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§ 1. Introduction

The main purpose of this paper is to prove some new existence theorems for
positive solutions to the Dirichlet problem

(1.1 Au(x) + flu(x)) =0, x€,
(1.2) ux) =0, xcoQ.

Here 2 is a bounded domain in R", with smooth boundary, and fis a continuous
function on R.

We introduce in § 2 the notion of “‘eccentricity’, e(Q), of a domain 2 C R”,
which has the property that 1 < e(2) < oo and e(2) =1 if and only if 2
is a ball. We then define for any function f on R the “nonlinearity” of £, N(f).
If fis a linear function, N(f)=1; if f() = v*, k <1, N(f) = oo; if flu)= o,
k> 1, N(f)< 1. The main theorem of the paper, Theorem 2.2, states that if
N(f)> e(£2) then there exist positive solutions to (1.1), (1.2) on all domains
AQ if A is sufficiently large. Equivalently, if N(f) > e(£2), then positive solutions
to the Dirichlet problem for Au 4 uf(1) = 0, exist on £, for some range of u.
Our method of proof is a variation of the technique of ““upper and lower solu-
tions”, ¢f. [14, Ch. 10}, whereby we use techniques developed in [10, 13] (where
2 is an n-ball) in order to construct these “solutions”. We note that our methods’
apply to any elliptic operator; we consider (1.1) for definiteness. We then give
in § 3, several applications of this theorem. For example, if f(u)fu — 0 as u — oo,
and! F(uy) >0 for some u, >0 (where F'=f, F(0)= 0) then positive
solutions exist on 402 if 4 is sufficiently large. Again, if f(#,) = 0 for some u, > 0,
and F(ue) > 0, then the same conclusion holds. In both cases, we require no
conditions on the behavior of f near zero.

In § 4 we take Q to be an n-ball, and we prove existence of positive solutions

! This is always a necessary condition as follows from PoHOZAEV’s identity; see [2]
and [9].
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of (1.1), (1.2) on some ball, provided only that fsatisfies an inequality of the form
(1.3) G =fWuF<c, as u-—>oo.

Here ¢, and c¢, are positive constants, and 0 << k < nf(n — 2). This result is a
consequence of some general existence theorems whereby f is required to satisfy
an inequality of the form cu* < f(u) < di/, for large u, with c, d, « and B being
positive constants.

In § 5 we study the Neumann problem for (1.1) on n-balls, 7.e. solutions of
(1.1) which satisfy homogeneous Neumann boundary conditions

(1.4) du(x)[dn = 0, x € 0182,

where d/dn denotes differentiation in the radial direction on ¢£2. Thus, for ex-
ample, if fsatisfies (1.3), where 0 << k << n/(n — 2), and, in addition, there exists
an y such that flu) <0 for w <y <0, and F(y) >oc0 as u— —oo, we
show that the Neumann problem has a monotone radial solution on some »-
ball.

We note that the existence of positive solutions to the Dirichlet problem
has been obtained if f(x) is required to be positive, or if f(0) = 0 and f'(0)> 0;
see 1,2, 3,5,7, 8]. Weallow f to be an arbitrary function near zero. Such freedom
is necessary if one is interested in questions of “symmetry-breaking” (see [11, 12]).
Indeed, as we have shown in [11], the symmetry cannot break on a positive radial
solution of (1.1), (1.2) unless f(0) < 0.

We remark that if f(¢) = /%, then it is well known [8] that there are no posi-
n-2 n 2
n—2 n—2'n—2

tive solutions to the Dirichlet problem on n-balls, if k=

2
—Z i_ 55 see [7, 91. Thus our result given

above is probably not the best possible. It would be interesting to know if there
are positive solutions to the Dirichlet problem on n-balls if f(u) = * — o, where
o is a positive constant, and - < k< ny 2.
n—2 n—2
Throughout this paper, F will denote the primitive of f satisfying F(0) = 0,
and D% will be the n-ball of radius R centered at 0¢€ R”. Finally prime, ('),
will denote differentiation with respect to r.

but that there are such sclutions if &k <

§ 2. The Dirichlet Problem on General Domains

In this section we shall show that the existence of positive solutions on n-balls
can be used to prove the existence of positive solutions on general domains.
We introduce the notion of the eccentricity of a domain, and we use it to prove
our general, (somewhat abstract), existence theorem. In the next section we shall
how it applies to extend known results.

Thus let £ be a smooth bounded domain in R”, and let B,(p) denote an n-
ball of radius r centered at p. We begin with a purely geometrical result.
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Lemma 2.1, There exists a ¢ >0 such that if x€ Q, then x€ B,()) C 2 for
some y¢ 8.

