
Existence Theorems Concerning Simple Integrals 
of the Calculus of Variations 
for Discontinuous Solutions 

L.  CESARI, P .  BRANDI (~r A .  SALVADORI 

Dedicated to James  Serrin on his 60 th birthday 

1. Introduction 

In this paper we apply the direct method of  the calculus of  variations, based 
on lower semicontinuity and lower closure (see [5]), to prove the existence of  
optimal solutions x ( t ) =  (x  1 . . . . .  x"), tl ~ t <= t2, for which 0~ components 
y( t ) - - - - (x  1, . . . , x  ~) are AC and n - -o~  components z ( t ) =  (x ~+1 . . . .  , x  n) are 
BV and not  necessarily AC. If  o~ = 0 all components of  x are BV, and i n  this 
situation no growth assumption is made on the integrand function. The cost 
functional J is of  SERRIN type ([14]), i.e. it is obtained from the usual integral 
expression I by means of  a limit process, based on a topology 7, of this integral 
/ o v e r  curves x k whose components are all AC. The topology ~: that we use here is 
the topology of  uniform convergence on the Yk components and pointwise con- 
vergence almost everywhere on the zk components. This pointwise convergence al- 
most everywhere has been used by CESAaI in the study of  area of  discontinuous 
surfaces ([4], 1936) and in existence theorems concerning simple integrals for AC 
solutions (see [5], Chapt. 15 and the papers cited there). 

In Section 2 we first prove a closure theorem (Theorem 1) for problems in 
which mere pointwise convergence almost everywhere is adopted. The closure 
theorem is used, in Section 3, for proving a lower semieontinuity theorem (Theo- 
rem 1') based on the topology -r. The same lower semicontinuity theorem allows 
us to prove that J is a true extension o f / ,  in the sense that or = I whenever 
all components are AC. 

In Section 3 we prove also an existence theorem for the absolute minimum 
of  extended problems of  the calculus of variations with constraints on the direc- 
tion of  the tangent. In Section 4 we derive, as a corollary, an existence theorem 
for the absolute minimum of  problems of optimal control. For  a different view- 
point connecting Serrin-type integrals, usual integrals, and Burkill-Cesari inte- 
grals we mention the paper [3] by CANOELORO & PUCO, where also lower semi- 
continuity theorems are given for solutions which are only continuous and of  
bounded variation. 

Elsewhere ([6b]) the present work on discontinuous solutions will be extended 
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to multiple integrals of the calculus of variations and functions of v > 1 inde- 
pendent variables. Therefore, the BV concept in [6b] will be the one introduced 
by CESARI in 1936 ([4]) and shown by KRICI~EBERG ([12]) to be equivalent to the 
one in terms of distributions. Later the functions of bounded variation in the 
sense of CESARI were briefly denoted as BVC by CONWAY & SMOLLER ([8]), DAFER- 
MOS ([9]) and DIPERNA ([10]). The functions of bounded variation defined in 
the equivalent terms of  distributions were briefly denoted as BV by VOLPERT 
([16]) and others. In order that the present work, which concerns functions of one 
variable, be in harmony with [6b], we use the notations from [6b]. 

2. A closure theorem with components converging only pointwise 

Let A be a subset of the (t, x)-space R "+1 whose projection on the t-axis 
contains the fixed interval [tl, t2]. Let Q(t, x), (t, x) E A, Q(t, x) C R ~, or Q : A ~ R ", 
be a given set valued function. 

Following CESARI [5] we shall say that the set function Q has property (Q) 
at the point (f, ~), with respect to (t, x), if 

Q(t, x--) : ~ el co k J Q(t, x) 
~>0 (t,x)EB('i,x;,~) 

where B(f, ~; dt) = ((t, x) E A : I(t, x) -- (i, ~)1 ----< ~)- Let Q(7, 2; ~) = k.J Q(t, x) 
for (t, x)E B(L~;~).  

