Existence Theorems Concerning Simple Integrals of the Calculus of Variations for Discontinuous Solutions

L. Cesari, P. Brandi \& A. Salvadori
Dedicated to James Serrin on his $60^{\text {th }}$ birthday

1. Introduction

In this paper we apply the direct method of the calculus of variations, based on lower semicontinuity and lower closure (see [5]), to prove the existence of optimal solutions $x(t)=\left(x^{1}, \ldots, x^{n}\right), t_{1} \leqq t \leqq t_{2}$, for which α components $y(t)=\left(x^{1}, \ldots, x^{\alpha}\right)$ are AC and $n-\alpha$ components $z(t)=\left(x^{\alpha+1}, \ldots, x^{n}\right)$ are BV and not necessarily AC. If $\alpha=0$ all components of x are BV, and in this situation no growth assumption is made on the integrand function. The cost functional \mathscr{I} is of Serrin type ([14]), i.e. it is obtained from the usual integral expression I by means of a limit process, based on a topology τ, of this integral I over curves x_{k} whose components are all AC. The topology τ that we use here is the topology of uniform convergence on the y_{k} components and pointwise convergence almost everywhere on the z_{k} components. This pointwise convergence almost everywhere has been used by Cesari in the study of area of discontinuous surfaces ($[4], 1936$) and in existence theorems concerning simple integrals for AC solutions (see [5], Chapt. 15 and the papers cited there).

In Section 2 we first prove a closure theorem (Theorem 1) for problems in which mere pointwise convergence almost everywhere is adopted. The closure theorem is used, in Section 3, for proving a lower semicontinuity theorem (Theorem 1^{\prime}) based on the topology τ. The same lower semicontinuity theorem allows us to prove that \mathscr{I} is a true extension of I, in the sense that $\mathscr{I}=I$ whenever all components are AC.

In Section 3 we prove also an existence theorem for the absolute minimum of extended problems of the calculus of variations with constraints on the direction of the tangent. In Section 4 we derive, as a corollary, an existence theorem for the absolute minimum of problems of optimal control. For a different viewpoint connecting Serrin-type integrals, usual integrals, and Burkill-Cesari integrals we mention the paper [3] by Candeloro \& Pucci, where also lower semicontinuity theorems are given for solutions which are only continuous and of bounded variation.

Elsewhere ([6b]) the present work on discontinuous solutions will be extended
to multiple integrals of the calculus of variations and functions of $v>1$ independent variables. Therefore, the BV concept in [6b] will be the one introduced by Cesari in 1936 ([4]) and shown by Krickeberg ([12]) to be equivalent to the one in terms of distributions. Later the functions of bounded variation in the sense of Cesari were briefly denoted as BVC by Conway \& Smoller ([8]), Dafermos ([9]) and DIPERNA ([10]). The functions of bounded variation defined in the equivalent terms of distributions were briefly denoted as BV by Volpert ([16]) and others. In order that the present work, which concerns functions of one variable, be in harmony with [6b], we use the notations from [6b].

2. A closure theorem with components converging only pointwise

Let A be a subset of the (t, x)-space R^{n+1} whose projection on the t-axis contains the fixed interval $\left[t_{1}, t_{2}\right]$. Let $Q(t, x),(t, x) \in A, Q(t, x) \subset R^{n}$, or $Q: A \rightarrow R^{n}$, be a given set valued function.

Following Cesari [5] we shall say that the set function Q has property (Q) at the point (\bar{t}, \bar{x}), with respect to (t, x), if

$$
Q(\bar{t}, \bar{x})=\bigcap_{\delta>0} \mathrm{clco} \underset{(t, x) \in B(\bar{t}, \bar{x} ; \delta)}{ } Q(t, x)
$$

where $B(\bar{t}, \bar{x} ; \delta)=\{(t, x) \in A:|(t, x)-(\bar{t}, \bar{x})| \leqq \delta\}$. Let $Q(\bar{t}, \bar{x} ; \delta)=\cup Q(t, x)$ for $(t, x) \in B(\bar{t}, \bar{x} ; \delta)$.

Analogously, Q is said to have property (Q) at the point (\bar{t}, \bar{x}), with respect to x only, if

$$
Q(\bar{t}, \bar{x})=\bigcap_{\delta>0} \operatorname{clco} \bigcup_{x \in B^{\prime}(\bar{t}, \bar{x} ; \delta)} Q(\bar{t}, x)
$$

where $B^{\prime}(\bar{t}, \bar{x} ; \delta)=\{(t, x) \in A:|x-\bar{x}| \leqq \delta\}$. The corresponding Kuratowski properties (K) are obtained by writing only cl , instead of cl co, in the relations above.

We mention here that a summable function $x(t)$ from $\left[t_{1}, t_{2}\right]$ into R^{n}, or $x:\left[t_{1}, t_{2}\right] \rightarrow R^{n}$, is said to be of bounded variation in the sense of Cesari, briefly BVC , if it is equivalent to a BV function $\tilde{x}:\left[t_{1}, t_{2}\right] \rightarrow R^{n}$. It may well occur that x is equivalent to infinitely many BV functions \tilde{x}. In this case, at every point $t_{0} \in\left(t_{1}, t_{2}\right)$ of (first kind) discontinuity for \tilde{x}, we may take $\tilde{x}\left(t_{0}\right)$ so that $\tilde{x}\left(t_{0}-0\right)$ $\leqq \tilde{x}\left(t_{0}\right) \leqq \tilde{x}\left(t_{0}+0\right)$ or the same relations with the sign \geqq. Also, we may take $\tilde{x}\left(t_{1}\right)=\tilde{x}\left(t_{1}+0\right), \tilde{x}\left(t_{2}\right)=\tilde{x}\left(t_{2}-0\right)$. With this choice for \tilde{x} the variation $V(\tilde{x})$ is uniquely determined and it has the minimum value for all \tilde{x} equivalent to x. We take, by definition of generalized variation $V^{*}(x)$ the number $V^{*}(x)=$ $V(\tilde{x})$, for \tilde{x} chosen as stated. Moreover we take, by definition $x^{\prime}=\tilde{x}^{\prime}$ (a.e. in $\left[t_{1}, t_{2}\right]$).

Analogously, x is said to be absolutely continuous in the generalized sense, briefly ACg if x is equivalent to an AC function \tilde{x}. In this case \tilde{x} is uniquely defined, and for the generalized variation we take $V^{*}(x)=V(\tilde{x})$.

For further properties of such functions see [4], [6a], [1], [2], [13].

We shall consider the orientor field equation

$$
\begin{equation*}
(t, x(t)) \in A, \quad x^{\prime}(t) \in Q(t, x(t)), \quad \text { a.e. in }\left[t_{1} \quad t_{2}\right] \tag{1}
\end{equation*}
$$

that is, the problem of determining a BVC function x satisfying these relations.
We state and prove now a closure theorem which replaces, in the present situation, the closure theorem 15.2.i of [5].

Theorem 1 (A closure theorem). Let us assume that (i) A is closed; (ii) the set valued function Q has closed and convex values; (iii) the set valued function Q has property (Q), with respect to (t, x), at every point $(\bar{t}, \bar{x}) \in A$, with the exception perhaps of a set of points whose t-coordinate lies in a set H of measure zero in [$\left.t_{1}, t_{2}\right]$.

Let $x_{k}:\left[t_{1}, t_{2}\right] \rightarrow R^{n}, k \in N$, be a sequence of ACg solutions of the orientor field (3), and assume that $V^{*}\left(x_{k}\right) \leqq V_{0}, k \in N$, and that $x_{k} \rightarrow x$ pointwise a.e. in $\left[t_{1}, t_{2}\right]$, with $x \in \mathrm{BVC}$. Then the function x is a solution of the orientor field relation (3).

Proof. (a) By the hypotheses it follows that

$$
(t, x(t)) \in A, \quad \text { a.e. in }\left[\begin{array}{ll}
t_{1} & t_{2} \tag{2}
\end{array}\right],
$$

so we have only to prove that

$$
\begin{equation*}
x^{\prime}(t) \in Q(t, x(t))-\quad \text { a.e. in }\left[t_{1}, t_{2}\right] \tag{3}
\end{equation*}
$$

In order to see that, without loss of generality we can suppose that x is BV and x_{k} is $\mathrm{AC}, k \in N$.

Let $T_{0} \subset\left[t_{2}, t_{2}\right]$ be a set of measure zero such that in $\left[t_{1}, t_{2}\right]-T_{0}$ we have

$$
\lim _{k \rightarrow \infty} x_{k}(t)=x(t) \quad \text { and } \quad x^{\prime}(t)=x_{a}^{\prime}(t)
$$

where $x=x_{a}+x_{s}$ denotes the Jordan decomposition of x.
(b) Now for every $m \in N$, we divide $\left[t_{1}, t_{2}\right]$ into m equal parts $I_{r}^{(m)}, r=$ $1, \ldots, m$, each of length $\left(t_{2}-t_{1}\right) m^{-1}=T m^{-1}$; and denote by $T_{1} \subset\left[t_{1}, t_{2}\right]$ the set of all points of subdivision, so that T_{1} is denumerable and, therefore, has measure zero.

Let $m \in N$ and $\varepsilon>0$ be fixed. For every $k \in N$, we consider those intervals $I_{r}^{(m)}$ if any, such that $\omega\left(x_{k}, I_{r}^{(m)}\right) \geqq \varepsilon$, where $\omega\left(x_{k}, I\right)$ denotes the oscillation of x_{k} over I.

Let $S_{k}^{(m)}$ be the system of such intervals, or

$$
S_{k}^{(m)}=\left\{I_{r}^{(m)}, r=1, \ldots, m: \omega\left(x_{k}, I_{r}^{(m)}\right) \geqq \varepsilon\right\} .
$$

We now proceed to the determination of a suitable set $\Sigma^{(m)}$ and to the extraction of a suitable subsequence of $\left(x_{k}\right)_{k \in N}$. First, if $I_{1}^{(m)} \in S_{k}^{(m)}$ for all k sufficiently large, we put $I_{1}^{(m)}$ in $\Sigma^{(m)}$; if not then there are infinitely many $k \in N$ such that $I_{1}^{(m)} \notin S_{k}^{(m)}$ and we denote by $\left(k_{1 s}\right)_{s \in N}$ such sequence, i.e. $I_{i}^{(m)} \ddagger S_{k_{1 s}}^{(m)} s \in N$. If $I_{2}^{(m)} \in S_{k_{1 s}}^{(m)}$ for all s sufficiently large, we put $I_{2}^{(m)}$ in $\Sigma^{(m)}$; if not then there
are infinitely many $s \in N$ such that $I_{2}^{(m)} \notin S_{k_{1 s}}^{(m)}$. We denote such a sequence by $\left(k_{2 s}\right)_{s \in N}$; then $\left(k_{2 s}\right) \subset\left(k_{1 s}\right)$ and $I_{2}^{(m)} \ddagger S_{k_{2 s}}^{(m)}, s \in N$.

We proceed as indicated for $I_{3}^{(m)}, \ldots, I_{m}^{(m)}$.
At the end we have a set $\Sigma^{(m)}$ made up of all points of certain intervals $I_{r}^{(m)}$, $r=1, \ldots, m$, say, for simplicity $\Sigma^{(m)}=\left\{I_{i}^{(m)}, i=1, \ldots, v\right\}$, and a final sequence $\left(k_{m s}\right)_{s \in N}$ with $\left(k_{m s}\right)_{s \in N} \subset\left(k_{m-1, s}\right)_{s \in N} \subset \ldots \subset\left(k_{1 s}\right)_{s \in N}$.

Note that for all $k_{m s}$ sufficiently large we have

$$
\omega\left(x_{k_{m s}}, I_{i}^{(m)}\right) \geqq \varepsilon, \quad i=1, \ldots, v
$$

and hence

$$
\nu \varepsilon \leqq \sum_{i=1}^{\nu} \omega\left(x_{k_{m s}}, I_{i}^{(m)}\right) \leqq \sum_{r=1}^{m} \omega\left(x_{k_{m s}}, I_{r}^{(m)}\right) \leqq V\left(x_{k_{m s}}\right) \leqq V_{0}
$$

i.e. $\nu \leqq V_{0} \varepsilon^{-1}$.

