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w 1. Introduction 

The main purpose of  this paper is to prove some new existence theorems for 
positive solutions to the Dirichlet problem 

(1.1) Au(x) +f(ufx)) = O, n, 

(1.2) u(x) = O, x E ~g2. 

H e r e / 2  is a bounded domain in R", with smooth boundary, a n d f i s  a continuous 
function on R,. 

We introduce in w 2 the notion of  "eccentricity", e(/2), of a domain /2 Q R", 
which has the property that 1 ~ e(/2) < c~ and e(.Q) = 1 if and only if /2 
is a ball. We then define for any function f on R the "nonlinearity" o f f  N(f ) .  
I f  f is a linear function, Nff)  = 1 ; if f(u) = u g, k < 1, N(f)  = ~ ;  if f(u) -~ u k, 
k ~> 1, N(f)  < I. The main theorem of  the paper, Theorem 2.2, states that if 
N ( f ) >  e(/2) then there exist positive solutions to (1.1), (1.2) on all domains 
2f2 if ~. is sufficiently large. Equivalently, if N(f)  > e(/2), then positive solutions 
to the Dirichlet problem for Au + ~f(u) = 0, exist o n /2 ,  for some range of/z.  
Our method of proof  is a variation of  the technique of  "upper and lower solu- 
tions", c f  [14, Ch. 10], whereby we use techniques developed in [10, 13] (where 
f2 is an n-ball) in order to construct these "solutions". We note that our methods  
apply to any elliptic operator;  we consider (1.1) for definiteness. We then give 
in w 3, several applications of this theorem. For  example, if f(u)/u -+ 0 as u -> ~ ,  
and 1 F ( u o ) > 0  for some Uo ~ 0 (where F ' = f ,  F ( 0 ) =  0) then positive 
solutions exist on ~./2 if2 is sufficiently large. Again, if f(uo) = 0 for some Uo > 0, 
and F(uo) :> 0, then the same conclusion holds. In both cases, we require no 
conditions on the behavior o f f  near zero. 

In w 4 we t ake /2  to be an n-ball, and we prove existence of  positive solutions 

1 This is always a necessary condition as follows from POIaOZAEV'S identity; see [2] 
and [9]. 
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of  (1.1), (1.2) on some ball, provided only thatfsatisfies an inequality of  the form 

(1.3) cl <=.f(u)/u k <= c2 as u -+ oo. 

Here cl and c2 are positive constants, and 0 < k < n/(n - -  2). This result is a 
consequence of  some general existence theorems whereby f is required to satisfy 
an inequality of  the form cu ~' <= f ( u )  <~ dg a, for large u, with c, d, o~ and fl being 
positive constants. 

In w 5 we study the Neumann problem for (1.1) on n-balls, i.e. solutions of  
(1.1) which satisfy homogeneous Neumann boundary conditions 

(1.4) du(x)/dn = O, x ff ~$2, 

where d/dn denotes differentiation in the radial direction on 8Y2. Thus, for ex- 
ample, if f satisfies (I .3), where 0 < k < n/(n - -  2), and, in addition, there exists 
an~7 such that f ( u ) < O  for u ~ / < 0 ,  and F ( u ) - ~ o o  as u - - > - - o o ,  we 
show that the Neumann problem has a monotone radial solution on some n- 
ball. 

We note that the existence of  positive solutions to the Dirichlet problem 
has been obtained if f(u) is required to be positive, or if f(0) = 0 and f ' (0)  > 0; 
see [1, 2, 3, 5, 7, 8]. We a l lowf  to be an arbitrary function near zero. Such freedom 
is necessary if one is interested in questions of  "symmetry-breaking" (see [11, 12]). 
Indeed, as we have shown in [11], the symmetry cannot break on a positive radial 
solution of (1.1), (1.2) unless f(0) < 0. 

We remark that if f ( u )  = u k, then it is well known [8] that there are no posi- 
n + 2  n 2 

tive solutions to the Dirichlet problem on n-balls, if k ~ n - - 2  - -  n - - 2 + n  - -  - '--- '-2'  

n + 2  
but that there are such solutions if k < n - -  2; see [7, 9]. Thus our result given 

above is probably not the best possible. It would be interesting to know if there 
are positive solutions to the Dirichlet problem on n-balls if f ( u )  = u k - -  a, where 

n n + 2  
a is a positive constant, and < k ~ - - .  

n - - 2  n - - 2  
Throughout  this paper, F will denote the primitive o f f  satisfying F(0) = 0, 

and D~ will be the n-ball of  radius R centered at 0 E R". Finally prime, ('), 
will denote differentiation with respect to r. 

w 2. The Dirichlet Problem on General Domains 

In this section we shall show that the existence o f  positive solutions on n-balls 
can be used to prove the existence of  positive solutions on general domains. 
We introduce the notion of  the eccentricity of  a domain, and we use it to prove 
our general, (somewhat abstract), existence theorem. In the next section we shall 
how it applies to extend known results. 

Thus let .(2 be a smooth bounded domain in R n, and let Br(P) denote an n- 
ball of  radius r centered at p. We begin with a purely geometrical result. 
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Lemma 2.1. There exists a ~ > 0 such that i f  x E 12, then x E Be(y) ( 12 for 
some y E 12. 

Proof. We start by mimicking the standard proof  of  the tubular neighborhood 
theorem; c f  [6]. Thus define a function ~b: 012 • ~1,---> N ~ by 

~p,  t) = p + t ~ ,  

where ~ is the outward normal at p. Since d~(p, 0) is invertible, ff is a local diffeo- 
morphism. But ~b is a diffeomorphism on the compact manifold 012 • {0~; thus 

is, in fact, a diffeomorphism on some closed neighborhood of  ~12 in ~ • R 
(see [6]). Let 712• [--9, ~] be such a neighborhood, 9 > 0. We claim that 

this 9 "works".  Thus, let x E 12. I f  x q ~ 1 2  • (--9, 0]), then Be(x ) ( 12; 
otherwise we could find z E Be(x) ~ Of 2 with x = z -k t~ for some t, t t l < 9, 
(namely z is the point on ~12 closest to x), and so x E 4(012 • (--9, 0]). On the 
other hand, if x E ff(~12 x (--o, 0]), then x = p q- t~ for some p E ~12, and 

--0 < t ~ 0. It follows that x E Bo(p -- 9n), and the proof  is complete. [ ]  

Note that lemma 2.1 requires 12 to have a smooth boundary;  if 012 has a 
cusp, then ~ = 0. 