Analogously, Q is said to have property (Q) at the point (7, ~), with respect 
to x only, if 

Q(t, x---) -- f~ cl co k_J Q(t, x) 
t~ > 0 xE B'(t",x; ~) 

where B'( t ,~;  ~) = ((t, x)E A : ] x  -- ~l =< ~}. The corresponding Kuratowski 
properties (K) are obtained by writing only cl, instead ofcl co, in the relations above. 

We mention here that a summable function x(t) from [tl, t2] into R ~, or 
x: [tt, t2] --~ R n, is said to be of bounded variation in the sense of  Cesari, briefly 
BVC, if it is equivalent to a BV function ~ : [tl, t2] -+ R n. It may well occur that 
x is equivalent to infinitely many BV functions ~. In this case, at every point 
to E (t~, t2) of (first kind) discontinuity for ~, we may take ~(to) so that ~(to -- 0) 

X(to) =< X(to + 0) or the same relations with the sign ~ .  Also, we may 
take ~(tl) = ~(t~ + 0), . ~ ( t2 )  = ~(t2 -- 0). With this choice for ~ the varia- 
tion V(~) is uniquely determined and it has the minimum value for all ~ equivalent 
to x. We take, by definition of  generalized variation V*(x) the number V*(x) = 
V(~), for ~ chosen as stated. Moreover we take, by definition x' = ~' (a.e. 
in [tl, t2]). 

Analogously, x is said to be absolutely continuous in the generalized sense, 
briefly ACg if x is equivalent to an AC function ~. In this case ~ is uniquely 
defined, and for the generalized variation we take V*(x) = V(:~). 

For further properties of such functions see [4], [6a], [1], [2], [13]. 
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We shall consider the orientor field equation 

(t, x(t)) E A, x'(t) E Q(t, x(t)), a.e. in [tt t2]. (1) 

that is, the problem of  determining a BVC function x satisfying these relations. 
We state and prove now a closure theorem which replaces, in the present 

situation, the closure theorem 15.2.i of [5]. 

Theorem 1 (A closure theorem). Let us assume that (i) A is closed; (ii) the set 
valued function Q has closed and convex values; (iii) the set valued function Q has 
property (Q), with respect to (t, x), at every point (?, ~)E A, with the exception 
perhaps of  a set of  points whose t-coordinate lies in a set H of  measure zero in 
[tl, t2]. 

Let x~ : [tt, t2] --~ R ~, k E N, be a sequence of ACg solutions of  the orientor 
field (3), and assume that V*(xk) ~ Vo, k E N, and that Xk --~ X pointwise a.e. 
in Its, t2], with xE  BVC. Then the function x is a solution of the orientor field 
relation (3). 

Proof. (a) By the hypotheses it follows that 

(t, x(t)) E A, a.e. in [h t2], (2) 

so we have only to prove that 

x ' ( t )E Q(t,x(t))- a.e. in [tx, t2]. (3) 

In order to see that, without loss of  generality we can suppose that x is BV 
a n d x  k i s A C ,  k E N .  

Let To C [t2, t2] be a set of  measure zero such that in [t~, t2] - -  To we have 

lim Xk(t) = x(t)  and x'(t) = x'~(t) 
k---> oo 

where x ---- x a + xs denotes the Jordan decomposition of  x. 

(b) Now for every m E N, we divide [tl, t2] into m equal parts I} m), r = 
1 . . . .  , m, each of  length (t2 -- tl) m -1 = T m  -1 ; and denote by T1 C [tt, t2] 
the set of  all points of  subdivision, so that 7'1 is denumerable and, therefore, has 
measure zero. 

Let m E N and e > 0 be fixed. For  every k E N, we consider those intervals 
1~ m) if  any, such that to(x~, I, (m)) ~ e, where o~(xk, I) denotes the oscillation of  
xk over L 

Let  S~ m) be the system of  such intervals, or 

S~ m) = {l(r "n), r = 1 . . . .  , m:  tO(Xk, I(r m)) ~ e}. 