This implies that

$$
\operatorname{meas}\left(\Sigma^{(m)}\right)=\sum_{i=1}^{n} \operatorname{meas}\left(I_{i}^{(m)}\right)=\nu T m^{-1} \leqq V_{0} T / \varepsilon m
$$

Hence, for every $\varepsilon>0$ we can choose an integer m_{ε} sufficiently large that

$$
\operatorname{meas}\left(\Sigma^{\left(m_{\varepsilon}\right)}\right) \leqq V_{0} T / \varepsilon m_{\varepsilon}<\varepsilon
$$

Now we take ε ranging in succession over the values $\left(1 / 2^{\lambda}\right)_{\lambda \in N}$. Thus, for $\lambda=1$ then $\varepsilon=1 / 2$ and, starting from the original sequence $(k)_{k \in N}$, we obtain from the above an integer m_{ε}, which we denote by m_{1}, a set $\Sigma^{\left(m_{\varepsilon}\right)}$, which we denote by $\Sigma^{(1)}$, and a subsequence $\left(k_{m s}\right)_{s \in N}$ that we denote by $\left(k_{s}^{1}\right)_{s \in N}$.

For $\lambda=2$ then $\varepsilon=1 / 2^{2}$ and, starting from the sequence $\left(k_{s}^{1}\right)_{s \in N}$ we obtain, as before, an integer m_{2}, a set $\Sigma^{(2)}$ and a sequence $\left(k_{s}^{2}\right)_{s \in N}$.

Proceeding as indicated for the generic $\lambda \in N$, we see that $\varepsilon=1 / 2^{\lambda}$ and, starting from the sequence $\left(k_{s}^{\lambda-1}\right)_{s \in N}$, we obtain an integer m_{λ}, a set $\Sigma^{(\lambda)}$ and a subsequence $\left(k_{s}^{\lambda}\right)_{s \in N}$ as before.

It is not restrictive to assume that $\left(m_{\lambda}\right)_{k \in N}$ is an increasing sequence. We consider now the sets

$$
\Sigma_{n}=\bigcup_{\lambda=n}^{\infty} \Sigma^{(\lambda)}, \quad n \in N \quad \text { and } \quad \Sigma_{0}=\bigcap_{n \in N} \Sigma_{n}
$$

We have,

$$
\text { meas } \Sigma_{n} \leqq \sum_{\lambda=n}^{\infty} \operatorname{meas}\left(\Sigma^{(\lambda)}\right) \leqq \sum_{\lambda=n}^{\infty} 1 / 2^{\lambda}=1 / 2^{n-1} 1, \quad \text { meas } \Sigma_{0}=0
$$

(c) Let us now take any point $t_{0} \in\left[\begin{array}{ll}t_{1} & t_{2}\end{array}\right]-\left(\Sigma_{0} \cup T_{0} \cup T_{1} \cup H\right)$. Then there is a real $\sigma>0$ and an integer n_{0} such that $t_{1}<t_{0}-\sigma<t_{0}<t_{0}+\sigma<t_{2}$ and $t_{0} \notin \Sigma^{(\lambda)}$ for every $\lambda \geqq n_{0}$.

For every given $\varepsilon>0$ we take $\lambda \in N$ sufficiently large that $1 / 2^{\lambda}<\varepsilon / 2$ and $t_{0} \notin \Sigma^{(\lambda)}$. Consequently $t_{0} \in\left(I^{(\lambda)}\right)^{0}$ with $I^{(\lambda)} \notin S_{k_{s}^{\lambda}}^{(\lambda)}, s \in N$; hence

$$
\begin{equation*}
\omega\left(x_{k_{s}^{\lambda}}, I^{(\lambda)}\right)<1 / 2^{\lambda}<\varepsilon / 2 \quad \text { for every } s \in N \tag{4}
\end{equation*}
$$

Since λ is fixed now, for simplicity we shall write $\left(k_{s}^{\lambda}\right)_{s \in N}=\left(k_{s}\right)_{s \in N}$. For every $0<h<\sigma$ we consider the averages

$$
\begin{aligned}
m_{h} & =h^{-1} \int_{0}^{h} x^{\prime}\left(t_{0}+\tau\right) d \tau=h^{-1}\left[x_{a}\left(t_{0}+h\right)-x_{a}\left(t_{0}\right)\right] \\
m_{k_{s} h^{2}} & =h^{-1} \int_{0}^{h} x_{k_{s}}^{\prime}\left(t_{0}+\tau\right) d \tau=h^{-1}\left[x_{k_{s}}\left(t_{0}+h\right)-x_{k_{s}}\left(t_{0}\right)\right]
\end{aligned}
$$

Now, for an arbitrary fixed $\eta>0$ and for all $0<h<\sigma$ sufficiently small we have

$$
\begin{equation*}
\left|m_{h}-x_{a}^{\prime}\left(t_{0}\right)\right|<\eta / 2 \quad \text { and } \quad\left|x_{s}\left(t_{0}+h\right)-x_{s}\left(t_{0}\right)\right|<h \eta / 4 \tag{5}
\end{equation*}
$$

Thus we fix $0<h<\min (\varepsilon, \sigma)$ in such a way that relation (5) holds and moreover $t_{0}+h \nsubseteq T_{0} \cup T_{1}$ and $\left[t_{0}, t_{0}+h\right] \subset I^{(\lambda)}$. From (4), for every $t_{0} \leqq t \leqq$ $t_{0}+h$, we have

$$
\begin{equation*}
\left|x_{k_{s}}(t)-x_{k_{s}}\left(t_{0}\right)\right| \leqq \omega\left(x_{k_{s}}, I^{(\lambda)}\right)<\varepsilon / 2, \quad s \in N \tag{6}
\end{equation*}
$$

Since $t_{0}, t_{0}+h \nsubseteq T_{0}$, we can find an integer s such that we have

$$
\begin{equation*}
\left|x_{k_{s}}\left(t_{0}\right)-x\left(t_{0}\right)\right| \leqq \min \{\varepsilon / 2, \eta h / 8\} \tag{7}
\end{equation*}
$$

and

$$
\left|x_{k_{s}}\left(t_{0}+h\right)-x\left(t_{0}+h\right)\right|<\eta h / 8
$$

Therefore from (6) and (7), for every $t_{0} \leqq t \leqq t_{0}+h$, we have

$$
\begin{equation*}
\left|x_{k_{s}}(t)-x\left(t_{0}\right)\right| \leqq\left|x_{k_{s}}(t)-x_{k_{s}}\left(t_{0}\right)\right|+\left|x_{k_{s}}\left(t_{0}\right)-x\left(t_{0}\right)\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon . \tag{8}
\end{equation*}
$$

By hypothesis we have

$$
x_{k_{s}}^{\prime}(t) \in Q\left(t, x_{k_{s}}(t)\right) \quad \text { for a.a. } t_{0} \leqq t \leqq t_{0}+h ;
$$

hence, from (8) and because $h<\varepsilon$, we have

$$
\begin{equation*}
x_{k_{s}}^{\prime}(t) \in \mathrm{cl} \operatorname{co} \bigcup_{\substack{\left.t \in\left[t_{0}, t_{0}+\varepsilon\right] \\ x \in B\left(x, t_{0}\right), \varepsilon\right)}} Q(t, x)=\mathrm{cl} \operatorname{co} Q\left(t_{0}, x\left(t_{0}\right), \varepsilon\right) \tag{9}
\end{equation*}
$$

for a.a. $t_{0} \leqq t \leqq t_{0}+h$.
Finally we observe that the average $m_{k_{s} h}$ is also a point of the same closed and convex set ([5], p. 288), i.e.

$$
\begin{equation*}
m_{k_{s} h^{h}} \in \mathrm{cl} \operatorname{co} Q\left(t_{0}, x\left(t_{0}\right), \varepsilon\right) \tag{10}
\end{equation*}
$$

Now by virtue of (7) and (5) we derive that

$$
\begin{align*}
\left|m_{k_{s} h}-m_{h}\right|= & h^{-1}\left|\left(x_{k_{s}}\left(t_{0}+h\right)-x_{k_{s}}\left(t_{0}\right)\right)-\left(x_{a}\left(t_{0}+h\right)-x_{a}\left(t_{0}\right)\right)\right| \\
\leqq & h^{-1}\left|x_{k_{s}}\left(t_{0}+h\right)-x\left(t_{0}+h\right)\right|+h^{-1}\left|x_{k_{s}}\left(t_{0}\right)-x\left(t_{0}\right)\right| \tag{11}\\
& +h^{-1}\left|x_{s}\left(t_{0}+h\right)-x_{s}\left(t_{0}\right)\right| \\
\leqq & h^{-1} \eta h / 8+h^{-1} \eta h / 8+h^{-1} \eta h / 4=\eta / 2 .
\end{align*}
$$

Thus, by (5) and (11), it follows that,

$$
\begin{equation*}
\left|x_{a}^{\prime}\left(t_{0}\right)-m_{k_{s^{h}}}\right| \leqq\left|x_{a}^{\prime}\left(t_{0}\right)-m_{h}\right|+\left|m_{h}-m_{k_{s} h}\right| \leqq \eta / 2+\eta / 2=\eta ; \tag{12}
\end{equation*}
$$

and, from (10) and (12), that

$$
x_{a}^{\prime}\left(t_{0}\right)=x^{\prime}\left(t_{0}\right) \in\left[\mathrm{cl} \operatorname{co} Q\left(t_{0}, x\left(t_{0}\right), \varepsilon\right)\right]_{\eta}
$$

Because η is arbitrary, it follows that for every $\varepsilon>0$

$$
\begin{equation*}
x^{\prime}\left(t_{0}\right) \in \mathrm{cl} \operatorname{co} Q\left(t_{0}, x\left(t_{0}\right), \varepsilon\right) \tag{13}
\end{equation*}
$$

Now the function Q satisfies property (Q) at $\left(t_{0}, x\left(t_{0}\right)\right)$; hence from (13) we derive

$$
x^{\prime}\left(t_{0}\right) \in \bigcap_{\varepsilon>0} \operatorname{cl} \operatorname{co} Q\left(t_{0}, x\left(t_{0}\right), \varepsilon\right)=Q\left(t_{0}, x\left(t_{0}\right)\right)
$$

This completes the proof of (2).
Remark 1. In Theorem 1 condition (Q) cannot be replaced by the weaker condition (K) as the following example, from Section 8.8 of [5], shows. We report the example here with some simplifications for the convenience of the reader. Let $n=1$ and $A=[0,1] \times R$, let C be a closed Cantor subset of $[0,1]$ whose measure $|C|$ is positive, and let $C^{\prime}=[0,1]-C$. Then C^{\prime} is the countable union of disjoint subintervals of $[0,1], C^{\prime}=\bigcup_{n \in N} I_{n}$. Let $\sigma(t): C^{\prime} \rightarrow R^{+}$be a continuous and integrable function, which tends to $+\infty$ whenever t tends to an end point of any interval I_{n}. Moreover let us suppose that $\lim _{n \rightarrow+\infty} \min \sigma / I_{n}=+\infty$.

Let $Q(t)=\{-1\}$ if $t \in C$, and $Q(t)=\{z \in R: z \geqq \stackrel{n \rightarrow+\infty}{\sigma(t)}\}^{\infty}$ if $t \in C^{\prime}$. Let us extend the function σ by taking $\sigma(t)=0$, for $t \in C$, and consider the decomposition of $[0,1]$ into k intervals of equal length: $J_{k}^{s}=\left[t_{k, s-1}, t_{k, s}\right], s=1, \ldots, k$, $t_{k, s}=s / k$. Define ξ_{k} by taking $\xi_{k}(t)=\sigma(t)+v_{k}(t)$, where $v_{k}(t)=-1$ if $t \in C$, and $v_{k}(t)=\left|C \cap J_{k}^{s}\right| /\left|C^{\prime} \cap J_{k}^{s}\right|$ if $t \in C^{\prime} \cap J_{k}^{s}$. Then ξ_{k} is integrable in [0, 1], and $\xi_{k}(t) \in Q(t)$ for every $t \in[0,1]$ and $k \in N$.

Let $x_{k}(t)=\int_{0}^{t} \xi_{k}(\tau) d \tau, \quad 0 \leqq t \leqq 1, \quad$ or $\quad x_{k}(t)=x(t)+y_{k}(t)=\int_{0}^{t} \sigma(\tau) d \tau+$ $\int_{0}^{t} v_{k}(\tau) d \tau$. Here $\int_{J_{k}^{s}} v_{k}(t) d t=0$; hence $y_{k}\left(t_{k, s}\right)=0$ for all s and k, and $\left|y_{k}(t)\right| \leqq 2 / k$. Hence $x_{k} \rightarrow x$ uniformly on [0,1], as $k \rightarrow+\infty$; moreover all x_{k} and x are AC with $x_{k}^{\prime}(t) \in Q(t), t \in[0,1]$. Now $x^{\prime}(t)=0$ a.e. in C, while $Q(t)=\{-1\}$ for $t \in C$. Thus $x^{\prime}(t) \notin Q(t)$ on a subset C of positive measure in $[0,1]$. Note that $\int_{J_{k}^{s}}\left|v_{k}(t)\right| d t=2\left|J_{k}^{s} \cap C\right| ;$ hence $V\left(y_{k}\right) \leqq 2$ and $V\left(x_{k}\right) \leqq$ $\int_{0}^{1} \sigma(t) d t+2=V_{0}$, a constant, for all k. Here the sets $Q(t, x)$ have property (K) on $[0,1]$; moreover they have property (Q) both on C and on C^{\prime} but not on [0,1].