In view of  this lemma, we may define the number 

(2.1) 9(12) ---- sup {~ > 0 :x E 12 ~ 3 y E 12 with Be(y ) C 12}. 

Next, we define the eccentricity, e(12), of  the region 12 by 

(2.2) e(12) = lnf : 12 C BR(p) for some p E R n, and some R > 0 . 

Observe that e(12) ~ 1, and e(12) = 1 if and only if 12 is an n-ball. To get a 
feel for e(12), note that if 12 C R 2 is the ellipse a2x 2 + b2y2<= a2b 2, where 

b > a, then 9(f2) = a2/b, and since .(2 C Bb(O, 0), we see that e(.Q) = b2/a 2. 
Consider 4-tuples (ul, R1, u2, R2) where Rt,  R2 > 0 and ui: D[  i-+ P~. 

We say that a 4-tuple is admissible if there exist funct ionsf(u)  with fl(u) <: f(u) 
=<f2(u) such that 

i) Aui(x) +j~(ui(x)) = 0 x E D L 

ii) ul(x) ---- 0 and u'l(x) < 0 if I xl = R1 
iii) u2(x) >= u~fy) ~ 0 for all x E Dn2,n y E D~ .  

Note that ul is a lower solution of 1.1 and u2 is an upper solution of  1.1. See 
Figure 1. (D~ is the n-ball of  radius R centered at the origin.) 

R2 
We define N(f),  the "nonlinearity" of  f ,  by N ( f ) =  sup ~ where the sup 

is taken over all admissible 4-tuples; if there is no admissible 4-tuple we set 

N(f) = O. 

Remark. There exists an admissible 4-tuple f o r f i f f  F(p) > 0 for some p 2> 0. 
We show (Lemma 3.1) that F(p) 3> 0 for some p > 0 is a sufficient condition 
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for the existence of  a pair (u~, R~) satisfying i). and ii). We can complete this to 
an admissible 4-tuple by setting f2(u) = sup (flu) : 0 <-- u <-- 2u~(0)} and letting 
u2(r) be the radial solution of Au + f 2 ( u ) =  0 satisfying u2(0 )=  2uj(0). If  
we define R2 by u2(R2) = u,(O) we have that (u~, Ra, u2, R2) is an admissible 
4-tuple and N(f)  > O. 

Fig. 1 

f:, 

f u ',= 

~ r  

On the other hand the condition F(p) > 0 for some p > 0 is a necessary 
condition for the existence of positive solutions of (1.1), (1.2); see [2]. Thus if 
u(xO = max {u(x): xE -Q}, then Au(xL) < 0 so f (u(xt) )  > O. The well-known 
Pohozaev identity (see [9]), 

2,, . f  F(") ax -- (" -- 2) u:(") ex  = / : (r . . )  

implies that Fmus t  be positive on some ball centered at x~. Thus, if(u, ,  R1, U2, R2) 
is an admissible 4-tuple, Fdp) > 0 for some p > 0 and F(p) >= F~(p) > O. 
Hence, there exists an admissible 4-tuple if and only if F(p) > 0 for some p > 0 
if and only if N ( f ) >  O. 

To gain some feeling for N( f )  we sketch an argument to show that N(f )  ~-- 
l i f  f (u)  = Tu, 7 > 0 .  

I f  u(r) is a radial solution to (1.1), (1.2) on Y2 = D]  set f l  = f 2  = f ,  u~ = u, 
u, = cu, R~ = R and define R2 by uz(R2) = u~(0) i.e. cu(R2) = u(0). Note that 
R s < R = R t  but as c - + o o ,  R z - + R ,  and hence R s / R ~ I  and N ( f ) > l .  

Next we show N(f)=< 1. Suppose (uj, R1, us, R2) is an admissible 4-tuple 
with R2 > R,.  Then Au~ +f~(u t )  = O, Aus +f2(u2) = 0, and hence by multi- 
plying the first equation by u2, the second by u~, subtracting and integrating over 
D],  = D, we get f (us Aut -- u, Au2) + f usfl(ul) -- t/l.f2(us) = 0. Applying 

D o 
dut 

Green's theorem twice we get ~,~f us-Tn n +fu~fl.(U3- uJs(u~)= 0; but 

fl.(ul) <= yul and fs(u2) ~ ~'uz hence usfl(ul) -- ulfs(u2) <= 0. Also u2 > 0 

dUl , 
on &.Q and ~ = u, < 0 by ii). Thus 0 = f u2u, + f u2fl(u3 - u~f2(u2) < o. 

0 D 
Hence Rt  ;> R2 and N ( f ) =  1. 
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With a little more effort one can show that the function 

f/~tu u < 1 

f (u) = ~[/z2(u- 1) + #1 u > 1 

Similarly the function f ( u ) =  u k 
k < 1 (see Theorem 3.3). 

Theorem 2.2. I f  

(2.3) 

then there exists 2 > 0 
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N(D > e(g2), 

and a positive solution to 

Au(x)  + f (u(x) )  = O, x E ~t2 , 

u(x) = O, x E ~(~t~). 

Equivalently i f  (2.3) holds, then there exists # > 0 such that the problem 

A u(x) q- #f(u(x)) = O, x E g2 

u(x) = O, x E ~I2, 

has a positive solution. 

Proof. We shall give the proof  of  statement i) since the two statements are easily 
seen to be equivalent through a simple scaling argument. 