We now proceed to the determination of  a suitable set 2~ (m) and to the extrac- 
tion of a suitable subsequence of  (Xk)k~N. First, if  I~ m) E S~ m) for all k sufficiently 
large, we put ~m) in X (m); if not  then there are infinitely many k E N such that 
I~m)qs~ m) and we denote by (ki~),~N such sequence, i.e. IIm)q c(m) s E N .  

~ k l s ~  

I f  I2~ E e{m) for all s sufficiently large, we put  /<2 m) in ,~(m); if  not  then there 
O k l s  



310 L .  CESARI, P.  BRAND1 & A .  SALVADORI 

are infinitely many  s E N such that  I(2m)~ C(m) We denote such a sequence ~.Jkls. 
by (k2,)s~N; then (k2s) ( ( k l ~ )  and T+m)~ C(,O S E N .  ~2 ~ ~k2s, 

We proceed as indicated for  I~ m) . . . . .  I~ m~. 
At the end we have a set 2J ( '~ made  up o f  all points  o f  certain intervals t(-,) ~t r 

r = 1 . . . . .  m, say, for  simplicity .ytm) = {i},0, i = 1, . . . ,  v}, and a final sequence 

(kms)sEN with (kms)sE N C (km--l,s)sEN C ... C (kls)sEN" 
Note  that  for  all kms sufficiently large we have 

fO(Xkms, I~ "0) ~ e, i = 1 . . . .  , v, 

and hence 

~ ~ ~ (D(Xkms, i}m)) ~ ~ O)(Xkms, ~m)) ~ V(Xkms ) ~ Vo ' 
i:l  r=l 

i.e. ~ ~ Voe -1. 
This implies that  

meas  (X <m)) = ~-' meas  (I~ m)) = vTm -1 :< VoT/em. 
i=1 

Hence,  for  every e > 0 we can choose an integer m~ sufficiently large that  

meas  (X (toO) =< VoT/ern~ < e. 

N o w  we take e ranging in succession over  the values (1/2~)~N. Thus,  for  2 = 1 
then e = 1/2 and, starting f rom the original sequence (k)kEN, we obtain  f rom the 
above  an integer m+, which we denote by mr,  a set X tm,), which we denote by 

(k+).+~,,,+. ,~(1), and a subsequence (km+)+~N that  we denote by 1 
(k,)~EN we obtain,  Fo r  ;t = 2 then e = 1/2 2 and, start ing f rom the sequence l 

as before, an integer rn:, a set S (2~ and a sequence 2 (/c+)~rr 
Proceeding as indicated for  the generic 2 E N, we see that  e = 1/2 ~ and, 

(k~ )~N, we obtain an integer mz, a set X ~a) and a start ing f rom the sequence ~-1 
(k,)+~N as before.  subsequence 

I t  is not  restrictive to assume that  (ma)zEN is an increasing sequence. We con- 
sider now the sets 

oo 

X, ~ k,_J Z '(~), n E N and X o = /'~ X, .  
A =n hEN 

We have, 

m e a s X ,  ~ ~ meas  (S(~') ~ ~ 1 / 2 a =  1/2~-~1, measXo  = 0 .  
2=n 2=n 

(c) Let  us now take any point  to E [tt G] - -  (Xo LJ To L/T1 k; H) .  Then there 
i s a r e a l  a > 0  and  an integer no such that  t t <  t o - - a < t o < t o + a < t 2  and 
to ~ X (~) for  every 2 ~ no. 