3. An existence theorem of the calculus of variations

3a. The integral \mathscr{I}

Let α, n be integers such that $0 \leqq \alpha \leqq n, n \geqq 1$, and for every $x \in R^{n}$ we write $x=(y, z)$ with $y \in R^{\alpha}, z \in R^{n-\alpha}$. Let $A \subset R^{n+1}$ and $Q: A \rightarrow R^{n}$ be defined as before. Let $M \subset R^{2 n+1}$ denote the set $M=\{(t, x, \zeta):(t, x) \in A$, $\zeta \in Q(t, x)\}$, and let $F_{0}(t, x, \zeta)$, or $F_{0}: M \rightarrow R$ be a given function.

Let Ω be a class of admissible functions, i.e. functions $x(t)=(y(t), z(t))$, or $x:\left[t_{1}, t_{2}\right] \rightarrow R^{n}$, such that (i) y is ACg and z is BVC; (ii) $(t, x(t)) \in A, x^{\prime}(t) \in$ $Q(t, x(t))$ a.e. in $\left[t_{1}, t_{2}\right]$; (iii) $F_{0}\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right) \in L_{1}$.

We consider the functional $\mathscr{I}: \Omega \rightarrow \tilde{R}$ defined by

$$
\begin{aligned}
\mathscr{I}(x)=\mathscr{I}(y, z) & =\inf _{\Gamma(x)} \lim _{k \rightarrow \infty} \int_{i_{1}}^{t_{2}} F_{0}\left(t, y_{k}(t), z_{k}(t), y_{k}^{\prime}(t), z_{k}^{\prime}(t)\right) d t \\
& =\inf _{\Gamma(x)}^{\lim _{k \rightarrow \infty} I\left(y_{k}, z_{k}\right),}
\end{aligned}
$$

where $\Gamma(x)$ denotes the class of all sequences $\left(x_{k}\right)_{k \in N}$ such that (a) $x_{k}=\left(y_{k}, z_{k}\right) \in$ $\mathrm{ACg} \cap \Omega, k \in N$; (b) $y_{k} \rightarrow y$ uniformly and $z_{k} \rightarrow z$ pointwise a.e. in $\left[t_{1}, t_{2}\right]$, and where, as stated in (i), y is ACg and z is BVC. If $\Gamma(x)=0$ we put $\mathscr{I}(x)=+\infty$. We may think of F_{0} as extended to all of $R^{2 n+1}$ by taking $F_{0}=+\infty$ on $R^{2 n+1}-M$. We denote by \tilde{R} the reals with the addition of $+\infty$. Note that if $x \in \mathrm{ACg} \cap \Omega$, then $\Gamma(x) \neq \emptyset$. Moreover, if A is convex, $Q(t, x)=R^{n},(t, x) \in A$, and the integral means $\left(x_{h}\right)_{h>0}$ belong to Ω, then $\Gamma(x) \neq \emptyset$.

The class Ω is said to be closed if Ω has the following property (c): if $x_{k}(t)=$ (y_{k}, z_{k}) is any sequence of (admissible) pairs in Ω satisfying (a) and (b) above, and if $x=(y, z)$ is admissible, then x belongs to Ω.

The functional \mathscr{I} is modeled on Lebesgue area theory for nonparametric discontinuous surfaces (see Cesari [4]) and it is also close to the concept of integral in the sense of Serrin [14] when the present mixed convergence is used, uniform on y and pointwise a.e. on z.

Note that the generalized weighted variation and length for a BVC curve are particular cases of the functional \mathscr{I}. In fact, let $F_{0}(t, v):\left[t_{1}, t_{2}\right] \times R^{n} \rightarrow R_{0}^{+}$be defined by $F_{0}(t, v)=|\varphi(t) \cdot v|$, where $\varphi(t):\left[t_{1}, t_{2}\right] \rightarrow R^{n}$ is continuous. Then (see [1], [13])

$$
\mathscr{I}(z)=\inf _{\Gamma(x)}^{\lim _{k \rightarrow \infty}} \int_{t_{1}}^{t_{2}}\left|z_{k}^{\prime}(t) \cdot \varphi(t)\right| d t=\inf _{\Gamma(x)} \lim _{k \rightarrow \infty} V_{\varphi}^{*}\left(z_{k}\right) \geqq V_{\varphi}^{*}(z)
$$

and moreover

$$
\mathscr{I}(z) \leqq \lim _{h \rightarrow 0} \int_{i_{1}}^{t_{2}}\left|z_{h}^{\prime}(t) \cdot \varphi(t)\right| d t=V_{\varphi}^{*}(z)
$$

where $z_{h}(t)=\frac{1}{h} \int_{0}^{h} z(t+\tau) d \tau$ is the integral mean of z. Analogous considerations hold for the length.

Remark 2. In order to deal with the minimization of the functionals under consideration when initial and terminal values for x are involved, we carry over the definition of the functional \mathscr{I} to the following setting.

Let \mathcal{N} denote a family of subsets $N \subset\left[t_{1}, t_{2}\right]$, with $|N|=0$, which is closed under countable unions. We shall write briefly \mathcal{N}-a.e. when we refer to a neglected null set $N \in \mathscr{N}$. Moreover we shall denote by \mathscr{N}-AC and \mathscr{N}-BVC the family of all the functions which are \mathscr{N}-a.e. equal to an AC function or a BV function, respectively.

We consider now the class $\Omega_{\mathcal{N}}$ of all the functions $x(t)=(y(t), z(t))$, such that
i) $y \in \mathscr{N}-\mathrm{AC}$ and $z \in \mathscr{N}-\mathrm{BVC}$,
ii) $(t, x(t)) \in A, \mathcal{N}$-a.e. and $x^{\prime}(t) \in Q(t, x(t))$, a.e. in $\left[t_{1}, t_{2}\right]$,
iii) $F_{0}\left(\cdot, x(\cdot), x^{\prime}(\cdot)\right) \in L_{1}$.

For every $x \in \Omega_{\mathscr{N}}$, we shall denote by $\Gamma_{\mathscr{N}}(x)$ the class of all the sequences $\left(x_{k}\right)_{k \in N}$ such that
(a) $x_{k}=\left(y_{k}, z_{k}\right) \in \mathscr{N}-\mathrm{AC}, \quad k \in N$,
(b) $y_{k} \rightarrow y$ uniformly and $z_{k} \rightarrow z$ pointwise \mathscr{N}-a.e.

Thus we shall take $\mathscr{I}_{\mathcal{N}}: \Omega_{\mathcal{N}} \rightarrow \tilde{R}$ with

$$
\mathscr{I}_{\mathscr{N}}=\inf _{\Gamma_{\mathscr{H}}(x)} \lim _{k \rightarrow \infty} I\left(x_{k}\right) \quad \text { if } \Gamma_{\mathscr{N}}(x) \neq \emptyset ; \quad \mathscr{I}_{\mathscr{N}}=+\infty \text { otherwise }
$$

Note that, if \mathcal{N} is the family of all the null sets in $\left[t_{1}, t_{2}\right]$, then $\mathscr{I}_{\mathscr{N}}$ is exactly the functional \mathscr{I}. Furthermore, if $\mathscr{N}_{1} \subset \mathscr{N}_{2}$, then $\Omega_{\mathscr{N}_{1}} \subset \Omega_{\mathscr{N}_{2}}, \Gamma_{\mathscr{N}_{1}}(x) \subset \Gamma_{\mathscr{N}_{2}}(x)$ and $\mathscr{I}_{\mathscr{N}_{1}}(x) \geqq \mathscr{I}_{\mathscr{V}_{2}}(x)$, for every $x \in \Omega_{\mathscr{N}_{1}}$. Note that $>$ sign may hold, as the Example 2 in Section 3 shows. In this way we get a "spectrum" of integral functionals whose lower and upper lines are \mathscr{I} and $\mathscr{I}_{\{6}$, respectively. Observe that, if $F_{0}(v)=|v|$, then $\left\{\mathscr{I}_{\mathfrak{N}}\right\}_{\mathcal{N}}$ is the "spectrum of variations" whose lower and upper lines are the generalized variation and the classic one, respectively.

In the following, for simplicity, we shall deal with the functional \mathscr{I}, but all our results hold for any other functional $\mathscr{I}_{\mathcal{N}}$, as well. In fact, we shall make systematic use of Helly's theorem which guarantees convergence at all points $t \in$ [$\left.t_{1}, t_{2}\right]$.

Note that, in this way, we treat also minimization which involves given initial and terminal data for x, say $x\left(t_{1}\right) \in B_{1}, x\left(t_{2}\right) \in B_{2}$, with B_{1}, B_{2} closed sets in R^{n}. This is the case when the family \mathscr{N} is such that $\bigcup N=\left(t_{1}, t_{2}\right)$. Thus, in the computation of the variation $V^{*}(x)$ of x in $\left[t_{1}, t_{2}\right]$ we always take note of the values of x at t_{1} and t_{2}. Concerning the convergence of the trace operator, see the known results mentioned in [6a].

Remark 3. We shall see now that, for every $x=(y, z) \in \Omega$, with $\Gamma(x) \neq \emptyset$, there is a sequence $\left(x_{k}\right)_{k \in N} \in \Gamma(x)$ such that

$$
\lim _{k \rightarrow \infty} I\left(x_{k}\right)=\mathscr{I}(x)
$$

If $\mathscr{I}(x) \in R$, the proof is analogous to that for the case in which $\mathscr{I}(x)=+\infty$. Observe that, by definition, for every $m \in N$ there is a sequence $\left(y_{n}^{m}, z_{n}^{m}\right)_{n \in N} \in$
$\Gamma(x)$ such that

$$
\left|\lim _{n \rightarrow \infty} I\left(y_{n}^{m}, z_{n}^{m}\right)-\mathscr{I}(x)\right|<1 / m ;
$$

moreover, by virtue of Severini-Egoroff theorem, we know that $z_{n}^{m} \xrightarrow[n \rightarrow \infty]{ } z$ almost uniformly, $m \in N$. Thus we can find a set $T_{m} \subset\left[t_{1}, t_{2}\right]$ and an integer n_{m} such that meas $\left(T_{m}\right)>\left(t_{2}-t_{1}\right)-1 / 2^{m}$ and, for every $n \geqq n_{m}$, we have $\left|I\left(y_{n}^{m}, z_{n}^{m}\right)-\mathscr{I}(x)\right|<2 / m,\left|y_{n}^{m}(t)-y(t)\right|<1 / m, t \in\left[t_{1}, t_{2}\right]$ and $\left|z_{n}^{m}(t)-z(t)\right|$ $<1 / m, t \in T_{m}$.

Let us denote by $\left(x_{k}\right)_{k \in N}$ the sequence $x_{k}=\left(y_{k}, z_{k}\right)=\left(y_{n_{k}}^{k}, z_{n_{k}}^{k}\right), k \in N$. We shall see that $\left(x_{k}\right)_{k \in N}$ is the sequence we were looking for. To do so, we put $T^{k}=$ $\bigcap_{m \geq k} T_{m}$ and $T=\bigcup_{k \in N} T^{k}$, then meas $\left(T^{k}\right)>\left(t_{2}-t_{1}\right)-1 / 2^{k-1}$ and meas (T) $\stackrel{m \geqq k}{=} t_{2}-t_{1}$. Thus, for every fixed $\varepsilon>0$ and $t \in T$, there is an integer $\bar{k}>1 / \varepsilon$ such that $t \in T_{k}$ for every $k \geqq \bar{k}$ and therefore $\left|z_{k}(t)-z(t)\right|<1 / k<\varepsilon$. In other words $z_{k} \rightarrow z$ pointwise on T. Obviously $y_{k} \rightarrow y$ uniformly in [$\left.t_{1}, t_{2}\right]$ and hence $\left(x_{k}\right)_{k \in N} \in \Gamma(x)$. Finally, having fixed $\varepsilon>0$ and having taken $k_{\varepsilon} \in N$ such that $k_{\varepsilon}>2 / \varepsilon$, then for every $k \geqq k_{\varepsilon}$, we have $\left|I\left(x_{k}\right)-\mathscr{I}(x)\right|<2 / k_{\varepsilon}<\varepsilon$. The proof is complete.