Proof. We start by mimicking the standard proof of the tubular neighborhood
theorem; c¢f. [6]. Thus define a function ¢:0L2 xR —R”" by

Hp,t)=p + m,

where 7 is the outward normal at p. Since d¢(p, 0) is invertible, ¢ is a local diffeo-
morphism. But ¢ is a diffeomorphism on the compact manifold 202 x{0}; thus
¢ is, in fact, a diffeomorphism on some closed neighborhood of 02 in Q2 xR
(see [6]). Let 2£2x[—p,0] be such a neighborhood, ¢ > 0. We claim that

this ¢ “works”. Thus, let x€ Q2. If x4 $(@2x(—p, 0]), then B,(x) C £2;
otherwise we could find z€ B(x) N 92 with x = z -+ tn for some ¢, || <o,
(namely z is the point on 242 closest to x), and so x € $(982 x(—p, 0]). On the
other hand, if x¢€ ¢(@Q2x(—p,0]), then x ==p + tn for some p€ dR, and

—o < t=0. It follows that x¢€ B,(p — on), and the proof is complete. []

Note that lemma 2.1 requires £ to have a smooth boundary; if 242 has a
cusp, then ¢ = 0.
In view of this lemma, we may define the number

2.1) o(R) =supfo > 0:xc Q=3 yc Q with B,(y) C £2}.

Next, we define the eccentricity, e(£2), of the region £ by

2.2) e(2) = inf { : 2 C By(p) for some peR”, and some R > 0:.

R
o(22)
Observe that e(£2) =1, and e(2) =1 if and only if £ is an n-ball. To get a
feel for e(£2), note that if Q2 C R? is the ellipse a?x* + b%y* < a?b?, where
b > a, then o(Q) = a?/b, and since 2 C B,(0,0), we see that e(2) = b*/a’.

Consider 4-tuples (uy, Ry, 45, R;) where Ry, R, >0 and u;: Df,— R.
We say that a 4-tuple is admissible if there exist functions fi(u) with fi(¥) < f(u)
= f>(u) such that

i) du(x) +fi(u(x) = 0 x€ D,

i) #(x) = 0 and ui(x) <0 if |x| =R,

iil) u(x) = u, () =0 for all xe Dy, y€ Dk,

Note that u, is a lower solution of 1.1 and u, is an upper solution of 1.1. See
Figure 1. (D% is the n-ball of radius R centered at the origin.)

R
We define N(f), the “nonlinearity” of £, by N(f) = sup 7{3 where the sup
1
is taken over all admissible 4-tuples; if there is no admissible 4-tuple we set

N(f) = 0.

Remark. There exists an admissible 4-tuple for fiff F(p) > 0 for some p > 0.
We show (Lemma 3.1) that F(p) >0 for some p >0 is a sufficient condition
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for the existence of a pair (u,, R,) satisfying i). and ii). We can complete this to
an admissible 4-tuple by setting f,(u) = sup (f(u) : 0 = u < 2u,(0)} and letting
u,(r) be the radial solution of Au + fo(u) = 0 satisfying u,(0) = 2u,(0). If
we define R, by u,(R,) = u,(0) we have that (u;, R, u,, R,) is an admissible
4-tuple and N(f)> 0.

Fig. 1

On the other hand the condition F(p) > 0 for some p > 0 is a necessary
condition for the existence of positive solutions of (1.1), (1.2); see [2]. Thus if
u(x;) = max {u(x): x € 2}, then Au(x;) <0 so f(u(x,)) > 0. The well-known
Pohozaev identity (see [9]),

2n fF(u) dx — (n — 2) fuf(u) dx — [%)2 (r 1) ds,
Iel a o0

implies that F must be positive on some ball centered at x,. Thus, if (u,, R,, U,, R,)
is an admissible 4-tuple, F;(p) >0 for some p >0 and F(p)= F,(p) > 0.
Hence, there exists an admissible 4-tuple if and only if F(p) > 0 for some p > 0
if and only if N(f)> 0.

To gain some feeling for N(f) we sketch an argument to show that N(f) =
Lif f(u) =yu, y > 0.

If u(r) is a radial solution to (1.1),(1.2) on Q= D} set fi=fo=f, u; = u,
u, = cu, Ry = R and define R, by u,(R,) = u(0)i.e. cu(R,) = u(0). Note that
R, < R=R, butas ¢—oco, R, R, and hence R,/R,—1 and N(f)=1.

Next we show N(f)= 1. Suppose (u;, R,, u,, R,) is an admissible 4-tuple
with R, > R;. Then Au; + fi(u,) = 0, Au, - f5(u;) = 0, and hence by multi-
plying the first equation by w,, the second by u,, subtracting and integrating over
Dy = 2, we get Qf (uy Auy — uy Auy) + [uyfi(u1) — ufo(u2) = 0. Applying

0

d
Green’s theorem twice we get fuZ% + fuzfl.(ul) — u fr(u;) = 0; but
o 02
Si(u) = yuy and fr(u;) = yu, hence w,fi(uy) — uifo(uy) = 0. Also u, >0

d
on &£ and —d%: u; << 0 by ii). Thus 0= fuzu{ -+ fuzfl(u,)—— uy fo{uy) < 0.
s 9

Hence R; = R, and N(f)=1.
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With a little more effort one can show that the function

o ={" “=! b
u) = where >u, >0 has N(f)=|—.
pa— Db p w1 2 g ) (6)) 1

Similarly the function f(u) = «* has N(f)<<1 if k>1 and N(f)=oc if
k <1 (see Theorem 3.3).

