)=f(t ,  x, U(t, x))=[z~Erlz=f(t, x, u), ueU(t, x)]. 

We shall denote by G and T O given subsets of A o in Ev; then Ao and H o are the 
sets Aof f iAn(GxE,)  and Ho=Ar~(ToxEn). Finally we shall denote b y x ( t ) =  
(x 1 . . . . .  x~), u(t)=(u 1 . . . . .  u~), ~(t)=(~ 1 . . . . .  ~'), teG, given functions on G. 

Measurable functions x(t),  lEG, with values x(t)~A(t) a.e. in G, are said 
to be state functions; measurable functions u(t), teG, with values u(t)~ U(t, x(t)) 
a.e. in G, are said to be controls relative to the state function x(t), t~G. 

In [1 ab] we have already proved closure theorems for Mayer problems for 
v = 1 by direct application of statement (3.i) (or variants of this given in Remark 2) 
and the use of the McSHANE-WARFmLD implicit function theorem [10]. Analogously, 
we have proved [1 ghi] similar closure theorems for v > 1. We shall not, however, 
discuss them here. 

In the following we shall need only a very mild closure and continuity require- 
ment on A, M, and f ,  which we refer to as property (C) (Carath6odory type 
condition). We shall say that condition (C) is satisfied, provided that given an 
e > 0  there is a compact subset K of G such that I G - K [ < 8 ,  the sets AK= 
[(t, x)~AJt~K] and M r =  [(t, x, u)eM[ tEK] are closed, and f(t, x, u) is contin- 
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uous on M K. This requirement will suffice for the application of the MCSHANE- 
WARFIELD theorem. On the other hand, property (C) certainly implies that the 
sets A(t)  are closed for almost all t~G. For the sake of brevity, we shall say 
that f satisfies property (C) when the above conditions are satisfied. 

Statements (4.i), (4.ii), (4.iii) and the McShane-Warfield theorem yield the 
following statements (6.i-iii). 

(6.i) I f  G is a measurable set with finite measure and To has measure zero, i f  
f ( t ,  x, u) satisfies the continuity property (C) on M, i f  the corresponding sets 
Q(t, x )=f ( t ,  x, U(t, x)) defined above satisfy property (Q) with respect to x in 
A G - H o ,  i f~(t) ,  x(t),  r Xk(t), Uk(t), teG, k =  1, 2 , . . . ,  are measurable functions, 

if 
xk( t )eA(t ) ,  Uk(t)e U(t, xk(t)), 

(6.1) ~k(t)=f( t ,  Xk(t), Uk(t)), t eG (i.e.), k =  1, 2 . . . . .  

and i f  X k ( t ) ~ x ( t )  in measure in G and ~k-* ~ weakly in (L1 (G))" as k ~ oo, then 
there is some measurable function u(t), t e G, such that 

(6.2) x ( t ) eA( t ) ,  u( t )e  U(t, x(t)), ~ ( t )=f ( t ,  x(t),  u(t)), t eG (i.e.). 

Note  that for (6.i) to hold we do not need the full force of property (Q) with 
respect to x. All we need is the existence of a subsequence ks such that 
xko(t)--+x(t) pointwise i .e .  in G, and such that for almost all teG we have 

Q (t, x (t)) = cl co t, Xk,(t), Uk, (t) . 
h = l  s 

The same remark holds for theorem (6.ii) below. 

Remark 8. Statement (6.i) has the usual modifications in the situation of 
Remark 1 with v = 1, r = n, cl G = [a, b] = a fixed interval in E 1, x, Xk AC, ~ (t) = x' (t), 
~k(t)=x~(t), t~ [a, b] (a.e.), and (t, Xk(t))eA , Uk(t)e U(t, xk(t)), x~( t )=f( t ,  Xk(t), 
us(t)), t6[a, b] (i.e.),  k = l ,  2 . . . . .  Again, if the sets Q(t, x) have property (Q) 
with respect to x only, if x~ ~ x '  weakly in L1 ([a, b]), and if xk ( t ) -~x ( t ) a t  least 
at one point t, then the uniform convergence Xk ~ X in [a, b] follows, and there 
is a measurable function u(t), te[a, b], such that (t, x ( t ) )eA,  u( t )eU(t ,  x(t)), 
x ' ( t ) = f ( t ,  x(t) ,  u(t)), t~[a, b] (a.e.). 

(6.ii) Let  the hypotheses o f  (6.i) hold, except that the sets Q(t, x) satisfy only 
property (K) with respect to x in AG-Ho ,  where 4, ~k are only measurable, and 
where ~k( t )~  ~(t), Xk(t)--~ x(t)  pointwise i .e .  in G as k ~ co. Then the conclusion 
o f  (6.i) holds. 