3b. A lower semicontinuity property of I and \mathscr{I}

As is well known ([5]), closure theorems can be reworded into lower closure theorems and into lower semicontinuity theorems. From the closure Theorem 1 of Section 2 we derive here a lower semicontinuity theorem for the integral I and the relevant inequality $I(x) \leqq \mathscr{I}(x)$, under the assumption $V^{*}\left(x_{k}\right) \leqq V_{0}$, $k \in N$, and the topology under consideration, namely uniform convergence on the components y^{i} and pointwise convergence almost everywhere on the components z^{j}.

For the lower semicontinuity theorem we shall need the auxiliary sets

$$
\begin{equation*}
\tilde{Q}(t, x)=\left\{\left(z^{0}, \xi\right) \in R^{n+1}: z^{0} \geqq F_{0}(t, x, \xi), \xi \in Q(t, x)\right\}, \quad(t, x) \in A, \tag{1}
\end{equation*}
$$

or "augmented" set-valued function $\tilde{Q}: A \rightarrow R^{n+1}$.
Theorem 1^{\prime} (A lower semicontinuity theorem). Let $1 \leqq \alpha \leqq n-1$, and assume that: (i) A is closed; (ii) the sets $\tilde{Q}(t, x)$ are closed, convex and have property (Q) with respect to (t, x) at every point $(\bar{t}, \bar{x}) \in A$, with the exception perhaps of a set of points whose t-coordinate lies in a set H of measure zero; (iii) $F_{0}(t, y, z, u, v$) is lower semicontinuous in M and $\lambda \in L_{1}$ exists such that $F_{0}(t, y, z, u, v) \geqq \lambda(t)$ for all $(t, y, z, u, v) \in M$; (iv) a sequence of vector functions is given

$$
x(t)=(y, z), x_{k}(t)=\left(y_{k}, z_{k}\right), t \in\left[t_{1}, t_{2}\right], y, y_{k}, z_{k} \in \mathrm{ACg}, z \in \mathrm{BVC}
$$

$y_{k} \rightarrow y$ uniformly, $z_{k} \rightarrow z$ pointwise a.e. in $\left[t_{1}, t_{2}\right]$, such that $\left(t, x_{k}(t)\right) \in A$, $x_{k}^{\prime}(t) \in Q\left(t, x_{k}(t)\right)$ a.e. in $\left[t_{1}, t_{2}\right] ;(v) V^{*}\left(x_{k}\right) \leqq V_{0}$ for all k and some constant V_{0}. Then $(t, x(t)) \in A, x^{\prime}(t) \in Q(t, x(t))$, a.e. in $\left[t_{1}, t_{2}\right]$ and $\lim _{k \rightarrow+\infty} I\left(x_{k}\right) \geqq I(x)$. Thus,
if $\left(x_{k}\right)_{k \in N}$ is a sequence as in the definition of $\mathscr{I}(x)$, i.e. $x_{k} \in \mathrm{ACg} \cap \Omega$, and $V^{*}\left(x_{k}\right) \leq$ $V_{0}, k \in N$, then

$$
\lim _{k \rightarrow \infty} I\left(x_{k}\right) \geqq \mathscr{I}(x) \geqq I(x)
$$

For $\alpha=0$ this statement concerns sequences $z_{k}(t)=\left(z_{k}^{1}, \ldots, z_{k}^{n}\right), \quad z(t)=$ $\left(z^{1}, \ldots, z^{n}\right), t \in\left[t_{1}, t_{2}\right], z_{k} \in \mathrm{ACg}, \quad z \in \mathrm{BVC}$, and the conclusions are still valid.

For $\alpha=n$, this statement concerns sequences $y_{k}(t)=\left(y_{k}^{1}, \ldots, y_{k}^{n}\right), \quad y(t)=$ $\left(y^{1}, \ldots, y^{n}\right), t \in\left[t_{1}, t_{2}\right], y, y_{k} \in \mathrm{ACg}$, and the problem reduces to those discussed in Theorem 10.8.i of [5].

Remark 4. As for Theorem 1, condition (Q) cannot be replaced by the weaker condition (K), as the following example shows. This example is only a modification of the one in Remark 1. Indeed, we take $n=1, F_{0}=0$ and $\tilde{Q}(t)=$ $\left\{\left(z^{0}, z\right): z^{0} \geqq 0, z \in Q(t)\right\}$, where the sets $Q(t)$ are defined in Remark 1. Then, for x, x_{k} as in Remark 1, we have $x_{k}^{\prime}(t) \in Q(t)$, but $x^{\prime}(t) \notin Q(t)$, for $t \in C$, a set of positive measure.

Proof of Theorem 1'. Without loss of generality we can suppose that $i=$ $\lim _{k \rightarrow+\infty} I\left(x_{k}\right)=\lim _{k \rightarrow+\infty} I\left(x_{k}\right)<+\infty$, where i is finite because of (iii). Take $F_{k}(t)=$ $F_{0}\left(t, y_{k}(t), z_{k}(t), y_{k}^{\prime}(t), z_{k}^{\prime}(t)\right), t \in\left[t_{1}, t_{2}\right]$, and note that for $F_{k}(t)=F_{k}^{+}(t)-F_{k}^{-}(t)$, $\left|F_{k}(t)\right|=F_{k}^{+}+F_{k}^{-}, \quad F_{k}^{+}, F_{k}^{-} \geqq 0, \quad$ we have $0 \leqq F_{k}^{-}(t) \leqq|\lambda(t)|$; hence $0 \leqq$ $\int_{t_{1}}^{t_{2}} F_{k}^{-}(t) d t \leqq \int_{t_{1}}^{t_{2}}|\lambda(t)| d t$. Since i is finite, we have that $I\left(x_{k}\right) \leqq W_{0}$ for all $\stackrel{r_{1}}{k}$ and some constant W_{0}. Finally,

$$
\begin{aligned}
\int_{i_{1}}^{t_{2}}\left|F_{k}(t)\right| d t & =\int_{i_{1}}^{t_{2}}\left(F_{k}^{+}+F_{k}^{-}\right)(t) d t=\int_{i_{1}}^{t_{2}} F_{k}(t) d t+2 \int_{t_{1}}^{t_{2}} F_{k}^{-}(t) d t \\
& \leqq W_{0}+2 \int_{i_{1}}^{t_{2}}|\lambda(t)| d t<+\infty
\end{aligned}
$$

Let us consider the AC functions $z_{k}^{0}:\left[t_{1}, t_{2}\right] \rightarrow R$ defined by $z_{k}^{0}(t)=$ $\int_{t_{1}}^{t} F_{0}\left(\tau, x_{k}(\tau), x_{k}^{\prime}(\tau)\right) d \tau, k \in N$. Then $z_{k}^{0}\left(t_{1}\right)=0$ and

$$
V\left(z_{k}^{0}\right)=\int_{i_{1}}^{t_{2}}\left|F_{k}(t)\right| d t \leqq W_{0}+2 \int_{t_{1}}^{t_{2}}|\lambda(t)| d t=V
$$

V a constant. By Helly's theorem there is a subsequence, say still (k), such that $z_{k}^{0}(t) \rightarrow z^{0}(t)$ pointwise everywhere in $\left[t_{1}, t_{2}\right]$, with $z^{0} \in \mathrm{BV}, z^{0}$ not necessarily continuous, and $z^{0}\left(t_{1}\right)=0$. Note that the functions $\left(z_{k}^{0}, x_{k}\right)_{k \in N}$ are ACg solutions of the orientor field

$$
\begin{equation*}
\left(t, x_{k}(t)\right) \in A,\left(z_{k}^{0^{\prime}}(t), x_{k}^{\prime}(t)\right) \in \tilde{Q}\left(t, x_{k}(t)\right), \text { a.e. in }\left[t_{1}, t_{2}\right] \tag{2}
\end{equation*}
$$

where $\tilde{Q}: A \rightarrow R^{n+1}$ is the set-valued function defined by (1). As an application of Theorem 1 we now prove that the limit function $\left(z^{0}, y, z\right)=\left(z^{0}, x\right)$:
$\left[t_{1}, t_{2}\right] \rightarrow R^{n+1}$ is again a solution of the orientor field (2), i.e.

$$
(t, x(t)) \in A, \quad\left(z^{0^{\prime}}(t), x^{\prime}(t)\right) \in \tilde{Q}(t, x(t)) \text { a.e. in }\left[t_{1}, t_{2}\right]
$$

or

$$
(t, x(t)) \in A, \quad x^{\prime}(t) \in Q(t, x(t)), \quad z^{0^{\prime}}(t) \geqq F_{0}\left(t, x(t), x^{\prime}(t)\right) \text { a.e. in }\left[t_{1}, t_{2}\right]
$$

Note that $z^{0^{\prime}}(t) \geqq F_{0}(t) \geqq \lambda(t)$; hence $F_{0}\left(t, x(t), x^{\prime}(t)\right)$ is summable in $\left[t_{1}, t_{2}\right]$ because it lies between summable functions, and $x:\left[t_{1}, t_{2}\right] \rightarrow R^{n}$ is admissible. Finally, if we take

$$
Z^{0}(t)=z^{0}(t)-\int_{t_{1}}^{t} \lambda(\tau) d \tau, \quad t \in\left[t_{1}, t_{2}\right]
$$

we see that $Z^{0}(t)$ is monotone non-decreasing in $\left[t_{1}, t_{2}\right]$; hence

$$
\begin{aligned}
Z^{0}\left(t_{2}\right) & =Z^{0}\left(t_{2}\right)-Z^{0}\left(t_{1}\right)=z^{0}\left(t_{2}\right)-\int_{i_{1}}^{t_{2}} \lambda(t) d t \\
& =V\left(Z^{0}\right) \geqq \int_{t_{1}}^{t_{2}}\left|z^{0^{\prime}}(t)-\lambda(t)\right| d t=\int_{t_{1}}^{t_{2}}\left(z^{0 \prime}(t)-\lambda(t)\right) d t \\
& \geqq \int_{i_{1}}^{t_{2}}\left(F_{0}(t)-\lambda(t)\right) d t=\int_{i_{1}}^{t_{2}} F_{0}(t) d t-\int_{i_{1}}^{t_{2}} \lambda(t) d t
\end{aligned}
$$

Hence $\quad z^{0}\left(t_{2}\right) \geqq \int_{t_{1}}^{t_{2}} F_{0}(t) d t$, and finally

$$
I(x)=\int_{t_{1}}^{t_{2}} F_{0}(t) d t \leqq z^{0}\left(t_{2}\right)=\lim _{k \rightarrow+\infty} z_{k}^{0}\left(t_{2}\right)=\lim _{k \rightarrow+\infty} I\left(x_{k}\right)
$$

Theorem 1^{\prime} is thereby proved.
Theorem 1' has an important consequence concerning the concept of integral $\mathscr{I}(x)$ defined at the beginning of Section 3. Indeed, as long as we define $\mathscr{I}(x)$ by means of sequences $x_{k}=\left(y_{k}, z_{k}\right) \in \mathrm{ACg}, k \in N$, with equibounded variation, then we can well say that \mathscr{I} is an extension to BVC of the functional I; in other words, if $x=(y, z), y, z$ both ACg , then $\mathscr{I}(x)=I(x)$. In fact, from Theorem 1^{\prime} we have ${ }^{1} I(x) \leqq \mathscr{I}(x)$, but $\Gamma(x)$ contains now the sequence of repetitions $x_{k}=$ $(y, z), k \in N$; hence $\mathscr{I}(x) \leqq I(x)$, and finally $I(x)=\mathscr{I}(x)$.

3c. The existence theorem
We now state and prove an existence theorem of the calculus of variations for the integral \mathscr{I}. In other words we have to prove that \mathscr{I} has an absolute minimum in Ω. That is we have to prove, under the assumptions that
(a) the infimum i of $I(x)$ in $\mathrm{ACg} \cap \Omega$ is finite; hence there are minimizing sequences $x_{k}=\left(y_{k}, z_{k}\right), k \in N$, in Ω, both $y_{k}, z_{k} \in \mathrm{ACg}$, such that $I\left(x_{k}\right) \rightarrow i$;
(b) for some subsequence, say (k) again, and elements $x=(y, z) \in \Omega, y \in \mathrm{ACg}$, $z \in \mathrm{BVC}$, we have $y_{k} \rightarrow y$ uniformly, $z_{k} \rightarrow z$ pointwise a.e. in $\left[t_{1}, t_{2}\right]$.