Theorem 2.2, If
(2.3) N({f)> (£,

then there exists 2> 0 and a positive solution to
Au(x) + f(u(x)) =0, x€1Q2,
u(x) =0, x€ai).
Equivalently if (2.3) holds, then there exists u > 0 such that the problem
Au(x) + pf(u(x)) =0, xe€2
ux) =0, x¢€éQ,
has a positive solution.

Proof. We shall give the proof of statement i) since the two statements are easily
seen to be equivalent through a simple scaling argument.

We first need the following lemma.

Lemma 2.3. Let f¢ C', and let u, be a non-negative solution of the problem

WP W 4 f)=0, 0<r<R,

r

(2.3) w0)=p>0, w(®=0 uR)=0.

Suppose that «'(R,) = q < 0. Then there exists an f€ C! such that the follow-
ing hold:

@ f) =f@) if u=0,
(b) If & solves (2.3) with f replaced by f, then u'(r) <0 for all r>0 (so
u(r) < 0 if r > Ry).

Proof. Choose B > 0 such that f(0) > —B. Then let a > 0 satisfy

A )

—1
(2.9) 3q° >|;T(q2 + 2aB) a + 2aB;
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note that this can be achieved for small ¢ > 0. Let f € C! satisfy (c¢f. Figure 2):

D fw) =fw), uz0
i) |f)l < B, u=0
iil) f) =0 if u< —a.

» U

Fig. 2

We now verify that  meets our requirement; ie. #'(r)<< 0 if r>R;. Asa
first step, we will prove that

.5 () <gq2 if R <r<R,+ Izal
Thus, set
Fw = [ fis) s
then
(2.6) |Fw)| < aB if —a<u<0.
We write, as usual, H(u, v) = v2/2 + F(u). Then since H' = — z : ! 12 <0,

we see that for r = R,, v* + 217‘(12) < ¢g* (where v = u'). Thus
2.7 o(r)* < ¢*> +2aB, r=R;.

But since

70

52 + 2F@) = ¢° —2<n—1)f
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we have that
} . ‘g2 + 2aB
52 = ¢? — 2F(@u) — 2(n — 1) fudt
R, R,

)(q2 -+ 2aB)
! R

1

= g2 —2Fu)— 2 — 1) (r — R

2a (g% + 2aB)

> g2 — _
Z ¢ — 2B =2 — Do =

= q%/4,

in view of (2.6) and (2.4). This proves (2.5) Now if 6 = R, —|— , (2.5) gives

lg |
7(6) = #(R,) +- Rf 7'(t) dt

2

I
B

S

0—q———_a
5 = .

But in the region u# < —a, f(#)=0 so (*" '&’) =0 Thusfor r> 6, r ¥ (r)
=0"140)<0, so ()< 0 if r>06 It follows that &' (r) < 0 if r= R,,
and the proof is complete. []

We can now complete the proof of Theorem 2.2. Let o(£2) be as defined in
(2.1), and assume 2 C By(p) for some p¢c R” where R is minimal> By assump-
tion, we have pairs (i, R;), i = 1,2, such that u, and u, are solutions of (1.1),
4 (Ry) = 0, uy(Ry) > uy(0), ui(R)) < 0, where 0 << R, < o(2), and R, > R,.

Define 1= R,/R; then (AQ)C Bjx(p) = Br,(p). Also R,/R; = e(Q)
= R/o(Q), so A(2) = R0(2)/R = R,/e(2) = R,, and hence

28) Ry = 0202y

Now let x¢€ (A2); then in view of (2.8), there is some g€ (12) such that
X € Bp(q) C(A82). It follows that

(2.9) x € Bg,(q) C(22) C Br,(p) C B2z,(a)>
since dist (p, g) << R,; see Figure 3.

We shall construct our solution by the method of upper and lower solutions;
see [14]. To this end we define

uO(x) = ﬁl (2R2)9 X e (A‘Q)a

where i, is obtained from u, according to Lemma 2.3. Since 2R, > R;,
#1(2Ry) << 0, (s0 u, is not a solution); in fact, #; << 0 on the complement of

2 Such an R exists since the function y: 2 > R defined by w(g) = min {R: Bg(q) >
0} is continuous and £ is compact.
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Fig. 3

By (g). 1t follows that u, is a lower solution to

29) Au(x) + fi(u(x) =0, x€(Q)
(2.10) ux) =0, x¢ciAQ),

(where f is obtained from f according to Lemma 2.3).
To construct an upper solution to (2.9), (2.10), we define

U(x) = u(|x — p),  x€(AQ) C Br,(p).

Then U satisfies (2.9), and for x¢€ 6(2Q2), U(x) = u,(|x — p|) > u,(0) > 0. We
thus see that U is an upper solution (and not a solution), to the problem (2.9),
(2.10). Hence by a well-known theorem ([14, Ch. 10]), the problem (2.9), (2.10)
has solutions u satisfying

2.11) Up(x) < u(x) = U(x), x€(@90).