F o r  every given e > 0 we take 2 E N sufficiently large that  1/2 ~" < e/2 and 
to eJX ~). Consequent ly  t o e  (I(a)) ~ with 1 ( ~  S(k~, s E N ,  hence 

~o(xk~, I (~0) < 1/2 ~ < e/2 for  every s E N ,  (4) 
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Since ). is fixed now, for  simplicity we shall write (~)s~N = (ks),~tr For  every 
0 < h < o" we consider the averages 

h 

mh = h -1 f x'(to § T) dr = h- t [x , ( to  + h) - -  Xa(tO) ] 
0 

h 

m~,h = h -1 f x'k~(to q- v) d~ = h-l[Xk~(to + h) - -  xk~(to)]. 
0 

Now, for  an arbi t rary fixed ~7 > 0 and for  all 0 < h < cr sufficiently small 
we have 

[mh --  x~(to) I < ~/2 and [x~(to + h) - -  x~ ( to ) [<  h~l/4. (5) 

Thus  we fix 0 < h < min (e, cr) in such a way that  relation (5) hoIds and more-  
over t o + h g T o k J T ~  and [to, t o + h ] C I ( a ) .  F r o m  (4), for  every to- -< t  
t o §  we have 

I x,~(t) - xk~(to) [ ~ co(xk~, I (a)) < ~/2, s E N.  (6) 

Since to, to § h ~ To, we can find an integer s such that  we have 

] x**(to) - -  X(to)[ _--__ min {e/2, wh/8} (7) 

and 

I xks(to § h) - -  X(to § h) l < ~h/8 .  

Therefore  f rom (6) and (7), for  every to ~ t ~ to -k h, we have 

]Xk~(t) - -  X(to)] ~ [ xks(t) - xks(to)[ § ] Xks(to) - -  x(to)] < e/2 -k e/2 : e. (8) 

By hypothesis we have 
t 

x~,(t)  E Q(t ,  Xk,(t))  for  a.a. to ~ t <: to § h; 

hence, f rom (8) and because h < e, we have 

x'k~(t) E cl co k.,/ a ( t ,  x) = el co a ( to ,  X(to), e) (9) 
tE [ to, to-k e] 
xEB(x(to),e) 

for  a.a. t o < = t < ~ t o §  
Finally we observe that  the average m~,h is also a point  o f  the same closed 

and convex set ([5], p. 288), i.e. 

mks  h ~ c l  CO Q(to, X(to), e).  (10) 

N ow by virtue o f  (7) and (5) we derive that  

[mk~h --  rnh[ ~- h ~1 [(xk,(to + h) - -  Xks(tO) ) - -  (x~(to § h) - -  x .( to))]  

G h -x I xk~(to + h ) ,  X(to § h) I § h -~ I xk,(to) - X(to)[ 
(11) 

q- h -1 [x~(to -k h) - -  x~(to)] 

-~ h -~ ~h/8 § h -~ ~h/8 4- h -~ ~h/4 = ~/2.  
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Thus, by (5) and (11), it follows that, 

I x;(to) -- mksh [ ~ I x'=(to) - mh I § Iron - m~hl < r//2 § ~/2 = r l; 

and, from (10) and (12), that 

x'a(to) = x'(to) E [el co Q(to, X(to), e)]~. 

(12) 

Because r/ is arbitrary, it follows that for every e > 0 

x'(to) E cl co Q(to, X(to), e). (13) 

Now the function Q satisfies property (Q) at (to, X(to)); hence from (13) we 
derive 

x'(to) E /~ cl co Q(to, X(to), e) = Q(to, X(to)) . 
~ > 0  

This completes the proof  of  (2). 