[^0]Since we shall assume that there are such sequences $x_{k}=\left(y_{k}, z_{k}\right)$ with equibounded variations $V\left(x_{k}\right)$, then by Theorem 1^{\prime} we know that $I(x) \leqq \mathscr{I}(x)=i .^{2}$

To state and prove our existence theorem, we denote by $\left(\gamma_{1}\right),\left(\gamma_{2}\right),\left(\gamma_{3}\right)$ the following alternative assumptions on the function F_{0}.
$\left(\gamma_{1}\right)$ There is a scalar function $\phi(\zeta), 0 \leqq \zeta<+\infty$, or $\phi: R_{0}^{+} \rightarrow R$, bounded below, with $\phi(\zeta) / \zeta \rightarrow+\infty$ as $\zeta \rightarrow+\infty$, such that $F_{0}(t, y, z, u, v) \geqq$ $\phi(|u|)$ for all $(t, y, z, u, v) \in M$.
$\left(\gamma_{2}\right)$ For any $\varepsilon>0$ there is an integrable scalar function $\psi_{\varepsilon}(t) \geqq 0$, or $\psi_{\varepsilon}:\left[t_{1}, t_{2}\right] \rightarrow R_{0}^{+}$, such that $|u| \leqq \psi_{\varepsilon}(t)+\varepsilon F_{0}(t, y, z, u, v)$ for all $(t, y, z, u, v) \in M$.
$\left(\gamma_{3}\right)$ For every α-vector $p \in R^{x}$ there is an integrable scalar function $\phi_{p}(t) \geqq 0$, or $\phi_{p}:\left[t_{1}, t_{2}\right] \rightarrow R_{0}^{+}$, such that $F_{0}(t, y, z, u, v) \geqq\langle p, u\rangle-\phi_{p}(t)$ for all $(t, y, z, u, v) \in M$.

Note that under condition $\left(\gamma_{1}\right)$ certainly $\phi(\zeta) \geqq \lambda$ for some real constant λ, and then $F_{0}(t, y, z, u, v) \geqq \phi(|u|) \geqq \lambda$ for all (t, y, z, u, v). Under condition $\left(\gamma_{2}\right)$ and $\varepsilon=1$ we have $|u| \leqq \psi_{1}(t)+F_{0}(t, y, z, u, v)$; hence $F_{0}(t, y, z, u, v) \geqq$ $-\psi_{1}(t)$, a summable function in $\left[t_{1}, t_{2}\right]$. Under condition $\left(\gamma_{3}\right)$ and $p=0$, we have $F_{0}(t, y, z, u, v) \geqq-\phi_{0}(t)$, a summable function in $\left[t_{1}, t_{2}\right]$.

Theorem 2 (An existence theorem). Let $1 \leqq \alpha \leqq n-1$, and assume that (i) A is compact and M is closed; (ii) the sets $\tilde{Q}(t, x)$ are closed and convex and have property (Q) with respect to (t, x) at every point (t, x) of A (with the exception perhaps of a set of points whose t-coordinate lies on a set of measure zero on the t-axis); (iii) $F_{0}(t, y, z, u, v)$ is lower semicontinuous in M; (iv) F_{0} satisfies one of the growth conditions $\left(\gamma_{1}\right)$, or $\left(\gamma_{2}\right)$, or $\left(\gamma_{3}\right)$. Also we assume that the class Ω is nonempty and closed, and (v) there exists a constant W_{0} such that for every element $x=(y, z) \in$ $\mathrm{ACg} \cap \Omega$, then $V^{*}(z) \leqq W_{0}$.

Then the functional \mathscr{I} has an absolute minimum $x=(y, z)$ in $\Omega, y \in \mathrm{ACg}$, $z \in \mathrm{BVC}$, and $I(x) \leq \mathscr{J}(x)=i$.

For $\alpha=0$, then $x=z$, requirements $\left(\gamma_{1}\right)$, or alternatively $\left(\gamma_{2}\right),\left(\gamma_{3}\right)$ do not apply, yet the conclusion is still valid if we know that (iv)' there is a summable scalar function $\lambda:\left[t_{1}, t_{2}\right] \rightarrow R$ such that $F_{0}(t, z, \zeta) \geqq \lambda(t)$ for all $(t, z, \zeta) \in M$.

For $\alpha=n$, then $x=y, \Omega$ is a nonempty and closed class of ACg functions $y(t)=\left(y^{1}, \ldots, y^{n}\right), t \in\left[t_{1}, t_{2}\right]$, condition (v) does not apply, and the problem reduces essentially to those discussed in Theorems 11.1.i and ii of [5].

Note that the condition in (ii) concerning property (Q) for the sets $\tilde{Q}(t, x)$, not only implies that the same sets $\tilde{Q}(t, x)$ are closed and convex, but also that their projections, the sets $Q(t, x)$, also are convex, and that $F_{0}(t, y, z, u, v)$ is convex in (u, v).

[^1]Note that for $0 \leqq \alpha \leqq n-1$, if $\left(\mathrm{v}^{\prime}\right)$ there are scalar functions $\psi_{i} \in L_{1}\left(\left[t_{1}, t_{2}\right]\right)$, $i=\alpha+1, \ldots, n$, such that $(t, y, z, u, v) \in M$ implies $v^{i} \geqq \psi_{i}(t)$ a.e. in $\left[t_{1}, t_{2}\right]$, then (v) certainly holds. (Cf. part (g) of proof of Theorem 2 below).

Note that for $1 \leqq x \leqq n-1$, the sets $\tilde{Q}(t, x)$ closed and convex, and $\left(\gamma_{1}\right)$ holds, if ($\mathrm{v}^{\prime \prime}$) there are constants L_{i} such that, a.e. in $\left[t_{1}, t_{2}\right],(t, y, z, u, v) \in M$ implies $v^{i} \geqq L_{i}, i=\alpha+1, \ldots, n$, then both (ii) and (v) hold. (Cf. part (h) of proof of Theorem 2 below).

Remark 5. If $\alpha=n, x=y$, note that Theorems 11.1,i, ii of [5] are proved under weaker assumptions on the function F_{0} and definitively less information on the sets $\tilde{Q}(t, x)$. In particular in Theorem 11.1.ii, under none of the assumptions $\left(\gamma_{1}\right),\left(\gamma_{2}\right)$, $\left(\gamma_{3}\right)$ is it needed to verify that the sets $\tilde{Q}(t, x)$ have property (Q). Indeed, a different topology is used on the functions y_{k}, namely $y_{k} \rightarrow y$ uniformly and $y_{k}^{\prime} \rightarrow y^{\prime}$ weakly in L_{1}. Then, in terms of the equivalence theorem ([5], Theorem 10.3.i; see also Cesari \& Pucci [7]), these sets $\tilde{Q}(t, y)$ are shown to have augmented sets $\tilde{\tilde{Q}}(t, y)$ which have property (Q) with respect to y, a.e. in t (see [5], proof of Theorem 10.7.i.).

Proof of Theorem 2. Without loss of generality we can suppose that there is an element $x \in \Omega$ such that $\Gamma(x) \neq \emptyset$. Let $i=\inf _{\Omega} \mathscr{I}(x)$; then $-\infty \leqq i<+\infty$. Let $\left(\bar{x}_{k}\right)_{k \in N}$ be a minimizing sequence, i.e. $\mathscr{I}\left(\bar{x}_{k}\right) \rightarrow i$ as $k \rightarrow \infty$. We divide the proof into parts.
(a) First note that we can find a sequence $\left(x_{k}\right)_{k \in N}$ in $\operatorname{ACg} \cap \Omega$ such that $I\left(x_{k}\right) \rightarrow i$ as $k \rightarrow \infty$. In order to see this, note that for every $k \in N$, there is an integer n_{k} such that $\left|\mathscr{I}\left(\bar{x}_{n_{k}}\right)-i\right|<1 / k$, and moreover (see Remark 2) there is a sequence $\left(x_{n}^{k}\right)_{n \in N}$ in $\mathrm{ACg} \cap \Omega$ such that $I\left(x_{n}^{k}\right) \rightarrow \mathscr{I}\left(\bar{x}_{n_{k}}\right)$ as $n \rightarrow \infty$. Thus, for every $k \in N$, there is an integer $\bar{n}=\bar{n}(k)$ such that $\left|I\left(x_{n}^{k}\right)-i\right|<2 / k$ (or $I\left(x_{\bar{n}}^{k}\right)<k$ if $\left.i=-\infty\right)$. Let $x_{k}=x_{\bar{n}}^{k}, k \in N$. Then $x_{k} \in \operatorname{ACg} \cap \Omega$, and $\left|I\left(x_{k}\right)-i\right|$ $<2 / k, k \in N$. Without loss of generality we can suppose that x_{k} is $\mathrm{AC}, k \in N$, and, since A is compact, the sequence $\left(x_{k}\right)_{k \in N}, x_{k}=\left(y_{k}, z_{k}\right)$, is equibounded.
(b) By virtue of hypothesis $\left(\gamma_{1}\right)$, we prove, as in Theorem 10.4.i of [5] that the sequence $\left(y_{k}\right)_{k \in N}$ is equi-absolutely continuous. Thus, $V\left(y_{k}\right) \leqq V_{1 .}$ for all $k \in N$ and some constant V_{1}. Moreover, since $\left(y_{k}\right)_{k \in N}$ is equibounded, there is a subsequence, say still $\left(y_{k}\right)_{k \in N}$, such that $y_{k} \rightarrow y$ uniformly in $\left[t_{1}, t_{2}\right]$, with $y \in \mathrm{AC}$.

Moreover, the assumption (v) shows that $V\left(z_{k}\right) \leqq W_{o}$ for all $k \in N$. Hence, by Helly's theorem (see [5], Theorem 15.1.i) there is a subsequence, say still $\left(z_{k}\right)_{k \in N}$, such that $z_{k}(t) \rightarrow z(t)$ pointwise everywhere in $\left[t_{1}, t_{2}\right]$ with $z \in \mathrm{BV}$, not necessarily continuous.
(c) Now the function ϕ in $\left(\gamma_{1}\right)$ is bounded below, say $\phi(\zeta) \geqq \lambda, \lambda \in R$; hence $F_{k}(t)=F\left(t, y_{k}(t), z_{k}(t), y_{k}^{\prime}(t), z_{k}^{\prime}(t)\right) \geqq \phi\left(\left|y_{k}^{\prime}(t)\right|\right) \geqq \lambda$ for $k \in N$ and $t \in\left[t_{1}, t_{2}\right]$. Consequently, for $F_{k}(t)=F_{k}^{+}(t)-F_{k}^{-}(t), F_{k}^{-} \geqq 0, F_{k}^{+} \geqq 0,\left|F_{k}(t)\right|=F_{k}^{+}(t)+$
$F_{k}^{-}(t)$, we have $F_{k}(t) \geqq \lambda, \quad F_{k}^{-}(t) \leqq|\lambda|$. Since $\int_{t_{1}}^{t_{2}} F_{k}(t) d t \rightarrow i$ as $k \rightarrow \infty$, we derive $i \geqq \lambda\left(t_{2}-t_{1}\right)$, and thus i is finite. Without loss of generality we can assume that $\int_{t_{1}}^{t_{2}} F_{k}(t) d t \leqq i+1$ for all $k \in N$, and then

$$
\begin{gathered}
\int_{i_{1}}^{t_{2}} F_{k}^{+}(t) d t= \\
\int_{t_{1}}^{t_{2}} F_{k}(t) d t-\int_{i_{1}}^{t_{2}} F_{k}^{-}(t) d t \leqq i+1+|\lambda|\left(t_{2}-t_{1}\right) \\
\int_{i_{1}}^{t_{2}}\left|F_{k}(t)\right| d t \leqq i+1+2|\lambda|\left(t_{2}-t_{1}\right)
\end{gathered}
$$