Let u be a maximal solution with respect to the ordering in (2.11).
To complete the proof, it suffices to show that

(2.12) u(x) >0 if xc (AQ).

For, if this were true, then since f(u) = f(u) for u =0, u would be a positive
solution of (1.1).
To prove (2.12), let x, € (A£2). Then as above, there is some g€ (1Q) with

Xo € Bg,(q) C(A2) C Bg,(p) C Byg,(9).
Define
w(x) = u(lx — ql), x€@Q).



Semilinear Elliptic Equations 237

We shall show that w satisfies the following three properties:

(1) uofx) = wlx) < U(x), x€(@9);

(2) w is a lower solution of (2.9), (2.10);

(3) w(x;)>0.

If these hold, then from (1) and (2), there is a solution u of (2.9), (2.10) with
o < w=<u<U on A2. Thus by the maximality of 7, 2 =% on Af, so that
using (3), u(xo) = u(x,) = w(xy) > 0.

We now show that properties (1)-(3) hold. First, recall that w(x) =
u,(|x — ¢q|) with |x — g| < 2R,. But since w is a decreasing function, (Lem-
ma 2.3), it follows that w(x) = #,(2R,) = uy(x). Next,since U(x) = u,(|x — pl),
for |x| < R,, we have U(x) = u,(Ry) > uy(0) = ,(0) = ity (|x — q|) = w(x)
if x€ (A£2); this proves (1). Now w satisfies (2.9), and since #,(r) << 0 for r = R,,
(Lemma 2.3), we see that for x€ a(A£2), |x — q| = R;, so w(x) = it,(}x — q|)
< 0; thus w is a lower solution. Finally, x, € Bg,(q) implies |x, — q| < R,
s0 w(xo) = u;(|xo — ¢|) > 0. Thus (3) holds and the proof is complete []

We remark that this theorem can be easily extended to equations of the form
Au(x) + AMf(u, x) =0, with eg, flu,x) = g(x)h(u), where g(x)>0 and
H(up) > 0 for some u, > 0. This is done by comparison with the equations
Au = AMh(u) + 0 and Au + Amh(u) = 0, (where M and m are, respectively, the
sup and inf of g in ), and yields existence theorems for some range of 1; see [3]
for related results.

Finally, the reader will notice that our technique is actually to construct an
upper solution on a ball contaning £2, and a lower solution on a ball in 2. Such a
strategy is certainly applicable to more general elliptic operators.

§ 3. Applications

In this section we shall illustrate the use of Theorem 2.2. Before doing this,
however, it is useful to have the following lemma.

Lemma 3.1, Let F be the primitive of f satisfying F(0) = 0. Suppose F(p) >0
Jor some p > 0. Then there exists a function f, with fi(u) < f(u) and an R > 0
and a non-negative solution u of Au - fi(u) =0 on D% with u(R) <=0 and
U'(R) < 0. (That is, u is a “lower solution’ of the Dirichlet problem (see [13}),
satisfying u'(R) << 0.)

Proof. Since F(p) > 0, we can find a point p, > 0 with F(p) << F(p,) for all
D, 0=p<py; eg po=infF-(F(p)). If f(p,) =0, then the conclusion
follows from our result in [13]. If f(p,) >0, we let f1(u) be a C'-function satis-
fying f,(u) = fu) for 0 < u < p,, fi(p,) = O forsome p; > p,, and fi(u) >0
on p, <u<p,; cf figure 4. Again using the result in [13], we can find positive
solutions u, to Au + f,(u) = 0 on D} for some R > 0, with u(R), u{(R) < 0.
But then #, restricted to the interval 0 < u <C p, is the desired lower solution. []
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A

Fig. 4

We remark that the condition F(p) > 0 for some p > 0 is a necessary con-
dition for the existence of positive solutions of (1.1), (1.2); see [2]. Thus if
u(xy) == max {u(x): x € 2}, then Au(x,) << 0 so f(u(x;)) > 0. The well-known
Pohozaev identity (see [8]),

n ng(u) dx — (n — 2) gfuf(u) dx = a!(j—g)2<’ ‘%) ds,

n—2
n u(xL)f("(xJ)) > 0.

As a first application of Theorem 2.2, we have the following theorem, which
extends the main results in [5] and [13].

implies that F(u(x,)) =

Theorem 3.2. Let 2 C R" be a bounded open set with smooth boundary, and sup-
pose that there is a p, > 0 for which f(po) = 0 and F(p,) > 0. Then the conclu-
sion of Theorem 2.2 is valid.

Proof. We shall show that (2.2) holds. Let p = inf F-'(F(p,)); then F(p) > F (p)
if 0=p<p. If py=iof{p=p:f(p) =0}, then f(p,) = 0, and F(p,) > F(p)
if 0 =< p << p;. From the theorem in [13], there is an R, > 0 for which there
exists a positive radial solution u, to the problem (1.1), (1.2) on the domain D%,
with u,(0) < p, and u(R;) << 0. Choose any R, > R;. Setting u,(x) = p,
on D, and f, = f, we see that N(f)= R,/R;, for every such R,. It follows that
N(f)= + oo and this gives (2.2). []

Our next theorem extends to arbitrary domains £ a result in [10, Theorem 18];
see also [3].