If we assume that the sets U(t) depend on t only, if ~(t), ~k(t), x(t),  xk(t), 
uk(t), t~G, k =  1, 2 . . . . .  are measurable functions, and if, as usual, xk(t)eA(t) ,  
Uk(t)eU(t), ~k( t )=f( t ,  xk(t), us(t)), t eG (i.e.), k =  1, 2, ..., we may consider the 
auxiliary functions ~k (t) = f  (t, X (t), U k (t)), t e G, and the differences 

(6.3) ~ ( t ) = f ( t ,  xk(t), Uk(t))--f(t, x(t),  Uk(t)), teG, k =  1, 2 . . . . .  

which exist because U(t) depends on t only. In view of Remark 3 we should try 
to prove that ~k ~ 0  weakly in (L 1 (G)f. Actually, there are natural hypotheses 
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which guarantee that 6 k --~ 0 strongly in (L 1 (G))'. Also the following statement 
was proved in [3]: 

(*) Solely under the Carath6odory type continuity condition (C), if x(t),  
Xk (t), U k (t), t ~ G, are measurable functions, u k 6(L 1 (G)S), []u kll 1 < Mo = constant, 
x( t ) , xk ( t )eA( t ) ,  Uk(t)~U(t), t~G(a.e.) ,  k = l , 2  . . . . .  and if X k ( t ) ~ x ( t  ) in 
measure in G as k ~ oo, then c5 k ~ 0 strongly in (L 1 (G)) r if and only if the same 
functions C~k(t), teG, k =  1, 2, . . . ,  are equiabsolutely integrable in G. 

In Remark 9 below we list a few conditions under which ~k ~ 0 strongly in 
(L1 (G))'. Further conditions, details and proofs are given in [3]. 

The following simple closure theorem, in which no condition (Q) or (K) is 
required, is now a corollary of (4.iii). Instead of the orientor field relations 
~k(t)eQ(t, Xk(t)), t6G(a.e.),  we simply consider the orientor field relations 
~k(t)eQ(t,  x(t)), t6G (a.e.), k =  1, 2 . . . . .  and apply (4.iii). 

(6.iii) Let the hypotheses o f  (6.i) hold, except that the sets U(t) depend on t 
only, the sets Q(t, x) are assumed to be only convex and closed for  every (t, x)~ 
A~ - H o, where 4, 4k, 6k e (L, (G))', 4k "* 4, 6k ~ 0 weakly in (L, (G)f, and x k (t) ~ x (t) 
pointwise a.e. in G as k ~ oo. Then the conclusion of(6.i) holds. 

Remark 9. A great many particular conditions guarantee that  6k ~ 0 strongly 
in (L 1 (G))'. We mention here, for example, Lipschitz-type hypotheses such as 
(Fp), (Fo~) below, and growth-type hypotheses such as (Gpq), (Good) below. The 
latter type has been proposed by F. E. BROWDER (Arch. Rational Mech. Anal. 20, 
1965, 251-258) and by E. H. ROTrIE (Arch. Rational Mech. Anal. 21, t966, 151-162) 
for free problems of the calculus of variations. We list briefly some of these 
hypotheses here, referring to [3] for further conditions and details. In any case, 
we assume that fsatisfies the continuity condition (C). 

(Fp) For 1 < p < o o ,  we have x k, xe(Lp(G))", IIx~-xllp-~0, and 

I f ( t ,  xk( t))-- f ( t ,  x(t) ,  uk(t))[ <F(t,  Uk(t)) h([Xk(t)--x(t)[), teG, k =  1, 2 . . . . .  

where h(4)>0,  0<  4 < + oo, is a given monotone nondecreasing function with 
h ( 0 + ) = 0 ,  h ( O < c 4  for all 4>40>0 ,  and F(t, Uk(t))eLp,(G), 1 /p '+ l / p= l ,  
]IF(t, uk(t))l[p. < C, where 40, c, C are constants and F(t, u) is a giverl non-negative 
function defined on G x Era. 

(Fo~) We have x k, xeLoo(G), Ilxk--xll~o-~0, and 

[ f ( t ,  Xk(t), uk(t))--f(t ,  x(t) ,  uk(t))l <F(t,  Uk(t)) h(lXk(t)--x(t) l) ,  tEG, 

where h is as in (Fp), and F(t, Uk(t))~Ll (G), SF(t, uk(t))dt< C. 
G 

(apq) For 1 <p, q< oo, xk, xe(Lp(a))  n, Uk, ue(Lp(a)) ~', Ilxllp, Iixkllp<Zo, Ilullq, 
Iluklla<Z, Lo, Z given constants, we have x k ( t ) ~ x ( t )  pointwise a.e. in G as 
k ~ o o ,  and there are constants c, c', ~, fl, 0<ct<p,  O<fl~q,  aiad a function 
~k(t)>O, teG, ~keLI (G), such that for all (t, x, u), (t, y, u )EM we have 

I f ( t , x , u ) - f ( t ,  y ,u)l<=~k(O+c(lxl~-~+lylP-n)+c'lul  q-a. 

(Goo,) For l < q < o o ,  x, xke(Loo(G)) ~, u, uke(La(G)) m, Ilxll| I lxd~<Zo,  Ilull~, 
Iluklla<Z, L, Zo given constants, we have x k ( t ) ~ x ( t )  pointwise a.e. in G as 
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k - ,  ~ ,  and there are constants c', fl, 0 < f l ~ q ,  a function ~ ( t )>0 ,  t~G, ~ L 1  (G), 
and a monotone nondecreasing function a (~) ~ 0, 0 < ~ < + oo, such that for all 
(t, x, u), (t, y, u)E M we have 

If(t, x, u ) - f ( t ,  y, u) l~O(O(~r(lxl)+a(lyl))+c'lul q-p. 