Let us consider now the AC functions $z_{k}^{0}:\left[t_{1}, t_{2}\right] \rightarrow R$ defined by $z_{k}^{0}(t)=$ $\int_{i_{1}}^{t} F_{0}\left(\tau, x_{k}(\tau), x_{k}^{\prime}(\tau)\right) d \tau, k \in N$. Then $V\left(z_{k}^{0}\right)=\int_{t_{1}}^{t_{2}}\left|F_{k}(t)\right| d t \leqq i+1+2|\lambda|\left(t_{2}-t_{1}\right)$ $=V, k \in N$. Again, by Helly's theorem there is a subsequence, say still $\left(z_{k}^{0}\right)_{k \in N}$, such that $z_{k}^{0}(t) \rightarrow z^{0}(t)$ pointwise everywhere in $\left[t_{1}, t_{2}\right]$, with $z^{0} \in \mathrm{BV}$ (not necessarily continuous).
(d) Note that the functions $\left(z_{k}^{0}, x_{k}\right)_{k \in N}$ are AC solutions of the orientor field $\left(t, x_{k}(t)\right) \in A, \quad\left(z_{k}^{0 \prime}(t), x_{k}^{\prime}(t)\right) \in \tilde{Q}\left(t, x_{k}(t)\right)$, a.e. in $\left[t_{1}, t_{2}\right]$, where $\tilde{Q}: A \rightarrow R^{n+1}$ is the set-valued function defined by $\tilde{Q}(t, x)=\left\{(r, \zeta): \zeta \in Q(t, x), r \geqq F_{0}(t, x, \zeta)\right\}$ $=$ epi $F_{0}(t, x,)_{\mid \varrho(t, x)}$. By (ii) the sets $\tilde{Q}(t, x)$ have property (Q) with respect to (t, x) in A, for a.e. t.
(e) As an application of Theorem 1, we see that the limit function $\left(z^{0}, y, z\right)=\left(z^{0}, x\right):\left[t_{1}, t_{2}\right] \rightarrow R^{n+1}$ is again a solution of the orientor field $(t, x(t)) \in A, \quad\left(z^{0}(t), x^{\prime}(t)\right) \in \tilde{Q}(t, x(t))$, a.e. in $\left[t_{1}, t_{2}\right]$, i.e. $(t, x(t)) \in A, x^{\prime}(t) \in$ $Q(t, x(t)), \quad z^{0^{\prime}}(t) \geqq F\left(t, x(t), x^{\prime}(t)\right)$, a.e. in $\left[t_{1}, t_{2}\right]$. Note that $z^{0^{\prime}}(t) \geqq F_{0} \geqq \lambda$; hence $F_{0}\left(t, x(t), x^{\prime}(t)\right)$ is summable in $\left[t_{1}, t_{2}\right]$ and the function $x:\left[t_{1}, t_{2}\right] \rightarrow R^{n}$ is admissible. Since the class Ω is closed, we conclude that $x \in \Omega$.
(f) Finally, by definition, $\left(x_{k}\right)_{k \in N} \in \Gamma(x)$ and $i \leqq \mathscr{I}(x) \leqq \lim _{k \rightarrow \infty} I\left(x_{k}\right)=i$, or $\mathscr{I}(x)=i$ and the proof is complete.
(g) Let us prove now that, for $0 \leqq \alpha \leqq n-1, A$ compact and property $\left(\mathrm{v}^{\prime}\right)$, then $V\left(z_{k}\right) \leqq V_{2}, k \in N$, for some constant V_{2}. Indeed, since z_{k} is AC, we have (writing z_{k} for any of its components $z_{k}^{i}, i=\alpha+1, \ldots, n$),

$$
z_{k}\left(t_{2}\right)-z_{k}\left(t_{1}\right)=\int_{t_{1}}^{t_{2}} z_{k}^{\prime+}(t) d t-\int_{t_{2}}^{t_{2}} z_{k}^{\prime-}(t) d t
$$

and

$$
V\left(z_{k}\right)=\int_{i_{1}}^{t_{2}} z_{k}^{\prime+}(t) d t+\int_{t_{1}}^{t_{2}} z_{k}^{\prime-}(t) d t
$$

Thus, by condition (v^{\prime}), we have

$$
V\left(z_{k}\right)=2 \int_{t_{1}}^{t_{2}} z_{k}^{\prime-}(t) d t+z_{k}\left(t_{2}\right)-z_{k}\left(t_{1}\right) \leqq 2 \int_{t_{1}}^{t_{2}} \psi^{-}(t) d t+\operatorname{diam} A
$$

(h) Let us prove that, if $1 \leqq \alpha \leqq n-1, A$ compact, the sets $\tilde{Q}(t, x)$ closed and convex, and $\left(\gamma_{1}\right)$ and $\left(\mathrm{v}^{\prime \prime}\right)$, then not only (v) but also (ii) holds, that is, the sets $\tilde{Q}(t, x)$ have property (Q) with respect to (t, x). Indeed, we have $F_{0}(t, x, u, v) \geqq$ $\phi(|u|), v^{i} \geqq L_{i}, i=\alpha+1, \ldots, n$, for all $(t, x, u, v) \in M$, and by virtue of Theorem 10.5.ii (second version) of [5] (with the variable x replaced by (t, x)), the thesis follows.

Remark 6. The hypothesis (v) can be replaced by the weaker assumption (v") the level sets $L_{K}=\{x=(y, z) \in \operatorname{ACg} \cap \Omega: I(x) \leqq K\}$ are equibounded in variation. In fact, as can be seen by the proof, we use condition (v) only to guarantee that every minimizing sequence of ACg curves $x=(y, z)$ is equibounded in variation.

We shall illustrate now three situations in which even condition ($\mathrm{v}^{\prime \prime \prime}$) can be dropped.
a) Let $F_{0}: R \rightarrow R_{0}^{+}$be a convex function then F_{0} is the least upper bound of its support straight lines, i.e.

$$
F_{0}(v)=\sup \left\{\varphi(v): \varphi(w)=a w+b \leqq F_{0}(w), w \in R\right\} .
$$

Thus, either $F_{0}(v)=$ const, and then Theorem 2 is trivial, or $F_{0}(v) \geqq a v+b$, $v \in R, a \neq 0$. But in this last case, it is easy to see that every minimizing sequence of $A C$ curves is equibounded in variation.
b) Let consider now an integrand F_{0} which does not depend on the variable z and does satisfy the condition

$$
\left|v_{1}\right| \leqq\left|v_{2}\right| \text { implies } F_{0}\left(t, v_{1}\right) \leqq F_{0}\left(t, v_{2}\right) .
$$

Then condition ($\mathrm{v}^{\prime \prime \prime}$) in Theorem 2 can be omitted, provided we suppose that the sets $Q(t, x)$ are such that if $v \in Q(t, x)$ and $|w| \leqq|v|$, then $w \in Q(t, x)$. In fact, in the present case, we can find a minimizing sequence of AC curves with equibounded variation. In order to see this, given any sequence of AC curves such that $I\left(z_{k}\right) \rightarrow i$ as $k \rightarrow+\infty$, it is sufficient to alter the sequence $\left(z_{k}\right)_{k \in N}$ in the following way. For simplicity we write z_{k} for any of its components z_{k}^{i}, $i=1, \ldots, n$. Let us suppose first that $z_{k}\left(t_{1}\right)<z_{k}\left(t_{2}\right)$, take

$$
\bar{t}=\max \left\{t \in\left[t_{1}, t_{2}\right]: z_{k}(t)=z_{k}\left(t_{1}\right)\right\}, \overline{\bar{t}}=\min \left\{t \in\left[\bar{t}, t_{2}\right]: z_{k}(t)=z_{k}\left(t_{2}\right)\right\}
$$

and

$$
\bar{z}_{k}(t)= \begin{cases}z_{k}\left(t_{1}\right), & t \in\left[t_{1}, \bar{t}\right] \tag{3}\\ \max \left\{z_{k}(\tau),\right. & \tau \in[\bar{t}, t]\}, \quad t \in[\bar{t}, \overline{\bar{t}}] \\ z_{k}\left(t_{2}\right), & t \in\left[\overline{\bar{t}, t_{2}}\right]\end{cases}
$$

If $z_{k}\left(t_{1}\right)>z_{k}\left(t_{2}\right)$, we define \bar{z}_{k} analogously by substituting min for max in (3). Finally, if $z_{k}\left(t_{1}\right)=z_{k}\left(t_{2}\right)$, we take $\bar{z}_{k}(t)=z_{k}\left(t_{1}\right), t \in\left[t_{1}, t_{2}\right]$. Observe that, in any case, \bar{z}_{k} is again AC and moreover it is monotone and $\left|\bar{z}_{k}^{\prime}(t)\right| \leqq\left|z_{k}^{\prime}(t)\right|$, a.e. in $\left[t_{1}, t_{2}\right]$. Therefore $V\left(\bar{z}_{k}\right) \leqq \operatorname{diam} A, k \in N$, and, by virtue of the assumption on the integrand F, we have $I\left(\bar{z}_{k}\right) \leqq I\left(z_{k}\right), k \in N$. This proves that $\left(\bar{z}_{k}\right)_{k \in N}$ is still a minimizing sequence.
c) Let $F_{0}(t, z, v): M \rightarrow R^{+}$subjected to the growth condition $F_{0}(t, z, v) \geqq$ $a|v|+b(t)$, with $a>0$ and $b \in L_{1}$. In this case condition ($\mathrm{v}^{\prime \prime \prime}$) is trivially satisfied.

Remark 6^{\prime}. Note that we may drop the requirement that A be bounded if we know that there is a minimizing sequence $x_{k}=\left(y_{k}, z_{k}\right), y_{k}, z_{k} \in \mathrm{AC}$, with $I\left(x_{k}\right) \rightarrow i$, which is equibounded. Thus the assumptions " A compact and (v)" can be replaced by the weaker conditions: A closed and
(v^{\prime}) the level sets $L_{K}=\{x=(y, z) \in \mathrm{ACg} \cap \Omega: I(x) \leqq K\}$ are bounded in the norm $\|x\|=\left|x_{e}\left(t_{1}\right)\right|+V^{*}(x)$, where $x_{e}\left(t_{1}\right)=\lim \operatorname{ess} x(t)$.

$$
t \rightarrow t_{1}^{+}
$$

Remark 7. Note that we consider the infimum i of $I(x)$ in the class $\operatorname{ACg} \cap \Omega$ and we prove in Theorem 2 under the hypotheses that there is some element $x=(y, z)$ in $\Omega, y \in \mathrm{ACg}, z \in \mathrm{BVC}$, and some sequence $x_{k}=\left(y_{k}, z_{k}\right), y_{k}$, $z_{k} \in \mathrm{ACg}, k \in N$, in Ω with $I\left(x_{k}\right) \rightarrow i$, and $I(x) \leqq \mathscr{I}(x)=i$.

In other words, under the assumptions of Theorem 2, the infimum i is attained by \mathscr{I}, or $\mathscr{I}(x)=i$, while $I(x)$ may have a value equal to or less than i. In Examples 4 and 5 below $I(x)=\mathscr{I}(x)=i$. However, it may well happen that $I(x)<\mathscr{I}(x)=i$ as Example 1 below shows. Note that if we denote by i_{0} the infimum of $I(x)$ in the class Ω, then $\operatorname{ACg} \cap \Omega \subset \Omega$; hence $i_{0} \leqq i$. We shall see in Example 2 below that possibly $i_{0}<i$, and that both can be attained, say $I(x)=i_{0}$ and $I(\bar{x}) \leqq \mathscr{I}(\bar{x})=i$, possibly by different $x, \bar{x} \in \Omega$. Also note that for \bar{x} optimal for \mathscr{I} under the assumptions of the present paper, we certainly have $i_{0} \leqq I(\bar{x}) \leqq \mathscr{I}(\bar{x})=i$.

Example 1. Let us show that, if i is the infimum of $I(x)$ in $\operatorname{ACg} \cap \Omega$ (and therefore the infimum of $\mathscr{I}(x)$ in Ω), and $x \in \Omega$ is a minimizing element, then it may happen that $I(x)<\mathscr{F}(x)=i$.