Theorem 3.3. Let 2 be a bounded smooth domain. If f(u)ju—0 as u— oo, and
F(py) >0 for some p, >0, then the conclusion of Theorem 2.2 is valid.

Thus for example, f(u) can be as depicted in the figure below, where k < 1.
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Fig. 5

Proof. If f(p,)=0, then theresultfollowsfrom thelasttheorem. If f(p,)<<0, then
we can find p << p, with F(p) >0 and f(p) =0, so this case is reduced to
the previous one. Suppose f(p,) > 0. Here there are two cases: (i) f(x) > 0 for
all u> p, or (ii) f(p) =0 for some p > p,. Since case (ii) is easily reduced to
the previous ones, we may assume that we are in case (i).

Since F(p,) > 0, we may apply Lemma 3.1 to conclude the existence of a
non-negative solution u, of (1.1), (1.2) on some ball D% , with #%;(R,) < 0. Let
u;(0) = p; > 0. If ¢> 0 is given, we can find a point p, > 0 such that
S@) < e*u if u=p, We may assume that p, > p,. Now choose p > 2p,,

2

and let p, << u < p. Then on this range F(p) — F(u) = Ez—(p2 — u?), so with

v=1u', we have v? < 2F(p) — 2F(u) = e¢*(p* — u*). If t(p) is defined by
u(t(p), p) = p. (such a function is easily shown to exist by the methods in [10]),

then
4 P
du du 1 u
- _> ——mm T e in—1 —
t(p) ,:[-'v=,, v e sin (p)[;

1 t
=— [ﬂ/Z — sin—?! (&)] = cons .
€ p

&

This shows that #(p)—oco as &-—>0. Now as above, we can find solutions
uy(r, p) of (1.1) on 0 < r < Ry(p) with u,(Ry(p), p) > p, where R,(p) > t(p).
It follows that N(f) = #(p)/R, so that N(f)=oco and (2.2) holds. [J

As a final application, we have the following result (compare with [7, Theo-
rem 2.1]).

Theorem 3.4. Let f(0) > 0 and assume that F(p) >0 for some p>0. If 2
is any bounded domain, the conclusions of Theorem 2.2 are valid.

Proof. From Lemma 3.1, there exists an R >0 and a non-negative solution
u; of (1.1), (1.2) on D% with u;(R) < 0. Since f(0) >0, we can find p,—0
and solutions i, with #(0) = p, on D%, R,—0 (see [10, Th. 18]). Thus

N(f)= R/R, s0 N(f)= oo and the result follows. [J
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§ 4. The Dirichlet Problem on n-Balls

We recall the celebrated theorem of GipAs, NI & NIRENBERG [4], which assert.
that a positive solution of (1.1), (1.2) on an n-ball must be radially symmetrics
It thus satisfies the ordinary differential equation

n—1

4.1 u'(r) +

w(r) +fur) =0, (r=lx),

r
and the initial conditions
(4.2) u0) =p, u(0)=0,

for some p > 0. The solution of (4.1), (4.2) will be denoted by u(r, p). We define
(cf- 9D
Tp(p) = min {r > 0: u(r, p) = 0},

whenever the set on the right-hand side is not empty. Thus Tp(p) is the smallest
zero of u(-, p), and if Tph(p) = R, then u(-, p) is a solution of (1.1), (1.2). In this
context, it is convenient to allow the radius R of the n-ball D% to vary with p,
and we shall thus consider the quantity p as a parameter; see [10-13].

Throughout this section, we shall always assume that f satisfies the following
growth condition:

4.3) cu* < fu) < dv®  for u=b,
where «, 8, ¢, d and b are positive constants. If we take p = 2b, then f(u) is bound-

ed away from zero on the intervals [p/2, p], and [b, p], so there are numbers
T =1(p), and T = T(p) that satisfy3

(4.4) u(r(p),p) = r2, w(T(p),p) =b.
Whenever (4.4) holds, we may define the quantity ¢ = ¢(p) by
4.5) q(p) = u'(T(p), p).

Now as we have shown in [10, Theorem 8], in order to prove the existence of
positive solutions to the Dirichlet problem, it suffices to show that

(4.6) lim ¢(p) T(p) = — oo.

(In the appendix to this section we give a simpler proof of this result.) If (4.6) holds,
then in fact we can find a point p, > 0 such thatif p = p,, the function u(r, p)
solves (1.1), (1.2) with R = Tp(p).

In order to prove (4.6), we write

—qT = —qT"~'/T" 2,

and we estimate separately the numerator and denominator in terms of powers
of p. We then collect these powers, and if the resulting exponent is positive, (4.6)
holds and so positive solutions exist. We need a few lemmas before giving our
main results (Theorems 4.6, 4.8 and 4.9, below).