Remark  1. In Theorem I condition (Q) cannot be replaced by the weaker 
condition (K) as the following example, from Section 8.8 of  [5], shows. We report 
the example here with some simplifications for the convenience of the reader. 
Let n = 1 and A = [0, 1 ] x R, let C be a closed Cantor subset of  [0, 1 ] whose 
measure I cI is positive, and let C ' =  [0, 1] -- C. Then C'  is the countable 
union of  disjoint subintervals of [0, 1], C ' =  ~,J I,. Let a( t) :  C ' - + R  + be a 

n E N  

continuous and integrable function, which tends to q- oo whenever t tends to an 
end point of  any interval I n. Moreover let us suppose that lim min tr/I, ---- § oo. 

n-+-t- oo 
Let Q(t)  -- { -  1} if t E C, and Q(t) = {z E R : z >= tr(t)} if t E C'. Let us 

extend the function tr by taking tr(t) = 0, for t E C, and consider the decomposi- 
tion of  [0, 1] into k intervals of  equal length: J~ ----[tk,s_ 1, tk,s], S = 1, . . . ,  k, 
t,,,s = s/k. Define ~k by taking ~:k(t) = tr(t) § vk(t), where ~,k(t) ----- --1 if t E C, 
and *'k(t) = I C A  JZI/Ic'• JZI if  tE C ' A  J~. Then ~:k is integrable in [0, 1], 
and ~k(t) E Q(t)  for every t E [0, 1] and k E N. 

t t 

Let x~(t) = f ~ek(r) dr, 0 --< t --< I, or Xk(t ) = x( t )  § yk(t)  : f ~r(r) dr + 
0 0 

t 

f Vk(Z)dr. Here f   (t)at = 0; hence yk(tk,s)= 0 for all s and k, and 
o s~ 

lyk(t)l <= 2/k. Hence xk---~x uniformly on [0, 1], as k---> § oo; moreover all 
x~ and x are AC with x~(t)E Q(t), tE [0, 1]. Now x ' ( t )  ---- 0 a.e. in C, while 
Q(t)  ---- ( - 1 }  for tE C. Thus x ' ( t )~  Q(t)  on a subset C of  positive measure in 
[0, 1]. Note that f Ivk(t)l d t =  2 IJZC~ Cl; hence V(Yk) =< 2 and V(xk) 

1 

f tr(t) d t §  2 = /Io, a constant, for all k. Here the sets Q(t, x) have property 
0 
(K) on [0, 1]; moreover they have property (Q) both on C and on C' but not on 
[0, 1]. 
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3. An existence theorem of the calculus of variations 

3a. The integral J 

Let ~, n be integers such that 0 - -<~_<n ,  n ~  I, and for every x E R  n we 
write x = (y, z) with y E R ~, z E R "-~. Let A Q R ~+1 and Q : A ---~ R ~ be 
defined as before. Let M Q R 2"+1 denote the set M =  {(t,x, ~): (t, x)E.4,  

E Q(t, x)}, and let Fo(t, x, ~), or Fo : M ~ R be a given function. 
Let s be a class of  admissible functions, i.e. functions x ( t ) =  (y(t), z(t)), 

or x :  [q, t2] ~ R ", such that (i) y isACg and z is BVC; (ii) (t, x(t)) E A, x'(t)E 
Q(t, x(t)) a.e. in [q, t2]; (iii) Fo(', x(.), x'(.)) ELt .  

We consider the functional J : s - + / ]  defined by 

t2 

~'(x) : J ( y ,  z) : inf lira ( Fo(t, yk(t), zk(t), y'~(t), z'g(t)) dt 
r(x) k-~--~ fi 

= inf lira l(Yk, ZD, 
r(x) k ~  

where / ' (x) denotes the class of  all sequences (Xl,)kEN such that (a) x k = (yk, zk) E 
ACg A s k E N; (b) Yt, --~ Y uniformly and z k --~ z pointwise a.e. in [t~, t2], 
and where, as stated in (i), y is ACg and z is BVC. If  / ' (x) = 0 we put  J ( x )  = + c~. 
We may think of  Fo as extended to all of  R 2"+1 by taking Fo ---- + cx~ on R 2"+1-M.  

We denote by /~  the reals with the addition of  § oo. Note that if  x E ACg A s 
then F(x) =~ 0. Moreover, if A is convex, Q(t, x) = R", (t, x) E A, and the inte- 
gral means (Xh)h>0 belong to s then / ' (x)  =~ 0. 