We first need the following lemma. 

Lemma 2.3. Let f E C ~, and let ut  be a non-negative solution of  the problem 

n - - 1  
u" + ~ u' + f(u) = O, O < r < R ,  

r 

(2.3) uf0) = p > o, u'(O) = o, u(gO = O. 

Suppose that u'(R1) : q < O. Then there exists an fie C a such that the follow- 
ing hoM: 

(a) f (u) = f(u) if u ~ 0, 
(b) I f  fi solves (2.3) with f replaced by f ,  then fi'(r) < 0 for all r > 0 (so 

~(r) < 0 if r > R1). 

Proof. Choose B > 0 such that f(0) > --B. Then let a > 0 satisfy 

4(n -- 
(2.4) ~q2 > Iq[ R~ -------) (q2 § 2aB)a q- 2aB; 

,/=7, 
where # t > # 2 > 0  has N ( f ) =  /tV~- ~.  

has N ( f ) <  1 if k > 1 and N(f)---oo if 
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note  that  this can be achieved for small 

i) f(u) = f(u), u >= 0 
ii) l](u) l < B, u __< o 

iii) ./~u) ~= 0 if  u < - a .  

J. SMOLLER d~ A .  WASSERMAN 

a > 0 .  Let  f E  C ~ satisfy (cf. Figure 2): 

- Q  
D, tl 

Fig. 2 

We now verify that  )7- meets our  requirement;  i.e. ~'(r) < 0 if  r > R, .  As a 
first step, we will prove that  

2 a  
(2.5) ~'(r) < q/2 if  R,  < r ~ Rt  + T ~ "  

Thus,  set 

then 

u 

,D(u) = f As) &;  
0 

(2.6) l/~(u)] ~ aB i f  - - a  ~< u --< 0. 

We write, as usual, H(u, v) = v2/2 + if(u). Then since H '  = --  n - -  1 
r 

we see that  for  r ~ Rt ,  ~2 + 2t~(~) ~ q2 (where ~ = ~'). Thus 

v2~__O, 

(2.7) ~(r)2 <= q2 _+_ 2aB, r >= Rt. 

But since 

~2 q_ 2 i f ( h ) =  q 2  2(n -- 1) / ~  dt, 
Rl 
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we have that 

q2 
be > q2 _ 2if(u) --  2(n --  1) + 2aB 

= R1 dt 
Rx 

(q2 + 2aB) 
= q2 _ 2F(u) -- 2(n --  1) (r --  R1) 

R1 

2a (q2 + 2aB) 
z> qZ _ 2aB- -  2(n --  1)[q[ 

R1 
>= q2/4, 

2a 
in view of  (2.6) and (2.4). This proves (2.5) Now if 0 = R1 + T q [ '  (2.5) gives 

0 

2 ( 0 )  = u ( R 1 )  -~- f f i ' ( t )  at 
Rt 

2a q 
~ - - "  - -  ~ - - a .  
= Lql 2 

But in the region u ~ --a,  f(u) ~- 0 so (r"-lfi!) = 0 Thus for r :> O, r"-lfi'(r) 
-~ 0  " - l f i ' ( 0 ) < 0 ,  so f i ' ( r ) < 0  if r > 0  It follows that f i ' ( r ) < 0  if r ~ R x ,  
and the proof  is complete. [ ]  

We can now complete the proof  of  Theorem 2.2. Let 0([2) be as defined in 
(2.1), and assume /2 Q BR(p) for some p E R", where R is minimal 2 By assump- 
tion, we have pairs (ui, Ri), i = l, 2, such that u~ and u2 are solutions of  (1.1), 
ul(Rt) <= O, u2(R2) > u~(0), u~(Rl) < 0, where 0 < R1 ~ 0(s and R2 > Rl. 

Define 2 = R2/R; then (2[2) Q B~R(p) = BR~(p). Also R2/R  x >= e([2) 
= R/0([2), so 20([2 ) = ReO([2)/R = R2/e(.Q) ~ R~, and hence 

(2.8) Rz ~< 0(2[2)" 

Now let xE(;t[2);  then in view of  (2.8), there is some qE(212) such that 

x E BR,(q) Q (2[2). It follows that 

(2.9) x E BR~(q) Q (2[2) Q Bg,(p) Q B2R,(q), 

since dist (p, q) < R2; see Figure 3. 

We shall construct our solution by the method of  upper and lower solutions; 
see [14]. To this end we define 

Uo(X) = fil (2R2), x E (2~),  

where fit is obtained from ut according to Lemma 2.3. Since 2R2 > R1, 
fix(2Ro) < 0, (so uo is not a solution); in fact, ul < 0 on the complement of  

2 Such an R exists since the function W: D ~ R defined by w(q) = min {R: BR(q) 

-O} is continuous and ~ is compact. 
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Fig. 3 
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BR,(q). It follows that Uo is a lower solution to 

(2.9) Au(x) + f-l(u(x)) ---- O, x E (20)  

(2.10) u(x) = O, xE  ~(20), 

(where f is obtained from f according to Lemma 2.3). 
To construct an upper solution to (2.9), (2.10), we define 

U ( x )  = u2(I x - p I), x E (20) C BR~(p). 

Then U satisfies (2.9), and for x E ~(20), U(x) ---- u2([ x -- p I) > ul(0) > 0. We 
thus see that U is an upper solution (and not a solution), to the problem (2.9), 
(2.10). Hence by a well-known theorem ([14, Ch. 10]), the problem (2.9), (2.10) 
has solutions u satisfying 

(2 .11)  Uo(X) <-_ u(x) ~ U(x), x E (2~2). 

Let ~ be a maximal solution with respect to the ordering in (2.11). 
To complete the proof, it suffices to show that 

(2.12) Ft(x) > 0 if xE (2~). 

For, if this were true, then since f(u)  = f (u)  for u => 0, fi would be a positive 
solution of (1.1). 