3 In [10] it is shown that such numbers exist.
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Lemma 4.1. —g7"~! = const. p*z".

Proof. From (4.1), we may write —(r"~' ')’ = r"~! f(); thus integrating from
r=20 to r=T(p) gives

T
—qT" ' = of =1 f(u(r)) dr
T
= f ey dr
0

gcfrr"_lu"‘dr
¢

T c Tn
=c [ r(p/2)* dr =—7p°‘. O
0 n

Next we estimate 7(p).
Lemma 4.2, There are positive constants k, and k, such that
kip' ™" = o(p) < kap' .
Proof. For u =5, we have
' < (Y = r";lf(u) < drm'df.
But p2=<u=p when 0 < r=<; thus on this range

e pl2y < — (T WY S del P

If we integrate this from 0 to r < 7, we get

c 0t< I( <d o
2anP"=—“ N < npr.

Now integrate this from r =0 to r=7; this gives

c 2 _p d 12

A A R

P 2= =5
or

M2 2P

dP =T = cP >

as desired. [

Combining these lemmas gives

_ Tn—l rght
—qT = _%i— = const. %:7
const.

Z s pr(p Py,
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or

@7 T = const.

> Qx+n—nf)/2
= Tn— .

p

We turn our attention now to the problem of estimating T = T(p) from above.
This will follow as a consequence of estimates obtained for linear equations, to-
gether with a simple monotonicity theorem.

Lemma 4.3. Let u be a positive solution of the (linear) equation

n—1

u’'(r) +

p W) +u(r)=0, O0<r<<S@, A>0,
together with the boundary conditions u(0) = p, u'(0) = u(S(1)) = 0. Then
S() = 1~ % 501).

Proof. This statement follows from a simple scaling argument. Thus, defining
w(r) = u(cr), where ¢ is a constant, we have w'(r) = cu/(r), w'(r) = c®/''(r) so
if ¢z =21,

n—1 n—1

w(r) + w(r) = c*u" (cr) +

r cr

W) +

cu'(er) + u(er)

n—1

= ¢? [u”(cr) +
= 0.

Also, w'(0) =0, w(0) = p, so u(S(1)) = w(S(1)), by uniqueness. Thus
u(eS1)) = w(SQ1)) = u(S(1)) =0 so ¢S(1) = S(A) and SA) =1"1251). O

u'{er) lu(cr)]

cr

We next have the following monotonicity theorem; it’s really a variant of
the classical Sturm theorem.

Lemma 4.4. Consider the two equations (—r" ' u)) = r"~! fu), together with
the conditions u;(0) =0, and w(0)c (0,p], i=1,2. Suppose that f,(u)ju >
Siw)/w whenever 0 << u, w << p. If R; is defined to be the first zero of u;, i =1, 2,
then R, > R,.

Proof. Let w = u,v, — u,v,, where v; = u), i=1,2. Then

et {fi(”l) S2(2)
L

4.8) rw) =r ”

<o
if 0 <r < min(Ry, R;). Now if R, = R,, we can integrate (4.8) from r =0
to r=R; to get

0> R '(uy(Ry)) va(Ry) — u(R)) v1(R))) = —RY "up(Ry) v1(Ry).

On the other hand R, = R, also implies that u,(R,) = 0, and since v,(R;) < 0,
the above inequality is violated. Thus R, > R, as desired. [J
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We are now able to estimate T(p) from above. We distinguish two cases:
a=1 and x>1.

Lemma 4.5. Suppose that f(u) = cu® for u=b, where « <1, and ¢>0.
Then T(p) < const. p1 =972,

Proof. Fix p > b and define fj(u) = cp*~'u. Let f3(u) be a C!-function for
which fo(u) = f(u) if u = b, and which also satisfies the inequality f5(u)/u> cp*~!
on 0=u=<bdh Thenif b=u<p, and 0= w<p, we have

fé(u) _@>cua—l>ca—l_£@
u  ou - =

while if 0 =< u =<5, and 0 < w < p, we have

‘@> cp""‘l =M.
u w

Thus the hypotheses of the last lemma are satisfied so (in the obvious notation)
R, > R,. Now from Lemma 4.3,

sM _ -3 5
V}—,_S(l)c P >

and since u,(R,,p) =0, and u,(T,p) =u(T,p)=0>b, we have R, >T. It
- 1—a

R1=

follows that T(p) << R, < Ry =const.p 2 . []J
We may now combine Lemmas 4.1 and 4.5 to obtain the following result.

Theorem 4.6. Assume that « <1, and f — & << 2/n.- Then for all sufficiently
large p, there are positive solutions u(-, p) of (1.1) on Dy In particular, if

o« =3 =1, there are solutions on Dy, for all sufficiently large p.

Proof. Using (4.7) and the last lemma, we have

_ng const. p(2:x+n—nﬁ)/2 T2 ™"

g const. p(2a+n—nﬂ)/2 p(n—2)(a~1)/2
= const. p[2—n(ﬁ—a)]/2’

so that —gT—+o0 as p—oo if §—a<2m O

We now consider the case where « > 1. Again we shall crudely estimate T
from above and use (4.7).