Note that in (G.~), (G~ a) we do not assume that a (0 + ) =  0. These conditions 
are only growth conditions, the continuity of f (property (C) having the main 
role in the proof that 6k ~ 0). Note that, for f linear in x, that is, of the form 
f ( t ,  x, u)=B(t ,  u )x+C(t ,  u), where B=[btj(t,  x)], C=[ci(t, x)] are matrices of 
the types r x n ,  r x  1, with lbij(t, u)l__<~(t) for ~(t)__>0, teG, ~ELf(G),  con- 
dition (Fp) is certainly satisfied. 

Remark 10. In applications (see, e.g., [lij], [2]) we may have to consider a 
topological space S of elements y, operators L: S-,(Lx(G))' ,  M: S--*(LI(G))", 
and a class T of measurable controls u(t), tEG, such that if x( t )=(My)( t ) ,  
~( t )=(Ly)( t ) ,  t~G, then x( t )~A( t ) ,  u(t)eU(t ,  x(t)), ~( t )=f ( t ,  x(t),  u(t)), 
t eG (a.e.), that is, we may have to satisfy the constraints (My)( t )eA( t ) ,  u(t)e 
U(t, (My)(t)),  and the system of equations (Ly)(t)  =f( t ,  (My)(t),  u(t)), t~ G (a.e.). 
We then take into consideration a functional I[y, u], or I: f2--, E~, defined in a 
suitable subset [2 of S x T. If the functional I can be expressed in terms of x only, 
that is, i f / i s  of the form I[x], we may say that we have an abstract Mayer problem. 
As shown in [ l i jk]  suitable requirements on L and M are as follows: If Yk--'Y 
in S (that is, in the topology of S), then LYk-*Ly weakly in (L~ (G))', and Myt-- ,  
M y  strongly in (LI(G)) ~, that is, ~ k ~  weakly, and Xk--'X strongly. Then, a 
corresponding requirement on the Mayer functional I[x] is that I[XR]-* I[X] as 
k - ,  ~ .  Closure theorems of the present w apply to abstract Mayer problems of 
this type. We refer to I1 ij k] for details and more general formulations. 

7. Lower Closure Theorems for Lagrange Problems 

We shall use essentially the notations of w Points in Ev, E., E m, E,+ t spaces 
will be denoted by t=( t  t . . . .  , tv), x=  (x 1, ..., x~), u=(u I . . . . .  urn), and (z ~ z)= 
(z ~ z 1 . . . . .  z'), or (q, 0 = ( q ,  ~l . . . . .  ~'), respectively. Also, A is a subset of E~ x E., 
A o the projection of A on E~, and A(t )=[x~E.[ ( t , x )~A] .  For every (t, x)EA 
a subset U(t, x) of Em is assigned, and M denotes the set [(t, x, u)l(t, x)eA,  
u~ U(t, x)]cE~ • E. x E~. Here fo(t, x, u), f (t, x, u ) = ( f  l . . . . .  f ,) are given func- 
tions on M, and, for every (t, x)~A, Q(t, x) denotes the subset of Er+ 1 defined by 

Q(t, x )=[(z  ~ z) [ z ~ x, u), z=f ( t ,  x, u), ue U (t, x)]. 

We shall denote by G and T o given subsets of Ao in E; then AG and Ho are the 
sets A ~ = A n ( G x E , ) ,  Ho=Ac~(To• Finally, we shall denote by x ( t )=  
(x 1 . . . . .  x"), u( t )=(u I . . . . .  urn), ~(t)=(~l . . . . .  ~m), q(t), teG, given functions on G. 

(7.i) I f  G is a measurable set with finite measure, and To has measure zero, i f  
fo(t, x, u), f (t, x, u)=(fx . . . .  ,jr) satisfy the continuity property (C) on M, i f  the 
corresponding subsets O.(t, x) o f  E,+ 1 defined above satisfy property (Q) with 
respect to x m A ~ - H  o, i f  ~(t), x(t),  ~k(t), qk(t), xk(t), uk(t), 2(t), 2~(t), teG, 
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k= 1, 2 . . . . .  are measurable functions, ~, ~k~(L 1 (G))', tlkeL1 (G), if  

xk(OEA(t), uk(t)~U(t, xk(t)), 

(7.1) ~k(t)=f(t, Xk(t), Uk(t)), ~/k(t) =fo(t,  xk(t), Uk(t)) 

(7.2) - oo < i =  lira S~lk(t)dt< 00, 
k ~ a o  G 

(7.3) ~k-~ ~ weakly in (Ll (G))', xk(t)-~ x(t) in measure in G as k-~ oo, 

(7.4) ~lk(t)>=).k(t), ,~, 2k~LI (G ), ;.k-~ 2 weakly in LI (G), 

then there is some measurable function u(t), t~G, such that, if ~l(t)=fo(t, x(t), u(t)), 
tEG, then ~leL- (G), and 

x(t)~A(t), u(t)eU(t, x(t)), ~(t)=f(t, x(t), u(t)), t~G (a.e.), 

(7.5) SFl(t)dt<=i= lim [tlk(t)dt. 
G k--, o0 G 

Proof. In view of (5.i) there is a function ~(t), teG, "~eL 1 (G), such that 

x(t)eA(t),  (~(t), ~(t))EQ(t, x(t)), t~G, (a.e.), S~(t)dt~i .  
G 

By the McShane-Warfield theorem there is a measurable function u(t), t~G, 
such that 

x(t)EA(t), u(t)~U(t,x(O), ~(t)=f(t,x(t),u(t)), 

fo(t, x(t), u ( t ) )~ ( t ) ,  t~G (a.e.). 
Finally, by taking 

tl(t)=fo(t, x(t), u(t)), teG, 
we have 

tl(t)<~(t ), t~G, ~tl(t)dt< ~ ( t ) d t < i ,  
G G 

and t/ is certainly measurable and of class L-(G) .  In any case, relations (7.5) 
hold, and statement (7.i) is proved. 