The class s is said to be closed if s has the following property (c): if xk(t ) = 
(Yk, zk) is any sequence of  (admissible) pairs in s satisfying (a) and (b) above, and 
if x = (y, z) is admissible, then x belongs to s 

The functional J is modeled on Lebesgue area theory for nonparametric 
discontinuous surfaces (see CESARI [4]) and it is also close to the concept of  inte- 
gral in the sense of  SERRIN [14] when the present mixed convergence is used, 
uniform on y and pointwise a.e. on z. 

Note that the generalized weighted variation and length for a BVC curve are 
particular cases of  the functional J .  In fact, let Fo(t, v) : [tl, t2] )< R" --~ R + be 
defined by Fo(t, v) = I~(t)"  v I, where tp(t) : [q, t2] --~ R n is continuous. Then 
(see [1], [13]) 

t2 

~r = inf lim f ]zs = inf lim V*(Zk) >_ V*(z), 
/ '(x) k ~  t l  / '(x) k ~  

and moreover 

t2 

J ( z )  _<-- h-+olim tf  [z~(t) �9 ~(t) l dt = V*(z), 

1 h 
where z,(t) = --~ f z(t § T) dr. is the integral mean ofz .  Analogous considerations 

hold for the length. 
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Remark 2. In order to deal with the minimization of the functionals under con- 
sideration when initial and terminal values for x are involved, we carry over the 
definition of  the functional or to the following setting. 

Le t J f f  denote a family of  subsets N Q  [q, t2], with ]NI = 0, which is closed 
under countable unions. We shall write briefly JV-a.e. when we refer to a neglected 
null set N E JV'. Moreover we shall denote by JV-AC and .+~-BVC the family of  
all the functions which are JV'-a.e. equal to an AC function or a BV function, 
respectively. 

We consider now the class O F  of all the functions x(t) = (y(t), z(t)), such 
that  

i) y E JV'-AC and z E ~U-BVC, 
ii) (t, x(t)) C A, Jff-a.e. and x'(t) C Q(t, x(t)), a.e. in [q, t2], 

iii) Fo(', x(.), x'(.)) E L~. 
For  every x E ~2w, we shall denote by T'w(x) the class of  all the sequences 

(xk)~u such that 
(a) xk =- (Yk, Zk) ~ Jff-AC, k C N, 
(b) Yk ~ Y uniformly and z~ -+ z pointwise Jff-a.e. 

Thus we shall take ocw : ~ v  -+ R with 

J w  ~- inf lim I(xk) if I'w(x) ~ 0; J w  = + cx~ otherwise. 
r jr(x) k ~  

Note that, if .#" is the family of  all the null sets in [tl, t2], then J~v  is exactly 
the functional J .  Furthermore, if JV'I Q .At2, then Qw, Q g2w,, l ~ ( x )  ~ l"w,(x) 
and oChre(x) ~ ,r  for every x E (2~p. Note that ~> sign may hold, as the 
Example 2 in Section 3 shows. In this way we get a "spectrum" of integral func- 
tionals whose lower and upper lines are J and -r respectively. Observe that, if 
Fo(v) = Iv I, then (Jw}~" is the "spectrum of  variations" whose lower and upper 
lines are the generalized variation and the classic one, respectively. 

In the following, for simplicity, we shall deal with the functional zr but all 
our  results hold for any other functional J w ,  as well. In fact, we shall make syste- 
matic use of  Helly's theorem which guarantees convergence at all points t E 
[tt, t21. 

Note that, in this way, we treat also minimization which involves given initial 
and terminal data for x, say x(tl)E B~, x(t2)C B2, with B~, B 2 closed sets in RL 
This is the case when the family Jff is such that ~xJ N = (t~, t2). Thus, in the 

N ~  
computat ion of  the variation V*(x) of  x in [q,  t2] we always take note of  the 
values of  x at tl and t2. Concerning the convergence of the trace operator, see 
the known results mentioned in [6a]. 