Lemma 4.7. If f(u) = ct* for u=b, where o« > 1, and ¢ >0, then T(p) is
bounded.
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Proof. If u=b, fwju=cu*'=cb*'. Let f>b; then if we define
fi) = cb* ' u, andlet f, be a C'-function such that f,(u) = f(u) on u= b, and
which satisfies the inequality f(u)ju = cp®~' on 0= u < b, then Lemma 4.4,
implies that R, > R,. Now as in the proof of Lemma 4.5, R, > T(p) and since
f11s linear, R, is a constant, independent of p. It follows that T(p) < const. []

We use this estimate to prove

Theorem 4.8. Let o > 1, and suppose that 20 > n(f — 1). Then for all suffi-
ciently large p, there are positive solutions u(-, p) of (1.1) on Df ). In particular,
if 1 <o =p<n/(n—2) there are solutions on DF,, for all sufficiently large p.
Proof. Using (2.7) and the last lemma, we have

—qT = const. p(n+21x—nﬂ)/2’

where the exponent is positive; thus —g7T—>oc0 as p—oo. []
We may combine Theorems 4.6 and 4.8 to obtain the following theorem.

Theorem 4.9. Suppose that f(u) = OW*) as u->oco, where 0 <k<n/(n— 2).
Then there exist positive solutions to the Dirichlet problem on D7, for all suffi-
ciently large p.

Since 1 < nf(n — 2) forall n = 2, we obtain at once the following corollary,
(which corrects an error in [10; Corollary 15]).

Corollary 4.10. If f(u) = O(u) as u—>oco, then for every positive integer n, there
exists a point p, > 0 such that if p = p,, there exist positive solutions to the Di-
richlet problem on Dt ).

We close this section with the following observation. Namely, if one were
1

able to strengthen Lemma 4.7 to the statement that if & > 1, T(p) = const. p.z_—" R
that is, if we could estimate the rate of decay of T(p), then existence of positive
solutions to the Dirichlet problem would hold for all sufficiently large p, whenever
n + 2 > nf — 2x. Thus in particular if &« = § =k, there would be such solu-
tions whenever 0 << k << (n + 2)/(n — 2). This would be the optimal result in
this generality.

Appendix

In this section we shall give a short proof of our basicresultin [10]; in particular
we shall avoid the use of comparison functions and certain tedious estimates.

Theorem. Suppose that f(u) =m jfor u= A. Then the following statements
hold:
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() For any p > A, there is a T(p) with w(T(p), p) = A.
(i) If q(p) = v'(T(p), p), then —q(p){T(p) = m/n. _
(ii) If q(p)T(p)—> —oc as p-—>oco, then there is a p >0 such that if
1#(0) = p, the problem (4.1), (4.2) has a positive solution, with u' > 0.

Proof. We only prove (iii); parts (i), and (ii) are easily proved as in [9].
Choose B>0 such that —B=<f(u) < B, 0= u=<A; then if F = f
F(0) =0, we have

(A) |Fa)| < B4, 0=<ux=Ad.

Set H(r) = v(r)*/2 + F(u(r)); then H decreases on orbits so v? 4 2F(u) =
g% 4+ 2F(A), if 0= u =< A. Using (A,), we find
(A2) vr) < q* +4B4, O0=u=A.
We shall use this inequality to show

24
(As) o(r,p) < q/2 for T(p)=r=T(p) 10

if —g(pTP)> 1; ie. if p> 1.
Thus, we have

r

V2 + Fw) — (@12 + Fa) = [ BH'@)ar

T

2
=—(n— 1)T_[-—t—dt

=—(r-1)

+ g% - 4BA
f g +4B4
t
T

It follows that

dt

‘g% + 4BA
P 2 g+ AFU) — F)) — (n— 1) [T
T

+ g2 + 4BA
gq2—4BA——(n—l)fg+T-dt
T

—1
—g2—apa = )(4? +4BAY (- — T)
n—1 24
> g2 — 4BA4 — 2 1 4BA) —.
=gq T (¢*> + )ItIl
Thus
2A(n — 1

) (1 + 4BAlg").

v2/g> =1 — 4BA[q? — —/———
l9* = lq ‘Q|T
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But ¢7-> — oo and —¢/T = m/n imply that g2 -—oco as p—oco. Thus for
large p, we see that the last inequality shows that we can make »? = ¢?/4 on the
requisite interval; this implies (A;).

From this the proof of (iii) follows rather easily; namely, if § = T(p) +- 24/|q/,
(where p is chosen so large as to make (A;) valid), we have

[
w0 = A4 + [ o(t)dt
()

cas L _y
2 {ql
Hence u becomes negative on this interval and since v << ¢/2 << 0, on this inter-
val, we see that a solution exists.

§ 5. The Neumann Problem

We shall show here how the methods of the precedingection can be extended
to yield monotone solutions of the Neumann (and in fact, any other linear)
boundary-value problem. We continue to assume that inequalities (4.3) hold.