To prove (2.12), let xoE (20). Then as above, there is some qE (20) with 

Xo E BR,(q) C (20) ( B g , ( p )  C B:n,(q). 

Define 

w(x) = ~ ( I  x - q I), x E (&O). 
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We shall show that w satisfies the following three properties: 

(1) ,~o(X) < w(x) _ u(x), xE (2t~); 
(2) w is a lower solution of  (2.9), (2.10); 
(3) w(x~) > O. 

I f  these hold, then from (1) and (2), there is a solution ~ of  (2.9), (2.10) with 

Uo ~ w ~ u ~ U on 20 .  Thus by the maximality of  2, ~ ~ u on 20 ,  so that 

using (3), U(Xo) ~ u(xo) -->__ W(Xo) > 0. 
We now show that properties (1)-(3) hold. First, recall that w(x) = 

~ ( I x  --  ql) with I x --  ql ----< 2R2. But since w is a decreasing function, (Lem- 
ma 2.3), it follows that w(x) >= ul(2R2) = uo(x). Next, since U(x) = u2(lx -- p!), 
for Ixl < R~, w e  have U(x) >: u2(R2)  ~" Ul.(0) = u t ( 0 )  ~ u l . ( Ix  - -  ql) - -  w(x) 
if  x E (20);  this proves (1). Now w satisfies (2.9), and since fit(r) < 0 for r ~ R~, 
(Lemma 2.3), we see that for xE  8(212), Ix --  ql :> R~, so w(x) = u~(Ix -- q]) 
< 0; thus w is a lower solution. Finally, Xo E BR,(q) implies ]Xo -- ql < R1 
so W(Xo) = ut(I xo --  q I) > 0. Thus (3) holds and the proof  is complete [ ]  

We remark that this theorem can be easily extended to equations of  the form 
Au(x) + 2f(u, x) ----- 0, with e.g,  f(u, x) = g(x) h(u), where g(x) > 0 and 
H(uo) > 0 for some uo > 0. This is done by comparison with the equations 
du  = 2Mh(u) + 0 and Au + 2mh(u) = 0, (where M and m are, respectively, the 

sup and inf of  g in ~),  and yields existence theorems for some range of  2; see [3] 
for related results. 

Finally, the reader will notice that our technique is actually to construct an 
upper solution on a ball contaning D, and a lower solution on a ball in s Such a 
strategy is certainly applicable to more general elliptic operators. 

w 3. Applications 

In this section we shall illustrate the use of  Theorem 2.2. Before doing this, 
however, it is useful to have the following lemma. 

Lemma 3.1. Let F be the primitive o f f  satisfying F(O) = O. Suppose F(p) > 0 
for some ~ ) ,  O. Then there exists a function f l  with f l(u)  <:f(u) and an R > 0 
and a non-negative solution u of  Au -k f~(u) = 0 on D[ with u(R) <: 0 and 
u'(R) < O. (That is, u is a "'lower solution" of the Dirichlet problem (see [13]), 
satisfying u'(R) < 0.) 

Proof. Since F(~) > 0, we can find a point Po > 0 with F(p) < F(po) for all 
p, 0 : < P < P o ;  e.g. Po = infF- l (F(P))  �9 If  f (Po)=  0, then the conclusion 
follows from our  result in [13]. I f  f(Po) > 0, we let f l (u)  be a Cl-function satis- 
fying f t (u)  = f(u) for 0 --< u ~ Po, fJ (Pt) = 0 for some Pl > Po, and f t (u)  > 0 
on Po < u <  p l ;  cfi figure 4. Again using the result in [13], we can find positive 
solutions ut  to Au +f~(u) = 0 on D~ for some R > 0, with ul(R), u~(R) < O. 
But then ul restricted to the interval 0 ~ u < Po is the desired lower solution. [ ]  
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/ I ",. 
/ "o ., . . . /  o . - , .  

Fig. 4 

We remark that the condition F(p) > 0 for some p > 0 is a necessary con- 
dition for the existence of  positive solutions of  (1.1), (1.2); see [2]. Thus if 

u (x0  = max {u(x):x E ~}, then Au(xl) < 0 so f(u(xa)) > 0. The well-known 
Pohozaev identity (see [8]), 

as, 2n 9 f  F(u) dx -- (n -- 2) ur(u) dx  = 

n - - 2  
implies that F(u(xO) ~ 2----if-u(xl.)f(u(x,)) > O. 

As a first application of  Theorem 2.2, we have the following theorem, which 
extends the main results in [5] and [13]. 

Theorem 3.2. Let Q C Rn be a bounded open set with smooth boundary, and sup- 
pose that there is a Po ~ 0 ./'or which f(Po) = 0 and F(po) ~ O. Then the conclu- 
sion of  Theorem 2.2 is valid. 

Proof. We shall show that (2.2) holds. Let ~ = infF-~(F(po)); then F(~) > F(p) 
if 0 _< p < ~. I f  Pl = inf{p ~ ~ : f(p)  = 0}, then f(p~) = 0, and F(pl) > F(p) 
if  0 =< p < Pl. From the theorem in [13], there is an R t  > 0 for which there 
exists a positive radial solution ut to the problem (1.1), (1.2) on the domain D~I, 
with u~(0) < Po and u~(R1) < 0. Choose any Re > R1. Setting u2(x)-~po 
on D nR~ and fz = f ,  we see that N( f )  => R2/R~., for every such R2. It  follows that 
N(f)  = + cx~ and this gives (2.2). [ ]  

Our next theorem extends to arbitrary domains $2 a result in [10, Theorem 18]; 
see also [3]. 

Theorem 3.3. Let .(2 be a bounded smooth domain. I f  f(u)/u -+ 0 as u --~ ~ ,  and 
F(po) > 0 for some Po > O, then the conclusion of Theorem 2.2 is valid. 