Note that, for (7.i) to hold, we do not need the full force of property (Q) 
with respect to x. All we need is that there is a subsequence k~ such that xk,(t) ~ x(t) 
pointwise a.e. in G, and such that, for almost all t~G, we have 

Q.(t, x ( t l )=  Q cl co �9 (t, x..(t), uk,(t)) . 

where j? =(fo , f )=( fo , f l  . . . . .  f,). The same remark holds for theorem (7.ii)below 

Remark 11. Requirement (7.4) and the L-integrability of t / in  statement (7.i) 
can be guaranteed under a variety of conditions, for instance, any of the following. 

(~o) There is a real valued function ~ ( t ) > 0 ,  teG, ~bELI(G), such that 
fo(t,  x, u)__> -~b(t) for all (t, x, u)eM. 

Indeed, as in w under (ct) of Remark 5, we have th(t)>2k(t)= -~b(t), t~G, 
k = 1, 2 . . . . .  Then in the proof of (7.i) we have - ~ (t) < t/(t) =fo (t, x (t), u (t))__< ~ (t), 
t~G, where both ~ and ~ are L-integrable; hence t/~L~ (G). 
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(to) There exists a real valued function ~b(t)>0, t~G, ~beLl(G), and a con- 
stant 7 > 0  such that fo(t ,  x, u)> - ~ ( t ) -  7 If(t ,  x, u)[ for all (t, x, u)eM. 

Indeed, as in w under (fl) of Remark 5, we have tlk(t)>2k(t)=--~(t)-- 
Y l~k(t)l; then, as we have noticed there, there is a subsequence [2ks ] which con- 
verges weakly in LI(G) toward some L-integrable function - tp ( t ) -~a( t ) ,  
tr(t) ~ 0, t~G. On the other hand, in the proof of (7.i), we have -~b ( t ) - v l i ( t ) [ <  
rl(t)=fo(t, x(t), u(t))<~(t), t~G, where ~k, 141, ~eLI(G), and hence rI~LI(G ). 

(70) We have x, Xke(Lp(G))", [Ix~-xllp~0,  ~, ~ke(L~(a)f, ~ k ~  weakly in 
(LI(G))', for some p, 1 < p < o o ,  and there exists a real valued function ~,(t)>0,  
teG, ~ L I ( G  ), and constants 7, 7 ' > 0  such that fo(t ,x,  u ) > - ~ ( t ) - v l x l  p -  
v'[f(t, x, u)] for all (t, x, u)~M. 

Indeed, as in w under (V) of Remark 5, we have rlk(t)>2k(t)=--~k(t)-- 
VlXk(t) l -- Y'l ~k(t) l; also we noticed there that there is a subsequence [2k, ] which 
converges weakly in La (G) toward some L-integrable function - ~k ( t ) -  71 x (t) [ - 
V'a(t), a(t)>O, t~G. On the other hand, in the proof of (7.i), we have -~O( t ) -  
7Ix ( t ) [ -  7'[~ ( t ) l<  ~/(t)=fo(t, x (t), u ( t ) )< ~ (t), t ~ G, and again q eL1 (G). 

(rio) We have Xk~(Loo(G)) n, IIx~ll~__<t~, ~(Z~o(G))', Ill, lion<L2 for given 
constants La, L2, and there exists a real valued function ~O(t)>0, teG, ~beL~ (G), 
and a real valued monotone nondecreasing function a ( 0 > 0 ,  0 < ~ < o o ,  such 
that fo (t, x, u) > - ~O (t) tr (I x l + If(t, x, u) l) for all (t, x, u) e M. 

Other analogous cases can be treated similarly. 

Remark 12. Statement (7.i) is usually applied to sequences for which it is 
known that 

i=  lim ~rlk(t)dt< oo. 
k ~ o o  G 

The complementary inequality i > - ~  required in statement (7.i) is certainly 
satisfied under any one of the conditions (~o), (to), (?o), (60) stated in Remark 11. 
These cases reduce to the cases ( ~ - r )  of Remark 5. 

Remark 13. Solely under the hypotheses of statement (7.i), the function 
~l(t)=f(t, x(t), u(t)), teG, may not be L-integrable in G. This can be seen in the 
two examples below. 