Remark 3. We shall see now that, for every x = (y, z) E ~ ,  with / ' (x)  =~ 0, 
there is a sequence (xk)k~NE l"(x) such that 

lim I(xl,) = J ( x ) .  
k--~ oo 

I f  J ( x )  E R, the proof  is analogous to that for the case in which or = -1- oo. 
Observe that, by definition, for every m E N there is a sequence (y~, z~)#~N E 
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P(x) such that 

] l i m  I(y'ff~, z m) -- J ( x )  < 1/m; 

moreover, by virtue of  Severini-Egoroff theorem, we know that z~ ~ - -  z almost 
uniformly, m E N. Thus we can find a set Tm C [t,, ta] and an integer nm such 
that meas (Tin) > ( t2 - -  t ,) -- 1/2" and, for every n ~ rim, we have 
II(y m, z m) --  J (x ) ]  < 2/m, [ymn(t) --  y(t)] < 1/m, tr  [tt, ta] and Iz~'(t) --  z(t)[ 
< 1/m, tE T m. 

Let us denote by (xk)~n the sequence xk (y~, zk ) k k = = (Y"k' Z"k)' k E N. We 
shall see that (Xk)keN is the sequence we were looking for. To do so, we put  T k : 
('X Tm and T =  U Tk, then m e a s ( T k ) > ( t 2  - t l ) - - 1 / 2  ~-I and meas(T)  

m ~ k  k E N  

= t2 --  t~. Thus, for every fixed e > 0 and tE T, there is an integer / ~ >  1/e 

such that tE Tk for every k => ~c and therefore [z~(t) - z( t) l  < I / k <  t. In 
other words zk --~ z pointwise on T. Obviously y~,--~ y uniformly in [tl, t2] 
and hence (X~)kCN E _P(x). Finally, having fixed e > 0 and having taken k~ E N 
such that k~ > 2/~, then for every k => k,, we have I I ( X k )  - -  ~r I < 2/k, < e. 
The proof  is complete. 

3b. A lower semicontinuity property o f  I and J 

As is well known ([5]), closure theorems can be reworded into lower closure 
theorems and into lower semicontinuity theorems. From the closure Theorem 1 
of  Section 2 we derive here a lower semicontinuity theorem for the integral I 
and the relevant inequality I(x) <= J(x ) ,  under the assumption V*(Xk) <: Vo, 
k E N, and the topology under consideration, namely uniform convergence on 
the components yi and pointwise convergence almost everywhere on the compo- 
nents z J. 

For  the lower semicontinuity theorem we shall need the auxiliary sets 

Q ( t , x ) : ( ( z ~ 1 7 6  ( t , x ) E A ,  (1) 

or "augmented" set-valued function Q: A--~R ~+~, 

Theorem 1' (.4 lower semicontinuity theorem). Let 1 <_ o~ <_ n -- 1, and assume 

that: (i) .4 is closed; (ii) the sets Q(t, x) are closed, convex and have property (Q) 
with respect to (t, x) at every point (t, x) E .4, with the exception perhaps of  a set 
of  points whose t-coordinate lies in a set H of  measure zero; (iii) Fo(t ,y,  z, u, v) 
is lower semicontinuous in M and 2 E L1 exists such that Fo(t, y, z, u, v) ~ 2(0 
for all (t, y, z, u, v) E M; (iv) a sequence of  vector functions is given 

x(t) = (y, z), xk(t) = (Yl,, zk), t E It,, t21, y, Yk, Z~ E ACg, z E BVC, 

Yk --~ Y uniformly, z~ ~ z pointwise a.e. in [t~, t2], such that (t, Xk(t)) E A, 
x~(t) E Q(t, Xk(t)) a.e. in It1, t2]; (v) V*(xk) <= Vo for all k and some constant Vo. 
Then (t, x(t)) E A, x ' ( t )E Q(t, x(t)), a.e. in [tl, t2] and __lim I(Xk) >= I(X). Thus, 