Thus for example, f(u) can be as depicted in the figure below, where k < 1. 
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Fig. 5 
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Proof. I f  f(Po) = 0, then the result  follows f rom the last theorem.  I f  f(Po) < O, then 
we can find /3 < Po with F(/3) > 0 and  f ~ )  = 0, so this case is reduced to 
the previous one. Suppose  f(Po) > 0. Here  there are two cases: (i) f (u) > 0 for  
all u > Po or  (ii) f (p)  ----- 0 for  some p > P0. Since case (ii) is easily reduced to 
the previous ones, we m a y  assume tha t  we are in case (i). 

Since F(po)>  0, we m a y  apply  L e m m a  3.1 to conclude the existence o f  a 
non-negat ive  solut ion u t  o f  (I.1),  (1.2) on some ball  D~,, with u~(R1) < 0. Let  
u~ (0) = p~ > 0. I f  e > 0 is given, we can find a po in t  p ,  > 0 such tha t  
f ( u ) < 8 2 u  if  u ~ p , .  We m a y  assume tha t  p , > p l .  N o w  choose p > 2 p , ,  

~2 
and let p ,  < u < p. Then on  this range  F(p) -- F(u) = -~- (p2 _ uZ), so with 

v = u', we have v z ~ 2F(p) -- 2F(u) ---- e2(p 2 -- uZ). I f  t(p) is defined by  
u(t(p),p) = p, (such a funct ion is easily shown to exist by  the methods  in [10]), 
then 

/~18 /l~ 
e r  - -  U 2 e 

,[  oost 
= -  z~/2 - -  sin -1 ~ 

8 

This shows tha t  t (p ) -~ -oo  as e ~ 0. N o w  as above,  we can find solut ions 
u2(r,p) of  (1.1) on 0 ~ r <  R2(p) with u2(R2(p),p) > P l  where Rz(p) > t(p). 
I t  follows tha t  N(f)  ~ t(p)/R1 so tha t  N(f)  = cx~ and (2.2) holds.  [ ]  

As  a final applicat ion,  we have the following result ( compare  with [7, Theo-  
r em 2.1 ]). 

Theorem 3.4. Let f(O) > 0 and assume that F(p) > 0 for  some p > 0. I f  s 
is any bounded domain, the conclusions o f  Theorem 2.2 are valid. 

Proof .  F r o m  L e m m a  3.1, there exists an R > 0 and a non-negat ive  solut ion 
ul  o f  (1.1), (1.2) on DR with u'l(R) < O. Since f (0 )  ~- 0, we can find pk---> 0 
and  solutions uk with uk(0) = p k ,  on  D~k, Rk---~0 (see [10, Th.  18]). Thus  

N(f)  ~ R/Rk so N(f )  ----- -k c~ and the result  follows. [ ]  
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w 4. The Dirichlet Problem on n-Balls 

We recall the celebrated theorem of  GIDAS, NI & NIRENBERG [4], which assert. 
that a positive solution of  (1.1), (1.2) on an n-ball must be radially symmetrics 
It thus satisfies the ordinary differential equation 

n - - 1  
(4.1) u"(r) + ~ u ' ( r )  + f ( u ( r ) )  = 0, (r = lxl),  

r 

and the initial conditions 

(4.2) u(0) = p, u'(0) = 0, 

for some p > 0. The solution of  (4.1), (4.2) will be denoted by u(r,p).  We define 
( e l  [9]) 

To(p) = min (r > 0: u(r, p) = 0}, 

whenever the set on the right-hand side is not empty. Thus TD(p) is the smallest 
zero of  u(.,p), and if TD(p) = R, then u( . ,p)  is a solution of  (1.1), (1.2). In this 
context, it is convenient to allow the radius R of  the n-ball D~ to vary with p, 
and we shall thus consider the quantity p as a parameter; see [10-13]. 

Throughout  this section, we shall always assume that f satisfies the following 
growth condition: 

(4.3) cu ~ <~ f (u )  • du e for u ~> b, 

where ~,/3, c, dand  b are positive constants. I f  we take p => 2b, thenf(u) is bound- 
ed away from zero on the intervals [p/2, p], and [b, p], so there are numbers 
r = r(p), and T---- T(p) that satisfy 3 

(4.4) u(r(p), p) ---- p/Z, u(T(p),  p) = b.  

Whenever (4.4) holds, we may define the quantity q = q(p) by 

(4.5) q(p) = u'(r(p) ,  p) .  

Now as we have shown in [10, Theorem 8], in order to prove the existence of  
positive solutions to the Dirichlet problem, it suffices to show that 

(4.6) lim q(p) T(p) = --  co .  
p--+ oo 

(In the appendix to this section we give a simpler proof  of  this result.) If  (4.6) holds, 
then in fact we can find a point Po > 0 such that if p > Po, the function u(r,p)  
solves (1.1), (1.2) with R = TD(p). 

In order to prove (4.6), we write 

- - q T ~ - - q T n - 1 / T "  2, 

and we estimate separately the numerator and denominator in terms of powers 
o fp .  We then collect these powers, and if the resulting exponent is positive, (4.6) 
holds and so positive solutions exist. We need a few lemmas before giving our 
main results (Theorems 4.6, 4.8 and 4.9, below). 

3 In [10] it is shown that such numbers exist. 
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L e m m a  4 . 1 .  - - q T  n-1 >_~ const, p%~. 

241 

Proof. From (4.1), we may write 
r = 0  to r = T ( p )  gives 

- - ( r n - l u ' ) ' =  r n - l ~ ;  

T 

- - q T " - ' =  f r"- '  f(u(r)) dr 
o 

T 
>= f r~-l cu*dr 

o 

c / d  '-1 u~ dr 
o 

_ > e r r  "-l(p/2) ~ d r -  c z ~ 
- -  o n 2 z'p% [ ]  

thus integrating from 

Next w e  estimate 7(p). 

L e m m a  4.2. There are positive constants k l  and k2  such  that 

k lp  1-3 <= 7(p) 2 ~ k2p I-~. 