E x a m p l e l .  Take v = n = m = r = l ,  U=E1,  A = [ 0 , 1 ] x E 1 ,  M = A •  
f ( t , x ,u )=u ,  and fo(t ,x ,u)=O for t=0 ,  f o ( t , x , u )= t - l ( u2 -1 )  for 0 < t < l .  
Condition (C) is obviously satisfied. We take now xk(t)=t--i/k, Uk(t)=l for 
i /k<t<i /k+l /2k ,  Xk(t)=(i+l)/k--t,  Uk(t)=--I for ( /k+l /2k<t<(i+l) /k ,  
k = l ,  2 . . . . .  so that qk(t)=fo(t, xk(t), Uk(t))=O, ~k(t)=uk(t), t~G. Here xk(t) 
converges uniformly in [0, 1] to x ( t ) = 0 ,  and ~k(t) converges weakly in LI (G) 
to ~( t )=0 .  Now we have O=~(t)=f(t, x(t), u(t)) only for u ( t )=0 ,  0 < t <  1, and 
finally, rl(t)=fo(t, x(t), u ( t ) ) = - t  -1 is not L-integrable in [0, 1]. Note that 
~ k ~  weakly, and Uk~U weakly in L1 (as well as in any Lp, p> 1). Finally, the 
sets Q (t) are here the sets Q (t) = [(z ~ z) [z ~ > t - 1 (z 2 _ 1)], certainly closed, convex, 
and satisfying property (Q) for every te(0, 1]. Note that, if ~ denotes the function 
of statement (5.i), then ~ is zero for 0 < t < 1, and thus ~ is L-integrable, but ~ is not. 
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Example 2. Take v = n = m = r = 1, U= E~, A = [0, 1 ] x El, f(t, x, u) = t 112 - -  1, 
fo (t, x, u) = 1 - 2 (1 + t) u z + t (1 + t ) u 4, so that both fo and f are now continuous 
on M = A x E I .  We take xk(t)=t--i/k, Uk(t)=21/Zt-1/2 for i /k<t<i/k+l/2k,  
Xk (t) = (i+ 1)/k-- t, Uk (t) = 0 for i/k + 1/2k < t < (i+ 1)/k, i= 1 .. . . .  k -  1, k = 1, 2,..., 
so that ~k(t)=f(t, xk(t), uk(t))= 1, or = - 1 ,  according as t lies in one or the other 
set of intervals. Thus, xk(t ) conveges uniformly in [0, 1] to x(t)=O, and ~k(t) 
converges weakly in LI(G) to ~(t)=O. Now we have O=~(t)=f(t, x(t), u(t)) 
only for u(t)= +t -1/2, 0 < t <  1, and finally ~l(t)=fo(t, x(t), u(t))= - t  -1 is not 
L-integrable in [0, 1]. Note that the sets Q(t) are here the sets Q ( t )=  [(z ~ z ) [z~  
1 - s +  sz 2, - 1 < z < + ~ ] ,  s =  1 + t - 1 certainly convex, closed, and satisfying 
property (Q) for every te(0, 1]. Also, note that ~l~(t)=fo(t, xk(t), uk( t ) )= l  for 
all t~[0, 1], (a.e.). The function ~ of statement (5.i) is here equal to 1, and ~ is 
L-integrable while ~ is not. 

Remark 14. Let  us consider the following condition (~'o)', weaker than con- 
dition (~o) of Remark 11. 

(7o)' We have Xk~(Lp(G)) ~, tlxkllp__<Lx, ~(Lz(G)) ' ,  il~kll~<L2 for given con- 
stants p, q, L1, L2, 1 <p,  q<  ~ ,  and there exists a real valued function ~b(t)>0, 
t~G, ~kELI(G), and constants 7, 7 ' > 0  such that fo(t,x,  u ) > - ~ ( t ) - v l x l  p -  
7"If(t, x, u)l q for  all (t, x, u)r 

The condition (~o)' certainly guarantees that the function ~/in (7.i) is L-inte- 
grable. Indeed, in the proof of (7.i) we have -~b ( t ) - 7 I x ( t ) [ P - ~ ' 1 ~  (t)[q < ~/(t)= 
fo(t ,x(t) ,u(t))<~(t),  t~G, where ~, Ixl p, I~la~Zx(G), and hence rl~LI(G ). 
Nevertheless, from the condition (~o)' for q >  1 we cannot derive functions 2, 
2k eL  1 (G), such that ~/k > 2k, 2k ~ 2 weakly in L 1 (G), as required in (7.4) of (7.i). 
Indeed, for q >  1, the conclusion of (7.i) may fail to be valid under the weak con- 
dition (~o)' for q >  1 without requirement (7.4), and this may happen even if we 
assume as in (~o) that Ilxk-xllp~0 and, of course, ~ k ~  weakly in (Lq(G))'. 
This is shown by the following example for q = 2. 

Example. Take v=n=m=r=l ,  G=[tlO<t<l], A(t)=[xlO<x<l],  A= 
G x [ 0 , 1 ] ,  U={0}, f ( t , x ,O)=(- fo)  ~/2, fo(t,x,O)=O for 0 < t < l ,  0 < x < l ,  
t+x<= 1 ; fo(t ,  x, 0 ) = 2 x - 2 ( 1  - - t - x )  for 0_~t< 1, 0 < x <  1, t+x>= 1 ; fo (1, x, 0 ) = 0  
for 0_<x< 1. Obviously, f and fo satisfy property (C), the sets Q(t, x) are all 
half-straight lines, namely, Q (t, x) = [(z ~ z) I z~ _-> 0, z = 0] in the first instance, 
Q(t, x ) =  [(z ~ z)[z~ > - z  2, z = ( - E x - 2 ( 1 - t - x ) )  1/2] in the second instance, and 