Let us consider the problem of minimizing the length of the plane curves $z^{1}=z^{1}(t), z^{2}=z^{2}(t), 0 \leqq t \leqq 1$, joining two given points, say $(0,0)$ and $(1,1)$, or

$$
\begin{gathered}
I(x)=\int_{0}^{1}\left[\left(z^{1}(t)\right)^{2}+\left(z^{2}(t)\right)^{2}\right]^{1 / 2} d t \\
z^{1}(0)=0, \quad z^{2}(0)=0, \quad z^{1}(1)=1, \quad z^{2}(1)=1
\end{gathered}
$$

Here, for $z^{1}, z^{2} \in \mathrm{AC}$, the infimum of I is $i=\sqrt{2}$, and this infimum is attained not only by the obvious solution $z^{1}(t)=z^{2}(t)=t, 0 \leqq t \leqq 1$, but also by the infinitely many solutions $z^{1}(t)=z^{2}(t)=\xi(t), \quad 0 \leqq t \leqq 1, \quad \xi \in \mathrm{AC}$, monotone nondecreasing with $\xi(0)=0, \xi(1)=1$; hence $z^{1}(0)=0, z^{2}(0)=0, z^{1}(1)=1$,
$z^{2}(1)=1$, and

$$
I(z)=\sqrt{2} \int_{0}^{1}\left|\xi^{\prime}\right| d t=\sqrt{2} \int_{0}^{1} \xi^{\prime} d t=\sqrt{2}=i .
$$

On the other hand, let us consider the usual ternary Cantor function $\varphi(t), 0 \leqq$ $t \leqq 1, \varphi(0)=0, \varphi(1)=1$, continuous, monotone non decreasing, with derivative zero a.e. in $[0,1], \varphi \mathrm{BV}$ and not AC . Let $\xi_{k}(t), 0 \leqq t \leqq 1, k \in N$, be a sequence of monotone nondecreasing AC approximations of φ with $\xi_{k}(0)=0$, $\xi_{k}(1)=1$, and $\xi_{k} \rightarrow \varphi$ uniformly in $[0,1]$. Now we take the sequence of AC functions $z_{k}^{1}(t)=z_{k}^{2}(t)=\xi_{k}(t), 0 \leqq t \leqq 1, k \in N$. For $z_{k}=\left(z_{k}^{1}, z_{k}^{2}\right)=\left(\xi_{k}, \xi_{k}\right)$, $z=\left(z^{1}, z^{2}\right)=(\varphi, \varphi)$, we have

$$
I\left(z_{k}\right)=\sqrt{2} \int_{0}^{1}\left|\xi_{k}^{\prime}(t)\right| d t=\sqrt{2} \int_{0}^{1} \xi_{k}^{\prime}(t) d t=\sqrt{2}
$$

$z_{k} \rightarrow z$, i.e. $z_{k}^{1} \rightarrow z^{1}, z_{k}^{2} \rightarrow z^{2}$ uniformly; hence pointwise in $[0,1]$

$$
I\left(z_{k}\right) \rightarrow i=\sqrt{2}
$$

Thus, in the terms of the beginning of Section $3, \mathscr{I}(\varphi)=i=\sqrt{2}, I(\phi)=0$; hence $I(\varphi)<\mathscr{I}(\varphi)=\boldsymbol{i}$.

Example 2. Suppose

$$
A=[0,1]^{2} \cap\left\{(t, x) \in R^{2}: t-\frac{1}{3} \leqq z \leqq t+\frac{1}{3}\right\}, Q(t, x)=R, n=1
$$

and let $F_{0}(v): R \rightarrow R$ be defined by $F_{0}(v)=|v|$. In this case (see Remark 2) the functional \mathscr{I} is the generalized variation. Let $\varphi(t):[0,1] \rightarrow[0,1]$ be the usual ternary Cantor function. Then φ is continuous, BV and not ACg, with $\varphi^{\prime}(t)=0$, a.e. in $[0,1]$, and graph $\varphi \subset A$. Thus $I(\varphi)=0$, i.e.; if i_{0} denotes the infimum of $I(x)$ in Ω, then $I(\varphi)=i_{0}=0$. On the other hand, if i denotes the infimum of $I(x)$ in $\mathrm{ACg} \cap \Omega$ then by Theorem $2, \mathscr{I}$ also attains its infimum at some minimizing element $\bar{z} \in \Omega$, and $\mathscr{I}(\bar{z})=i$. Certainly $i>0$ (hence $i>i_{0}$), since $i=0$ would imply $\bar{z}^{\prime}(t)=0$ a.e., $\bar{z}(t)=$ const. a.e., and this is not possible given the shape of the set A. It is easy to see that $i=2 / 3$ and that a minimizing element is $\bar{z}(t)=0$ for $0 \leqq t \leqq 1 / 3, \bar{z}(t)=t-1 / 3$ for $1 / 3<t \leqq 1$, with $I(\bar{z})=\mathscr{I}(\bar{z})=2 / 3$. Note that if we consider the same problem with boundary data $z(0)=0,=z(1)=1$, then φ satisfies the same data; h ence $I(\varphi)=i_{0}=0$ as before. On the other hand, it is easy to see that the new infimum is now $i=1$, and that a minimizing element is $\bar{z}(t)=0$ for $0 \leqq t \leqq 1 / 3, \bar{z}(t)=t-\frac{1}{3}$ for $1 / 3 t<1, \bar{z}(1-0)=2 / 3, \bar{z}(1)=1$ with a jump of $1 / 3$ at $t=1$, and $\mathscr{I}(\bar{z})=1=i$, $I(\bar{z})=2 / 3$ and again $I(\bar{z})<\mathscr{I}(\bar{z})=1$ as in Example 1. Thus $0=i_{0}=I(\varphi)<$ $I(\bar{z})<\mathscr{F}(\bar{z})=i=1$.

Example 3. We show here an example in which occurs the "non natural" situation $i=\mathscr{I}(x)<I(x)$. In this example A is compact, but the sets \tilde{Q} do not have the property (Q), and for a minimizing sequence of AC functions $x_{k}=\left(y_{k}, z_{k}\right)$, $k \in N$, the total variations $V^{*}\left(z_{k}\right)$ are not equibounded, and the sequence $z_{k}^{\prime}, k \in N$, is not equibounded below.

Let $A=[0,2 \pi] \times[-1,1]^{2}, \quad Q(t, x)=R^{2}, \quad(t, x) \in A, \quad$ and let $\quad F_{0}(z, v)$: $[-1,1]^{2} \times R^{2} \rightarrow R^{+}$be defined by

$$
F_{0}\left(z_{1}, z_{2}, v_{1}, v_{2}\right)=\exp \left(z_{1} v_{2}-z_{2} v_{1}\right)
$$

We consider now the sequence $\left(z_{k}\right)_{k \in N}$ given by

$$
z_{k}^{1}(t)=r_{k} \sin k t, \quad z_{k}^{2}(t)=r_{k} \cos k t, \quad 0 \leqq t \leqq 2 \pi, k \in N
$$

where $r_{k}=k^{-1 / 3}$. Note that $z_{k}^{1^{\prime}}(t)=r_{k} k \cos k t, \quad z_{k}^{2^{\prime}}(t)=-r_{k} k \sin k t$, and $z_{k}^{1} z_{k}^{2^{\prime}}-z_{k}^{2} z_{k}^{1^{\prime}}=-r_{k}^{2} k=-k^{1 / 3} \rightarrow-\infty$. Therefore we have

$$
0 \leqq \mathscr{I}\left(z_{k}\right) \leqq I\left(z_{k}\right)=\int_{0}^{2 \pi} F_{0}\left(z_{k}(t), z_{k}^{\prime}(t)\right) d t=2 \pi \exp \left(-k^{1 / 3}\right) \rightarrow 0
$$

as $K \rightarrow \infty$. Thus $i=0$. Note that $V\left(z_{k}^{1}\right)=V\left(z_{k}^{2}\right)=4 r_{k} k=4 k^{2 / 3} \rightarrow+\infty$ as $k \rightarrow \infty$. Since $r_{k} \rightarrow 0$ as $k \rightarrow \infty$, if we take $z=\left(z^{1}, z^{2}\right)$ with $z^{1}(t)=z^{2}(t)$ $=0, t \in\left[t_{1}, t_{2}\right]$, then z is AC in $[0,2 \pi]$ and $z_{k} \rightarrow z$ uniformly, hence $\mathscr{F}(z)=0$. But $I(z)=\int_{0}^{2 \pi} \exp (0) d t=2 \pi>0$. Moreover, for every $z \in$ BVC we certainly

$$
I(z)=\int_{0}^{2 \pi} \exp \left(z_{1}(t) z_{2}^{\prime}(t)-z_{2}(t) z_{1}^{\prime}(t)\right) d t>0
$$

We shall give now two examples which illustrate Theorem 2 and show that, in general, the minimum of \mathscr{I} is attained by a BVC function, not necessarily ACg.

Example 4. Let $A=[0,2] \times[0,1], \quad n=1, \quad \alpha=0, \quad \psi(t)=0 . \quad Q(t, x)=$ $[0,+\infty)$ for $(t, x) \in A, M=A \times[0,+\infty)$, with boundary conditions $x(0)=0$, $x(2)=1$. Let $F_{0}(t, v)$ be defined by $F_{0}(t, v)=|1-t||v|$ for $(t, v) \in M$. Thus the functional $\mathscr{I}(x)$ is nonnegative. Note that, for the sequence $z_{k}:[0,2] \rightarrow R$, $k \in N$, defined by $z_{k}(t)=0$ for $t \in[0,1-1 / k] ; z_{k}(t)=1$ for $t \in[1,2]$, $z_{k}(t)=1-k+k t$ for $t \in(1-1 / k, 1)$, we have

$$
0 \leqq \mathscr{I}\left(z_{k}\right)=I\left(z_{k}\right)=\int_{1-1 / k}^{1}(1-t) k d t=1 / 2 k \rightarrow 0 \text { as } k \rightarrow \infty
$$

Thus the infimum i of \mathscr{I} is zero, and z_{k} is a minimizing sequence. The minimum is attained by the discontinuous function $z:[0,2] \rightarrow R$ defined by $z(t)=0$ for $t \in[0,1), z(t)=1$ for $t \in[1,2]$. In other words $I(z)=\mathscr{I}(z)=0$.

Example 5. Let $A=[-1,1] \times[0,1], n=1, \alpha=0, \quad \psi(t)=0, \quad Q(t, x)=$ $[-1,+\infty), M=A \times[-1,+\infty), \quad F_{0}(t, v)=|t| v^{2}, \quad F_{0} \geqq 0$. with boundary conditions $x(-1)=0, x(1)=1$. The functional $\mathscr{I}(z)$ is nonnegative. Note that for the sequence $z_{k}:[-1,1] \rightarrow R, k \in N$, defined by $z_{k}(t)=0$ for $t \in[-1,1 / k]$; $z_{k}(t)=(\log k)^{-1} \log t+1$, for $t \in(1 / k, 1]$, we have

$$
0 \leqq \mathscr{I}\left(z_{k}\right)=I\left(z_{k}\right)=\int_{1 / k}^{1}(\log k)^{-2} / t d t=(\log k)^{-1} \rightarrow 0 \quad \text { as } k \rightarrow \infty
$$

Thus the infimum i of \mathscr{I} is zero and $\left(z_{k}\right)_{k \in N}$ is a minimizing sequence. The minimum is attained by the discontinuous function $z:[-1,1] \rightarrow R$, defined by $z(t)=$ 0 for $t \in[-1,0], z(t)=1$ for $t \in(0,1]$. In other words, $I(z)=\mathscr{I}(z)=i$. For this example $c f$. [5], Section 1.1, no. 4 .

4. An existence theorem for problems of optimal control

As above, let $\alpha, n, 0 \leqq \alpha \leqq n$, be given integers and, for every $x \in R^{n}$, let $x=(y, z)$ with $y \in R^{x}$ and $z \in R^{n-x}$. Let A be a compact subset of the (t, x) space such that its projection onto the t-axis contains the fixed interval $\left[t_{1}, t_{2}\right]$. Let $U(t, x),(t, x) \in A, U(t, x) \subset R^{m}$, or $U: A \rightarrow R^{m}$ be a given set-valued function and let M_{0} denote the set

$$
M_{0}=\{(t, x, w):(t, x) \in A, w \in U(t, x)\} \subset R^{1+n+m}
$$

Let $f_{0}(t, x, w), f(t, x, w)=\left(f_{1}, \ldots, f_{n}\right)$ be given functions defined on $M_{0} \subset R^{1+n+m}$. Let Ω_{0} be a class of admissible systems $(y(t), z(t), w(t)), t \in\left[t_{1}, t_{2}\right]$, i.e. functions $x(t)=(y(t), z(t))$, or $x:\left[t_{1}, t_{2}\right] \rightarrow R^{n}, w:\left[t_{1}, t_{2}\right] \rightarrow R^{m}$, such that (i) $y \in \mathrm{ACg}$, $z \in \mathrm{BVC}, w$ is measurable; (ii) $(t, y(t), z(t)) \in A, w(t) \in U(t, y(t), z(t))$, a.e. in $\left[t_{1}, t_{2}\right]$; (iii) $x^{\prime}(t)=f(t, x(t), w(t))$, a.e. in $\left[t_{1}, t_{2}\right], f_{0}(\cdot, x(\cdot), w(\cdot)) \in L_{1}\left(\left[t_{1}, t_{2}\right]\right)$.