Proof. For u => b, we have 

er n-1 u ~ <= --(r n-l  u')' = r"Ll f (u)  <= dr ~-1 u a. 

But p/2<--u<--p when O~<r--<z;  thus on this range 

cr"-l(p]2) ~ <= --(r  ~-1 u')" <= dr ~-1 pa. 

If we integrate this from 0 to r ~ 7, we get 

c d 
2~ n p~r <= --u'(r) <= n p%.  

Now integrate this from 

o r  

as desired. [ ]  

r = O  to r----7; this gives 

c z 2 d ~ 1:2 
2~n P~-~ < p--- <- "27". - ~ ,  = 2 --  n p~ 

n 2~n 
._.~ p l - 3  ~ T2 ~ c p l -~ ,  

Combining these lemmas gives 

_ q T  n-1 
- - q T  ~ T n _  2 

p~z ~ 
~> const. T n _  2 

> c o n s t . . ~ ( . ( i  -3)12"~n 
~- T n - 2  1" ~v J , 
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o r  

const . . . . . . .  r~(2cr + n-- nfl)[2 (4.7) - - q T  >= k, �9 T n - 2  

We turn our attention now to the problem of estimating T = T(p) from above. 
This will follow as a consequence of estimates obtained for linear equations, to- 
gether with a simple monotonicity theorem. 

Lemma 4.3. Let  u be a positive solution o f  the (linear) equation 

n - - 1  
u"(r) + u'(r) + 2u(r) = 0, 0 < r < S (2 ) ,  ,~ > 0, 

r 

together with the boundary conditions u(O) = p, u'(0) = u(S(2))= 0. 

= 2 - ~  S(1). S(2)  

Then 

Proof. This statement follows from a simple scaling argument. Thus, defining 
w(r) : u(cr), where c is a constant, we have w'(r) = cu'(r), w"(r) : c2u"(r) so 
i f  c 2 : ,~--1 

n - - 1  n - - 1  
w"(r) -~- ~ w'(r) q- w(r) = c2u"(cr) -k ~ c2u'(cr) q- u(cr) 

r c r  

[ n - -  l u,(cr) q- 2u(cr)] : c 2 u"(cr) q- cr 

= - 0 .  

Also, w ' ( 0 ) :  0, w ( 0 ) : p ,  so u ( S ( 1 ) ) :  w(S(1)), by uniqueness. Thus 
u(cS(1)) : w ( S ( 1 ) ) :  u ( S ( 1 ) ) :  0 so c S ( 1 ) :  S(2) and S ( 2 ) :  ~.-1/2 S(1). [ ]  

We next have the following monotonicity theorem; it's really a variant of  
the classical Sturm theorem. 

Lemma 4.4, Consider the two equations (--V '-1 u~)' = r"-lf~(u), together with 
the conditions u~(O) = O, and ui(O) E (0, p], i = 1, 2. Suppose that f2(u)/u > 

f l (w) /w  whenever 0 < u, w < p. I f  Ri is defined to be the first zero o f  ui, i = 1, 2, 
then R l  > R2. 

Proof. Let w = u l v z - - U 2 V l ,  where v i=u~ ,  i =  1,2. Then 

(4.8) (r"w)" = r" - '  u, u2 / fl(--u') f2(uz)] < 0, 
t uz u 2 1  

if 0 < r < min (Rz, R2). Now if R2 >= R~, we can integrate (4.8) from r = 0 
to r = R 1  to get 

0 > g~- ' (u~(g , )  v~(R,) -- u2(R,) v,(R,)) = --RT-'u2(R,) v,(R0. 

On the other hand R2 :> Rt also implies that u2(Rl) >: 0, and since v~(R1) ~ O, 
the above inequality is violated. Thus R1 > R2 as desired. [ ]  
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We are now able to estimate T(p) from above. We distinguish two eases: 
o~ :< l  and o ~ > l .  

Lemma4.5.  Suppose that f (u)  ~ cu ~ for u >: b, where o~ <= 1, and e > O. 
Then T(p) <: eonst .p  0-~)/2. 

Proof. Fix p > b and define 3~(u)= cp ~-I u. Let f2(u) be a Cl-function for 
which j~(u) = f ( u )  if u > b, and which also satisfies the inequality f2(u)/u > cp ~-1 
on 0--<u--<b.  Then if b ~ u < p ,  and 0 ~ w < p ,  we have 

A(u)  _f(u____) >__ cu ._  I > c e ' -  , = A(w)  
U U W 

while if 0 ~ u ~ < b ,  and 0 ~ < w < p ,  we have 

A(u____2) > e p . -  1 = A (w) 
U W 

Thus the hypotheses of  the last lemma are satisfied so (in the obvious notation) 
RI > R2. Now from Lemma 4.3, 

s ( o  ~ -  ~ 
R, - 1/-~- - s ( o  c - � 8 9  ~ , 

and since u z ( R 2 , p ) = O ,  and u z ( T , p ) = u ( T , p ) = b ,  we have R 2 > T .  It  
1--cr 

follows that T(p) < R2 < R1 = const, p 2 [ ]  
We may now combine Lemmas 4.1 and 4.5 to obtain the following resuR. 

Theorem 4.6. Assume that o~ <~ 1, and fl -- o~ < 2/n.- Then for all sufficiently 
large p, there are positive solutions u(.,p) o f  (1.1) on D~DCv ). In particular, i f  

o~ = fl <~ 1, there are solutions on D~DO0 for  all sufficiently large p. 

Proof. Using (4.7) and the last lemma, we have 

- - q T  >_~ const,  p(2~+n-n#)12 T2-n 

:> c o n s t ,  pf2~+n-n#)/2 p(n-2)(~--l)/2 

= const, pt2-n~-~)]12, 

so that --qT-->oo as p ~ o o  if f l - - 0 c < 2 / n .  [] 

We now consider the case where 0r > 1. Again we shall crudely estimate T 
from above and use (4.7). 