(t, x) = [(z ~ z) I z~ --> 0, z = 0] in the third. Obviously, these sets have property (Q) 
with respect to x for all t. We take xk(t)=k -1, Uk(t)=O, ~k(t)=(--rlk(t)) 1/2 
for0---- t--< 1, r/k(t) = 0  for  O<t<- 1 - k  -~, rlk(t)=2k2(1 - t - k -  x) for 1 - k  -a <t_< 1, 

1 

(tlk(t)dt=--l.  Here we have x ( t ) = 0 ,  r  r / ( t )=0,  Ilxk-xlla=k-X--,o, 
0 1 

I[~k--~Hx =2a/z3-~k-~/2 ~ 0  as k ~  oo. On the other hand, [rl(t)dt=O and (7.5) 
O 

does not  hold. Note that here we have r/~LI (G), and fo = _ f 2 ;  hence, condition 
(~o)' holds for q = 2, yet the conclusion of (7.i) does not hold. We prove now that 
~k --~ 0 weakly in L 2 (G). Indeed, 

Ck(t)=0 f o r 0 < t _ < l - - k  -a,  ~ ( t ) = ( - 2 k 2 ( 1 - t - k - ~ ) )  ~/~ for 1-k-X<-t<_l, 
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and for any fixed function q~(t), 0 < t <  1, ~0EL2(G), we have 

l i ~k( t) q;( t) d t l <= [l _i_ l ~2 d t] l /2 [l_i_ l ~~ d t] l /2 : [l _i_ l tp2 d t] l /2. 

Since tp2eLI(G) is absolutely integrable, the last integral approaches zero as 
k --* ~ .  Thus, ~k "* 0 weakly in L 2 (G). 

(7.ii) Let the hypotheses of  (7.i) hold, except that the sets Q(t, x) are required 
to satisfy only property (K) with respect to x in A 6 -  Ho, and ~k( t )~ ~ (t) pointwise 
a.e. in G as k --* oo. Then the conclusion of  (7.i) holds. 

The proof is the same as for (7.i), where use is made of (5.ii). 
Requirement (7.4) and the L-integrability of t/ in statement (7.ii) can be 

guaranteed under the same conditions, that is (~0), or (to) with 7=0,  or (Yo) 
with y=0,  or (60) of Remark 11. Conditions (to) with y>0,  and (Yo) with y > 0  
do not apply to statement (7.ii) (cfr. discussion in w 5). 

(7.iii) Let the hypotheses of  (7.i) hold, except that the sets Q(t, x) are only 
assumed to be convex and closed, and ~k ~ ~ weakly in (L 1 (G))" as k--* oo, and 
Xk(t)=x(t)  for all t and k. Then the conclusion of  (7.i) holds. 

The proof is the same as for (7.i), where use is made of (5.iii). Requirement 
(7.4) and the L-integrability of the function r/ in statement (7.iii) can again be 
guaranteed under the same conditions, that is (%), or (to) with y_>-0, or (Yo) 
with y~0 ,  or (6o) of Remark 11 (exactly as for (7.i)). 

Soley under the continuity condition (C) f o r f a n d f  o, and as in w if the sets 
U(t) depend on t only, and r x(t), r rlk(t), xk(t), uk(t), teG, k =  1, 2, ..., 
are measurable functions, ~, ~kE(LI(G)) r, t/keLI(G), (t, x k ( t ) ) ~ . 4  , Uk(t)6U(t), 

~k(t)=f(t ,  xs(t), Uk(t)), rlk(t)=fo(t, xs(t), uk(t)), teG, k =  1, 2 . . . . .  

liras r/k (t) dt = i, 
G 

we may consider the differences 

6k(t)=f(t,  Xk(t), Uk(t))--f(t, x(t), ukft)), 

6~ Xk(t), Uk(t))--fo(t, x(t), U s ( t ) )  , t 6  G, k= 1, 2 . . . .  

which exist because U(t) depends on t only. We shall assume as in (7.i) that xs (t) -~ 
x( t )  pointwise a.e. in G, that ~s "-* ~ weakly in (LI (G))" as k ~ oo, and that - o o  < 
i <  + oo. In addition let us assume here that 

6k -* 0 weakly in (t. 1 (~ ) ' ,  

(7.6) oo > lim S 6 ~ (t) d t >__ 0. 
G 

This occurs under natural conditions, as mentioned in Remark 9 (see also [3]). 
Actually, under such conditions 6t--,0 strongly in (LI (G))', 60- ,0 strongly in 
L1 (G), and thus (7.6) holds trivially. Under assumption (7.6), then, for the analo- 
gous functions 

~s(t)=f(t, x(t), us(t)), 

~s(t)=fo(t, x(t), Uk(t)), teG,  k = l ,  2 . . . . .  
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we have 

~k(t)----~k(t)--'~k(t), ~k(t)=rlk(t)--60(t), tr  k = l , 2  . . . . .  

Hence, ~k--* ~ weakly in (L 1 (G))', 

limS~k(t) d t ~ i ,  

and statement (5.iii) applies. The following simple lower closure theorem, where 
reither property (Q) nor property (K) is required, is now a corollary of (5.iii). 

(7.iv) ;Let the hypotheses of  (7.i) hold, except that the sets U(t) depend on t 
only, the sets O. ( t, x) are only assumed to be convex and closed for every ( t, x) ~.4 ~ - Ho, 
and where ~, ~k, ~ke(Ll(G))', tlk, 6~ ~k-*~, 6k -*0 weakly in (L~(G))', 
6~  weakly in L1 (G), - oo < i=l im Srlk(t)dt < + oo, and xk(t) ~ x( t )  pointwise 

a.e. in G. Then the conclusion of(7.i) holds. 
We have seen that actually it is enough that (7.6) holds. 