Theorem 5.1. Suppose £ is an n-ball, and that f satisfies (4.3), where either i)
=1 and f —x<<2n, oriiy « >1 and 2x > n(f — 1). Assume in addition
there is an n << 0 such that

;.1 fy< 0 if usy,
and that
(5.2) lgn F(u) = co.

Then there is a po > 0 such that if u(0) = p,, there is a monotone radial solution
of the Neumann problem

Au(x) +f(u(x)) =0, x€ D,

(5.3)
du(x)/dn =0, x€ 0D}y

Recall that u(r, p) is the solution of (4.1) and (4.2); here Ty(p) is defined by
Tn(p) = min {r > 0: du(r, p)/dn = 0},

whenever the set on the right is not empty.

Corollary 5.2. If (5.1) and (5.2) hold, and in addition f(u) = OW*) as u—> oo,
0 <k <<nf(n—2), then the conclusion of Theorem 5.1 is valid.

We remark that if f(#) > 0 for all u, then there cannot be any radial solu-
tions to the Neumann problem (5.3) since the u-axis would be a repellor for the
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system (equivalent to (4.1)),

(5.9 v =u, v’=—n:10—f(u).

Thus some conditions like (5.1) and (5.2) are necessary.

Proof. There are two steps in the proof; namely
(i) There exists a p, > 0 such that if p=p,, there is a T(p) satisfying
. u(T(p)9P) =
(ii) For p = p, w(r, p) is a monotone solution of the Neumann problem.
We begin by showing that (ii) holds. As usual, let H, the “total energy”, be
defined by

(5.5 H(r) = H(@(r), u(r)) = Fu(r)) +v@)?2, v=1u.

Then H' = —(n — 1) ' v?, so that H decreases on orbits (u(r, p), o(r, p)) of
(5.4), where, as usual, p = u(0, p).

Now let p > p,, and suppose u(r, p) > 0, and H(r) = F(u(r, p)) + v(r, p)*/2.
Using (5.2), we can find 7 <<% for which F(u) = H(r) + 1, if u=<7%. Thus,
since H is a decreasing function, and F(u) < H(u, v), we see that u(r, p) > for
all r=0.

Suppose that the function u(:, p) does not yield a solution of the Neumann
problem. Then both #'(r, p) << 0, and % << u(r, p) < p, for all r = 0. Thus we
see that u(-, p) is a bounded, monotone decreasing function and thus has a limit;
say

(5.6) lingo u(r,p) = uy.

Note that u(fl~", p) = n implies that u; <7, (since ¥’ << 0), so that (5.1) gives
f(u;) < 0. Thus there is a neighborhood of u#, on which fis negative; say |u — u,|
< 6 implies —B =< f(u) < —B/2, for some B> 0. Using (5.6), we can find

an R; >0 such that u, <u(r,p)<<u, +6, if r=R,. It follows that
—B = f(u(r, p)) =< —B/2 if r= R,. Using these facts, we have, for r = R,,

- oY = f(w) < —r! BJ2,
and integrating from R, to r gives

rB RiB
T 2n 2n°’

—r"'o(r, p) + @RI <

where ¢, = v(Ry, p). Thus

_ o J1 ke ¥ o
o p) = P 2n+2n r

—'qu’ll_l rB BRI (R‘)n_l
and this shows that —o(r, p) - — oo as r-—>oco. Thus u(r, p) > 0 for large r,
so that v(r, p) must vanish somewhere. This is the desired contradiction, and so
the proof of statement (ii) is complete.
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To prove (i), we set u = u — 5 and then write the equation in terms of u:

(5.7) —( Y = ),

where j@) = flu +7). Now if u =5, c¢f. (4.3), we have the bounds
(5.8) e +n)* f@) < du +nf, uzb—n.

Since >0, (u +7) = u, so (5.8) gives

(5.9) fW<diP fuzb—ry.

On the other hand, b — n > —» so we can find a constant ¢;, 0 << ¢, << 1 for
which (1 —¢)(b—n)= —n. Thus,if u=b—n, 1 —cpu=(1—c)(b—1n)
= —, and hence u + % = c,u. Thus from (5.8) we get ccfu™ < f(w), for u =
b — 5. Combining this with (5.9), we see that f(@) satisfies the same inequalities
as does f(u), for large u. We have seen in § 4 that under the conditions which we
have imposed on « and B, there are radial solutions of the Dirichlet problem.

That s, thereisa p, > 0 such thatif p > p,, there is a T(p) for which #(T(p), p)

= 0; thus u(-I—'(p), p) = 7. This proves (i) and completes the proof of the theo-
rem. []

We close this section with the observation that any monotone decreasing
radial solution to the Neumann problem on an »-ball guarantees the existence of
a monotone decreasing solution satisfying any linear boundary conditions. Thus
the two classical boundary conditions, Dirichlet and Neumann, are actually the
most general ones as far as questions of existence are concerned.
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Note added in proof: P. CLEMENT & G. Sweers (C. R. Acad. Sc. Paris, 302, 681~
683 (1986)), using similar techniques, have obtained results related to ours in § 3.
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