We consider the functional $\mathscr{I}_{0}: \Omega_{0} \rightarrow R$ defined by

$$
\begin{aligned}
\mathscr{I}_{0}(x) & =\mathscr{I}_{0}(y, z)=\inf _{\Gamma_{0}(x)} \lim _{k \rightarrow \infty} \int_{t_{1}}^{t_{2}} f_{0}\left(t, y_{k}(t), z_{k}(t), w_{k}(t)\right) d t \\
& =\inf _{\Gamma_{0}(x)} \lim _{k \rightarrow \infty} I_{0}\left(y_{k}, z_{k}, w_{k}\right),
\end{aligned}
$$

where $\Gamma_{0}(x)$ denotes the class of all sequences $\left(x_{k}, w_{k}\right)_{k \in N}$ in Ω_{0} such that (a) $x_{k}=\left(y_{k}, z_{k}\right) \in \mathrm{ACg}, k \in N$; (b) $y_{k} \rightarrow y$ uniformly and $z_{k} \rightarrow z$ pointwise a.e. in $\left[t_{1}, t_{2}\right]$. If $\Gamma_{0}(x)=0$ we take $\mathscr{I}_{0}(x)=+\infty$. The class Ω_{0} is said to be closed if it has the following property (c): If $\left(y_{k}, z_{k}, w_{k}\right)_{k \in N}$ is a sequence of admissible systems, all in Ω_{0}, satisfying (a) and (b), and if there exists a measurable w such that (y, z, w) is an admissible system, then (y, z, w) belongs to Ω_{0}.

Note that, if the problem of minimizing the functional above involves given initial or terminal values for x, say $x\left(t_{1}\right) \in B_{1}, x\left(t_{2}\right) \in B_{2}$, then we will proceed as illustrated in Remark 2 of Section 3.

It is well known (see [5], Section 1.13) that the problem of optimal control described above can be deparametrized, and essentially reduced to a problem of calculus of variations as discussed in Section 3. For every $(t, x) \in A$ let $Q(t, x)$ denote the set

$$
Q(t, x)=\left\{\zeta \in R^{n}: \zeta=f(t, x, w), w \in U(t, x)\right\}
$$

and take

$$
M=\left\{(t, x, \zeta) \in R^{2 n+1}:(t, x) \in A, \zeta \in Q(t, x)\right\}
$$

Let $F_{0}(t, x, \zeta)$ denote the scalar function defined on M by taking

$$
\begin{equation*}
F_{0}(t, x, \zeta)=\inf \left\{z^{0} \in R ; z^{0} \geqq f_{0}(t, x, w), \zeta=f(t, x, w), w \in U(t, x)\right\} . \tag{1}
\end{equation*}
$$

If for some ζ the set in brackets is empty, we take $F_{0}=+\infty$. If in (1) inf is actually a minimum for all $(t, x, \zeta) \in M$, then we may replace the problem of optimal control with the problem of the calculus of variations studied in Section 3, concerning the integral functional \mathscr{I} relative to the integrand F_{0}, with constraints $(t, x(t)) \in A, x^{\prime}(t) \in Q(t, x(t))$, a.e. in $\left[t_{1}, t_{2}\right]$, and where $x=(y, z), y \in \mathrm{ACg}$, $z \in$ BVC. We will apply Theorem 2 of Section 3 to the present problem of the calculus of variations. Of course, we shall assume that the sets $Q(t, x)$ are nonempty and convex and that the scalar function $F_{0}(t, x, \zeta)$ is lower semicontinuous in (t, x, ζ) and convex in ζ. Moreover, once we have a solution $x=(y, z)$ of the deparametrized problem, or problem of the calculus of variations, we shall need to know that there exists some measurable function $w(t)$, or $w:\left[t_{1}, t_{2}\right] \rightarrow R^{m}$ such that

$$
\begin{align*}
w(t) \in U(t, x(t)), f_{0}(t, x(t), w(t))= & F_{0}\left(t, x(t), x^{\prime}(t)\right), f(t, x(t), w(t))=x^{\prime}(t), \\
& \text { a.e. in }\left[t_{1}, t_{2}\right] . \tag{2}
\end{align*}
$$

This is a consequence of the implicit function theorems. For instance, if f_{0} and f are continuous on the closed set M_{0}, then the existence of a measurable $w(t)$ satisfying (2) follows from the McShane-Warfield implicit function theorem ([5], Theorem 8.2.iii). In [5], Sections 8.2., 8.3, a great many situations are depicted for which some implicit function theorem applies. Concerning the n-vector function $f(t, x, w)=\left(f_{1}, \ldots, f_{n}\right)$, we write $\tilde{f_{1}}=\left(f_{1}, \ldots, f_{\alpha}\right)$ and $\tilde{f_{2}}=\left(f_{\alpha+1}, \ldots, f_{n}\right)$. We shall need the following alternative assumptions:
$\left(\mathrm{g}_{1}\right)$ There is a scalar function $\phi(\zeta), 0 \leqq \zeta<+\infty$, or $\phi: R_{0}^{+} \rightarrow R$ bounded below, such that $\phi(\zeta) / \zeta \rightarrow+\infty$, as $\zeta \rightarrow+\infty$, and $f_{0}(t, x, w) \geqq \phi\left(\left|\tilde{f_{1}}(t, x, w)\right|\right)$ for all $(t, x, w) \in M_{0}$.
(g_{2}) For every $\varepsilon>0$ there is a summable scalar function $\psi_{\varepsilon}(t) \geqq 0$ such that $\left|\tilde{f}_{1}(t, x, w)\right| \leqq \psi_{\varepsilon}(t)+\varepsilon f_{0}(t, x, w)$ for all $(t, x, w) \in M_{0}$.
$\left(\mathrm{g}_{3}\right)$ For any α-vector $p \in R^{\alpha}$ there is a summable scalar function $\phi_{p}(t) \geqq 0$, such that $f_{0}(t, x, w) \geqq\left\langle p, \tilde{f}_{\mathrm{L}}(t, x, w)\right\rangle-\phi_{p}(t)$, for all $(t, x, w) \in M_{0}$.

Note that, under condition (g_{1}), certainly $\phi(\zeta) \geqq \lambda$ for some real constant λ, and then $f_{0}(t, x, w) \geqq \phi\left(\left|\tilde{f}_{1}(t, x, w)\right|\right) \geqq \lambda$ for all $(t, x, w) \in M_{0}$. Under condition $\left(\mathrm{g}_{2}\right)$ and $\varepsilon=1$, we have $\left|f_{1}\right| \leqq \psi_{1}(t)+f_{0}(t, x, w)$; hence $f_{0}(t, x, w) \geqq$ $-\psi_{1}(t)$, a summable function. Under condition $\left(\mathrm{g}_{3}\right)$ and $p=0$. we have $f_{0}(t, x, w)$ $\geqq-\phi_{0}(t)$, a summable function.

Theorem 3 (An existence theorem for problems of Optimal Control). Let $1 \leqq \alpha \leqq n-1$, and assume that (i) A is compact and M_{0} is closed; (ii) the sets $\tilde{Q}(t, x)$ are closed, convex and satisfy property (Q) with respect to (t, x) at every point (t, x) of A (with the exception perhaps of a set of points whose t-coordinate lies on a set of measure zero on the t-axis); (iii) the functions f and f_{0} are continuous and satisfy one of the growth conditions $\left(\mathrm{g}_{1}\right),\left(\mathrm{g}_{2}\right),\left(\mathrm{g}_{3}\right)$. Also we assume that
the class Ω_{0} is nonempty and closed, and (iv) there is a constant W_{0} such that for every element $x=(y, z) \in \Omega_{0} \cap \mathrm{ACg}$, then $V^{*}(z) \leqq W_{0}$. Then the functional \mathscr{I}_{0} has an absolute minimum $x=(y, z)$ in Ω_{0}.

For $\alpha=0$, then $x=z$, the requirements $\left(g_{1}\right)$ or $\left(g_{2}\right)$ or $\left(g_{3}\right)$ do not apply, yet the conclusion is still valid if we know that (iii') there is a summable scalar function $\lambda:\left[t_{1}, t_{2}\right] \rightarrow R$ such that $f_{0}(t, x, w) \geqq \lambda(t)$, for all $(t, x, w) \in M_{0}$.

For $\alpha=n$, then $x=y, \Omega_{0}$ is a nonempty and closed class of ACg functions $y(t)=\left(y^{1}, \ldots, y^{n}\right), \quad t \in\left[t_{1}, t_{2}\right]$. condition (iv) does not apply, and the problem reduces essentially to those discussed in Theorems 11.4.i. and ii of [5].

Statement 3 is a corollary of Theorem 2.
Note that for $0 \leqq \alpha \leqq n-1$, if (iv') there are scalar functions $\psi_{i} \in L_{1}\left(\left[t_{1}, t_{2}\right]\right.$, $i=\alpha+1, \ldots, n$, such that $(t, y, z, u, v) \in M_{0}$ implies $v^{i} \geqq \psi_{i}(t)$ a.e. in $\left[t_{1}, t_{2}\right]$, then (iv) certainly holds.

Note that, for $1 \leqq x \leqq n-1$, the sets $\tilde{Q}(t, x)$ are closed and convex, $\left(\mathrm{g}_{1}\right)$ holds, and if (iv") there exist constants L_{i} such that a.e. in $\left[t_{1}, t_{2}\right],(t, y, z, u, v) \in M_{0}$ implies $v^{i} \geqq L_{i}, i=\alpha+1, \ldots, n$, then both (ii) and (iv) hold.

See also Remarks 6 and 6^{\prime}.
Acknowledgment. This research was partially supported by the G.N.A.F.A.-C.N.R.

References

1. M. Boni, Variazione generalizzata con peso e quasi additività, Atti Sem. Mat. Fis. Univ. Modena 25 (1976), 195-210.
2. M. Boni \& P. Brandi, Variazione classica e generalizzata con peso, Atti Sem. Mat. Fis. Univ. Modena 23 (1974), 286-307.
3. D. Candeloro \& P. Pucci, L'integrale di Burkill-Cesari come integrale del Calcolo delle Variazioni, Boll. Un. Mat. Ital. (5) 18-B (1981), 1-24.
4. L. Cesari, Sulle funzioni a variazione limitata, Ann. Scuola Norm. Sup. Pisa 5 (1936), 299-313.
5. L. Cesari, Optimization-Theory and Applications, Springer Verlag (1983).
6. L. Cesari, P. Brandi \& A. Salvadori, (a) Discontinuos solutions in problems of optimization, Ann. Scuola Norm. Sup. Pisa, to appear. - (b) Existence theorems for multiple integrals of the calculus of variations for discontinuous solutions, Annali Mat. pura appl., to appear.
7. L. Cesari \& P. Pucci, An elementary proof of an equivalence theorem relevant in the theory of optimization, J. Optimization Theor. Appl. 46 (1985), 215-226.
8. E. Conway \& J. Smoller, Global solutions of the Cauchy problem for quasi-linear first-order equations in several space variables, Comm. Pure Appl. Math. 19 (1966), 95-105.
9. C. M. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Indiana Univ. Math. J. 26 (1977), 1097-1119.
10. R. J. di Perna, Singularities of solutions of nonlinear hyperbolic systems of conservation laws, Arch. Rational Mech. Anal. 60 (1975), 75-100.
11. C. Goffman, Lower semicontinuity and area functionals. I. The non parametric case, Rend. Circ. Mat. Palermo 2 (2) (1953), 203-235.
12. K. Krickeberg, Distributionen, Funktionen beschränkter Variation und Lebesguescher Inhalt nichtparametrischer Flächen, Ann. Mat. Pura Appl. 44 (1957), 105-133.
13. A. Salvadori, Sulla convergenza in lunghezza con peso per una successione di curve parametriche, Rend. Circ. Mat. Palermo 36 (2) (1977), 195-228.
14. J. Serrin, On the definition and properties of certain variational integrals, Trans. Amer. Math. Soc. 101 (1961), 139-167.
15. C. Vinti, L'integrale di Weierstrass-Burkill, Sem. Mat. Fis. Univ. Modena 18 (196), 295-316.
16. A. L. Volpert, The spaces BV and quasilinear equations, Mat. Sb. 73 (1967), 225-267.

University of Michigan
Ann Arbor
and
Università degli Studi
Perugia

[^0]: ${ }^{1}$ This is not true, in general, if assumption (v) of Theorem 1^{1} is dropped, as Example 3 below shows.

[^1]: ${ }^{2}$ See Note 1.