Remark 15. In the present situation, the lower closure theorem (7.i) essentially 
contains as a particular case (indeed, the particular case (~o) under Remark 11 
with U a fixed set) an analogous proposition recently stated by M. F. BIDAUr 
(Quelques rdsuitats d'existence pour des probl~mes de contr61e optimal. C .R .  
Acad. Sci. Paris, t. 274, 1972, 62-65). As we have shown in w moreover, these 
theorems can be formulated in the more general and more satisfactory context 
of orientor fields. - .4dded in proof." Two papers by L. D. BERKOVITZ have been 
brought to my attention: Existence theorems in problems of optimal control. 
Studia Math. 44, 1972, 275-285; and Existence and lower closure theorems for 
abstract control problems. SIAM J. Control 12, 1974, 27-42. These papers deal 
with closure and lower closure theorems for weak convergence, under either 
property (Q) with respect to x only, or Lipschitz-type hypotheses. Essentially 
analogous comments (as above) hold for these papers. See also Remark 9 and 
the results in [3]. 

Remark 16. In applications (see, e.g., [lij], [2]) we may have to consider a 
topological space S of elements y, operators L:  S--,(LI(G))', M: S - , (L I (G) )  ~, 
and a class T of controls u(t), t~G, as stated in Remark 9, and we may have to 
consider a functional l [y,  u], or I: ~2--, E~ defined in a suitable subset ~ of S • T, 
of the form ILp, u]=~fo( t , (My)( t ) ,  u(t))dt. This may be called an abstract 

a 
Lagrange problem. The requirements on the operators L and~M have been 
mentioned in Remark 10. The lower closure theorems of the present w apply, 
and essentially prove, under suitable closure properties of the class f~, that, as 
y l ~ y  in S, ukcT, (Yt, uk)ef~, there is some u~T, such that (y, u)ef2, and I[y, u ]~  
lira l[Yi, uk] as k-* oo. 

8. Lower Semicontinulty Theorems 

We shall use essentially the notations of w Points in Ev, E,, Era, El spaces 
will be denoted by t=( t  1 . . . . .  t~), X~-(X i . . . .  , x~), u=(u  1, ..;, u~), and z ~ or ~/, 
respectively. As usual, A is a subset of Ev x En, `4o the projection of A on E~, and 
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A ( t ) = [ x e E . l ( t ,  x)eA]. For every (t, x ) e A  a subset U(t, x) of E m is assigned, 
and M denotes the set [(t, x, u) ] (t, x)e  A, ue U(t, x)] = Ev x E. x El. Here fo (t, x, u) 
is a given real valued function on M. We denote as usual by G and T o given subsets 
of Ao in Ev; then A G and H o are the sets A G = A n ( G •  H o = A n ( T o x E . ) .  
Finally, we denote by x( t )  = (x 1 . . . . .  x"), u (t) = (u 1, ..., urn), rl (t), te G, given func- 
tions on G. 

In other words, we have the situation of w minus the function f Namely, 
we are particularizing w by assuming r=m,  f ( t ,  x, u)=u. Thus, the sets Q of w 
are here the sets 

Qo (t, x) = [(z ~ u) lz ~ -->fo (t, x, u), ue U(t, x)]. 

By assuming that fo satisfies condition (C), we know that there is a set T o of 
measure zero such that the sets A(t )  are closed for all t e G - T o ,  the sets Mr=  
[(x, u)[(t, x, u)eM] are also closed, and fo(t ,  x, u), as a function of (x, u), is 
continuous on M r It is easy to see that, for any t e G - T o ,  the sets Qo(t, x) are 
closed and satisfy property (K) with respect to x in A (t). 

In [1 cd] we expressed property (Q) in terms of "seminormali ty" conditions. 
In the particular case under consideration (r=m,  f =  u), and using the notations 
in f led] ,  we say that for any given t e G - T o  the function fo(t,  x, u), thought of 
as a function of (x, u) in M,, is seminormal with respect to u at the point (2, ~), 
(2cA  (t), fie U(t, 2)), provided that given e > 0  there are real numbers 6 > 0, and 
r, b =(b  1 . . . . .  b,,) such that 

f o ( t , x , u ) > c + b u  fora l lxeN6; t ( '2 )  and u e U ( t , x ) ;  

fo(t, "2, fi)< c + b~ + e. 

Here bu denotes the usual inner product in Era. Again, for any given t e G - T o ,  
fo(t ,  x, u) is said to be seminormal with respect to u in A(t) ,  provided fo(t,  x, u) 
is seminormal with respect to u at every point (,2, fi), "2cA(t), fie U(t, "2). 

The seminormality condition we have just defined is a slight extension of 
TONELLI'S and MCSHANE'S seminormality condition for free problems of the 
calculus of variations. 

For  the particular sets Qo(t, x) defined above, our results in [1 cd] yield: 

(*) For  any given t e G - T o  the sets Qo (t, x), x e A  (t), have property (Q) with 
respect to x in A(t)  if and only i f fo( t ,  x, u), thought of as a function of (x, u) in 
M t, is "seminormal"  with respect to u for x e A  (t). 