Lemma 4.7. I f  f (u)  ~ cu ~ for u ~ b, where or > 1, and c > 0, then T(p) is 
bounded. 
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Proof. I f  u > - b ,  f ( u ) /u>:cu  ~ - l > c b ~ - l .  Let f > b ;  then if we define 
fl(u) : cb ~-1 u, and let f2 be a C a-function such that f2(u) ---f(u) on u >: b, and 
which satisfies the inequality f2(u)/u ~ cp ~-l on 0 --< u --< b, then Lemma 4.4, 
implies that RI > R2. Now as in the proof  of  Lemma 4.5, R2 > T(p) and since 
f~ is linear, Rt is a constant, independent o fp .  It follows that T(p) <: const. [ ]  

We use this estimate to prove 

Theorem 4.8. Let  o~ ~ 1, and suppose that 2o~ > n(13 -- 1). Then for all su E -  
eiently large p, there are positive solutions u(', p) o f  (1.1) on D~D~r ). In particular, 

i f  1 < or ~ fl < n/(n -- 2) there are solutions on D~D(p)for all sufficiently large p. 

Proof. Using (2.7) and the last lemma, we have 

- - q T  >: const,  p(n+ 2~-n#)/2, 

where the exponent is positive, thus --qT---~ oo as p--> ~ .  [] 

We may combine Theorems 4.6 and 4.8 to obtain the following theorem. 

Theorem 4.9. Suppose that f (u)  ----- O(u k) as u -+ oo, where 0 < k < n/(n --  2). 
Then there exist positive solutions to the Dirichlet problem on D~o(p ) for all suffi- 
ciently large p. 

Since 1 <Z n/(n -- 2) for all n ~> 2, we obtain at once the following corollary, 
(which corrects an error in [10; Corollary 15]). 

Corollary 4.10. I f  f (u)  = O(u) as u -+ oo, then for every positive integer n, there 
exists a point Pn ~ 0 such that i f  p ~ Pn, there exist positive solutions to the Di- 
richlet problem on D~.D(p). 

We close this section with the following observation. Namely, if one were 

able to strengthen Lemma 4.7 to the statement that if 0r > 1, T(p) <: const .p ~-n , 
that is, if we could estimate the rate of  decay of T(p), then existence of  positive 
solutions to the Dirichlet problem would hold for all sufficiently large p, whenever 
n -~ 2 ~ nfl -- 20r Thus in particular if or = fl ---- k, there would be such solu- 
tions whenever 0 < k < (n § 2)/(n -- 2). This would be the optimal result in 
this generality. 

Appendix 

In this section we shall give a short proof  of  our basic result in [10]; in particular 
we shall avoid the use of  comparison functions and certain tedious estimates. 

Theorem. Suppose that f (u)  ~ m for u ~ A. Then the following statements 
hoM: 
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(i) For any p > A, there is a T(p) with u(T(p),p) = A. 
(ii) I f  q(p) = u'(T(p), p), then --q(p)/T(p) ~ m/n. 

(iii) I f  q(p) T(p)--->- oo as p-+ co, then there is a ~ > 0 such that if  
u(O) >: ~, the problem (4.1), (4.2) has a positive solution, with u' > O. 

Proof. We only prove (iii); parts (i), and (ii) are easily proved as in [9]. 
Choose B > 0  such that - -B  <: f(u) <: B, 0<_ u<_A;  then if F ' = f ,  

F(0) = 0, we have 

(A~) IF(u) I < BA, 0 <--_ u <__ A .  

Set H(r) ---- v(r)2/2 q- F(u(r)); then H decreases on orbits so v 2 -k 2F(u) 
q2 -k- 2F(A), i f  0 <: u <-- A. Using (A1), we find 

(A2) v2(r) ~ q2 + 4BA, 0 <-- u ~ A.  

We shall use this inequality to show 

2A 
(Aa) v(r, p) < q/2 for T(p) <-- r <_ T(p) q- ~ T '  

if --q(p) T(p) ~ l; i.e. if p>> 1. 
Thus, we have 

r 

v2/2 -k F(u) -- (q2/2 -1- F(A)) = f H'(t)  dt 
T 

It follows that 

Thus 

/. 

13 

= - - (n  - -  1) . J  --~-dt 
T 

r 2 

>__- - (n - - I )  f q  q-4Bdt 
T 

dt. 

i q 2  
v 2 > q2 + 2(F(A) -- F(u)) -- (n -- 1) + 4BA 

- -  �9 t 
T 

> q 2 _ 4 B A _ ( n _  1) i q 2  q_4BA = T dt 
T 

= q2 _ 4BA 
(n - -  1) 

T (q2 q_ 4BA) (r -- T) 

(n -- 1) 2A 
(q2 q_ 4BA) - ~  . > q 2 _  4BA 

2 A ( n -  1) 

dt 

v2/q 2 >: 1 -- 4BA/q 2 I ql T (1 -k 4BA/q2). 
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But q T - + -  oo and --q/T>= m/n imply that q2-+oo as p--~c~.  Thus for 
large p, we see that the last inequality shows that we can make v 2 => q2/4 on the 
requisite interval; this implies (Aa). 

From this the proof  of  (iii) follows rather easily; namely, if 0 -~ T(p) + 2A/Iql ,  
(where p is chosen so large as to make (A3) valid), we have 

0 

u(O)= A + f v(t) dt 
T~o) 

q 2A 
< A  + 2 Iql-0. 

Hence u becomes negative on this interval and since v < q/2 < 0, on this inter- 
val, we see that a solution exists. 

w 5. The Neumann Problem 

We shall show here how the methods of  the precedingection can be extended 
to yield monotone solutions of  the Neumann (and in fact, any other linear) 
boundary-value problem. We continue to assume that inequalities (4.3) hold. 