The following lower semicontinuity theorems correspond to the lower closure 
statements (7.i-iii). H e r e f = u ;  hence, in the notations of w ~( t )=u( t ) ,  ~k(t)= 
uk(t). 

(8.i) I f  G is a measurable set o f  finite measure, and T o has measure zero, i f  
fo (t, x, u) satisfies the continuity condition (C), i f  the sets U(t, x) are convex for 
every (t, x ) e A ~ - H o ,  i f  fo( t  , x, u) is convex with respect to u in U(t, x), and the 
sets Qo (t, x) satisfy condition (Q) with respect to x in A G -  H o (or, equivalently, 
for  every t e G - T o ,  fo(t ,  x, u) is seminormal with respect to u for xeA( t ) ) ,  i f  
qk(t), x( t) ,  u(t), xk(t), uk(t), 2(t), 2k(t), teG, k =  1, 2, ..., are measurable functions 
with xk ( t )eA( t ) ,  uk( t )eU(t  , xk(t)) , qk(t)=fo(t  , xk(t), uk(t)) , t eG (a.e.), / f  u, 
uk~(Ll(G)) m, qkeLa(G ), u ~ u  weakly in (LI(G)) m, x k ( t ) ~ x ( t  ) in measure, and 
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--o0 <i=lim STlk(t)dt < o0 , ifr/k(t)-->2k(t), 2, 2k~LI(G), 2k--,2 weakly in LI (GO, 
G 

then x( t )eA(t) ,  u(t)eU(t, x(t)), teG (a.e.), and if  ~l(t)=fo(t, x(t), u(t)), tEG, 
then ~l~L- (G), and S~l(t)dt<i. 

G 

As in Remark 11 of w under either of the conditions (%), (flo) there are 
functions 2, 2k satisfying the requirements above with ~/eL 1 (G). 

(8.ii) Let the hypotheses of  (8.i) hold, except that fo(t, x, u) only satisfies prop- 
erty (C) and is convex with respect to u for all (t, x )~Ao-Ho  (no property (Q) 
or seminormality required), and suppose ~lkeLl(G), uk(t)~u(t) ,  x k ( t )~x ( t )  
pointwise in a. e, in G as k -~ oo, and - oo < i< oo. Then the conclusion of  (8.i) also 
holds. 

In statement (8.ii) we can again determine functions 2, 2 k satisfying the corre- 
sponding requirements in (8.i), so as to guarantee that TIeLI(G), under either 
condition (%), or condition (flo) with y = 0 of Remark 11. 

(8.iii) Let the hypotheses of  (8.i) hold, except that fo(t, x, u) is only assumed to 
be convex with respect to u for all (t, x ) e A ~ - H o  (no seminormality required), and 
rlkELl(G), U, uke(Lx(G)) m, u ~ u  weakly in (LI(G)) m, and xk(t)=x(t  ) for all t 
and k. 

In statement (8.iii) we can again determine functions 2, 2k satisfying the 
corresponding requirements in (8.i), so as to guarantee that ~/~LI(G), under 
either condition (%), or condition (1/o) with y>-0 of Remark 11 (exactly as for 
(8.i)). 

We assume now that the sets U(t) depend on t only, and we consider the 
differences 

6o(0 =fo(t, xk(t), uk(t))-fo(t, xft), uk(t)), t e G, k = 1, 2 . . . . .  

(8.iv) Let the hypotheses of (8.i) be satisfied, except that the sets U(t) depend 
on t only and are convex, fo (t, x, u) only satisfies property (C) and is convex with 
respect to u in U(t) for every (t, x ) e A o - H o  (no property (Q) or seminormality 
required), and tl~eLI(G), uk--*u weakly in (L~(G)) m, 6 ~  weakly in LI(G), 
xk(t )--+x(t) pointwise a.e. in G as k--+oo, and - o o < i < o o .  Then the conclusion 
of  (8.i) holds. 

These statements (8.i-iii) are corollaries of the corresponding statements 
(7.i-iii). 

Remark 17. If S, T, L, M are as in Remarks 10 and 16, then we may consider 
abstract free problems with the functional I[y] of the form 

I I-Y] = ~f0 (t, (My)(t) ,  (Ly) (t)) dt, 
G 

or equivalently I[y, u] = ~f0 (t, ( g y ) ( t ) ,  u(t))dt, where y and u are related by the 
G 

equations (Ly)(t)=u(t),  t~G (a.e.) (and the usual constraint relations (My)( t )~  
A(t), u(t)~U(t, (My)(t)) ,  t~G (a.e.) are satisfied). The lower semicontinuity 
theorems of the present section then apply to these problems. 

Added in proof: By consistent use of the method and results of the present 
paper, and under suitable conditions of geometric character, we have further 

25 Arch. Rat.  Mech. Anal., Vol. 55 
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reduced,  o r  e l iminated ,  t h e  requi rements  conce rn ing  p rope r ty  (Q) in closure,  
lower  closure,  and  semicont inui ty  theorems,  in this p a p e r :  cf. L. CESARI, Lower  
semicont inui ty  and  l o w e r  closui~e t h e o r e m s  wi thout  seminormal i ty  condi t ions .  
Anna l i  Ma tem.  pu ra  appl .  98, 1974, 381-397. 

This research was partially supported by AFOSR Research Project 71-2122 at the University 
of Michigan. 
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