Theorem 5.1. Suppose s is an n-ball, and that f satisfies (4.3), where either i) 
o~ ~ 1 and fl - -  o~ < 2/n, or ii) c~> 1 and 2o~ > n(fl --  1). Assume in addition 
there is an ~ ~ 0 such that 

(5.1) 

and that 

(5.2) 

f (u )  < 0 if u ~ ~, 

lim F(u) = c~.  
u-+oo 

Then there is a Po > 0 such that i f  u(O) >= Po, there is a monotone radial solution 
o f  the Neumann problem 

Au(x) + f (u (x ) )  = O, x ~ D~-~c.~ 
(5.3) 

du(x)/dn = O, x E bO~#r  ) �9 

Recall that u(r,p)  is the solution of  (4.1) and (4.2); here Tu(p) is defined by 

TN(p) = min (r > 0: du(r, p)/dn = 0}, 

whenever the set on the right is not empty. 

Corollary5.2. I f  (5.1) and (5.2) hoM, and in addition f (u)  = O(u k) as u---~oo, 
0 < k < n/(n - -  2), then the conclusion o f  Theorem 5.1 is valid. 

We remark that if f (u )  ~> 0 for all u, then there cannot be any radial solu- 
tions to the Neumann problem (5.3) since the u-axis would be a repellor for the 
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system (equivalent to (4.1)), 

(5.4) u' = v, 
n - - 1  

V t _ _  m / )  m ] ~ U / .  

Thus some conditions like (5.1) and (5.2) are necessary. 

Proof. There are two steps in the proof;  namely 

(i) There exists a Pl > 0 such that if p ~ Pl,  there is a 27(p) satisfying 
u(f(p), p) = 

(ii) For  p >: p~, u(r, p) is a monotone solution of  the Neumann problem. 
We begin by showing that (ii) holds. As usual, let H, the "total  energy", be 

defined by 

(5.5) H(r) ~ H(v(r), u(r)) -~ F(u(r)) + v(r)2[2, v : u'. 

Then H ' :  - - ( n -  1) r  - I  v 2, so that H decreases on orbits (u(r,p), v(r,p)) of  
(5.4), where, as usual, p = u(0, p). 

Now let p > Pl,  and suppose u(7, p) > 0, and /-/(7) : F(u(7, p)) + v(r, p)2/2. 
Using (5.2), we can find ~ < ~ for which F(u) >: H(7) -k 1, if u ~ 7. Thus, 
since H is a decreasing function, and F(u) <: H(u, v), we see that u(r, p) > ~ for 
all r :> 0. 

Suppose that the function u(., p) does not yield a solution of the Neumann 
problem. Then both u'(r, p) ~ 0, and ~ < u(r, p) ~ p, for all r ~ 0. Thus we 
see that u(-, p) is a bounded, monotone decreasing function and thus has a limit; 
say 

(5.6) lim u(r, p) : ux. 
r---~- o o  

Note that u(T,p)  = ~ implies that ul < r/, (since u' <~ 0), so that (5.1) gives 
f(u~) < O. Thus there is a neighborhood of ut on whichf is  negative; say [ u -- u2 ] 
<: ~ implies - -B  ~ f ( u )  <: --B/2, for some B > 0. Using (5.6), we can find 
an R t = > 0  such that u ~ < u ( r , p ) < u ~  + ~ ,  if  r ~ R ~ .  It follows that 
- -B  ~ f ( u ( r ,  p)) ~ --B/2 if  r ~ R~. Using these facts, we have, for r ~ R~, 

- - ( r  ~-1 v)' = f - i f ( u )  <= _ , , - 1 B ] 2 ,  

and integrating from R1 to r gives 

--r"-Iv(r,  p) + qlR7 -1 <: - - _  

where ql = v(Rl ,p) .  Thus 

r"e R~B 
2n + 2n ' 

--v(r, p) < --qln'~-I rB BR1 [ RI~ "-1 
= : 1  2 n  ' 

and this shows that --v(r, p) --> -- cx~ as r --> 0o. Thus v(r, p) > 0 for large r, 
so that v(r, p) must vanish somewhere. This is the desired contradiction, and so 
the proof  of  statement (ii) is complete. 
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To prove (i), we set ~ = u - -  r/ and then write the equation in terms of  ~ :  

(5.7) - - ( r  ~-1 u ' ) '  = r~-lJ~fi),  

where f(~)  = f (~  + 7)- N o w  if u ~ b, cf. (4.3), we have the bounds  

(5.8) c ~  + ,~)~ < f ~ )  < d ~  + ,~)~, ~ > b --  7.  

Since ~ > 0, ('fi + ~/) ~ 5, so (5.8) gives 

(5.9) ) ~ )  ~ d~ ~ if ~ _> b - -  ~/. 

On  the other  hand, b - -  r / >  --r/ so we can find a constant  c~, 0 < cx < 1 for  
which (1 - -  cl) (b - -  r/) ~ --~/. Thus,  if  ~ ~ b - -  ~/, (1 - -  cl) ~ ~ (1 - -  c~) (b - - 7 )  

--~/, and hence ~ + ~/=> clu. Thus f rom (5.8) we get cc~ ~ <=f(?t), for  ~ 

b - -  ~/. Combining  this with (5.9), we see that  f -~)  satisfies the same inequalities 
as does f(u), for  large ~. We have seen in w 4 that  under  the conditions which we 
have imposed on 0~ and fl, there are radial solutions of  the Dirichlet problem. 

That  is, there is a Pt  > 0 such that  if p => Px, there is a T-(p) for which ~(T(p),p) 
---- 0; thus u(T(p),p) --- 7. This proves (i) and completes the p roo f  o f  the theo- 
rem. [ ]  

We close this section with the observat ion that  any mono tone  decreasing 
radial solution to the Ne um a nn  problem on an n-ball guarantees the existence o f  
a m o n o t o n e  decreasing solution satisfying any linear boundary  conditions. Thus 
the two classical boundary  conditions, Dirichlet and Neumann,  are actually the 
mos t  general ones as far as questions o f  existence are concerned. 
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