k ~ -l- eo 
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if(Xk)kCN is a sequence as in the definition o f  de(x), i.e. Xk E ACg A $2, and V*(Xk) 
Vo, kEN, then 

lim l(Xk) ~ de(X) ~ I(X). 
k---~ oo 

For o~ = 0 this statement eoneerns sequences Zk(t ) -~ (z~ . . . . .  zT,), z(t) = 
(z 1 . . . . .  z"), t E [q, t2], Zk E ACg, z E BVC, and the conclusions are still valid. 

For ~ -~ n, this statement concerns sequences yk(t) = (y~ . . . . .  y~), y(t) = 
(yl, . . . ,  y~), t E [q, t2], y, Yk E ACg, and the problem reduces to those discussed in 
Theorem 10.8.i of  [5]. 

Remark 4. As for Theorem 1, condition (Q) cannot be replaced by the weaker 
condition (K), as the following example shows. This example is only a modifi- 

cation of  the one in Remark  1. Indeed, we take n = 1, Fo = 0 and Q(t) = 
((z ~ z ) : z ~  => O, z E Q(t)), where the sets Q(t) are defined in Remark 1. Then, 
for x, Xk as in Remark  1, we have x'k(t)E Q(t), but x'(t)~ Q(t), for tE C, a 
set of  positive measure. 

Proof  of  Theorem 1'. Without loss of  generality we can suppose that i = 
lira I(Xk) = lim I(xk) < § co, where i is finite because of (iii). Take Fk(t) = 

k - + +  oo k---> + oo 

Fo(t, yk(t), zk(t), y',(t), Z',(t)), t E [tl, t2], and note that for Fk(t) : F+(t) -- F~(t), 
IFk ( t ) I=F~++F~ -, F+,Fff  ~ O ,  we have O<=F[(t)<=12(t)l; hence 0 ~  

t2 t2 

f F;-(t)dt ~= f ]2(0[ dt. Since i is finite, we have that I (Xk)~  Wo for all 
t l  t l  

k and some constant Wo. Finally, 

t~ t2 t2 t2 

f IF~(t)l dt = f (F + + F ~ ) ( t ) d t =  f Fk ( t )d t+  2 f F~( t )d t  
I I  I I  I I  l l  

t2 

_<- Wo + 2 f 12(t)l at < + co. 
t t  

Let us consider the AC functions z~ t2]-+ R defined by z~  
t 

f Fo(r, Xk(r), x'k(r)) dr, k E N. Then z~ = 0 and 
II 

t2 t2 

V(z ~ = f IF~(t) l dt < Wo + 2 f IZ(t) l dt = V, 
t l  t l  

V a constant. By Helly's theorem there is a subsequence, say still (k), such that 
z~ --~ z~ pointwise everywhere in [tl, t2], with z ~ E BV, z ~ not necessarily 
continuous, and z~ = 0. Note that the functions (z ~ Xk)k~N are ACg solutions 
of  the orientor field 

0 '  (t, xk(t) ) E A, (Zk (t), x'k(t)) E Q(t, Xk(t)), a.e. in [ta, t2], (2) 

where Q ' A - - ~  R n+l is the set-valued function defined by (1). As an applica- 
tion of  Theorem 1 we now prove that the limit function (z ~ y, z ) =  (z ~ x) :  
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[t,, t2] --~ R n+l is again a solution of  the orientor field (2), i.e. 

(t, x(t)) E A, (z~ x'(t)) C Q(t, x(t)) a.e. in [tl, t2], 
o r  

(t, x(t)) E A, x '( t)  E Q(t, x(t)), z~ >= Fo(t, x(t), x'(t)) a.e. in [tl, t2]. 

Note that z~ ~ Fo(t) >= 2(0;  hence Fo(t, x(t), x'(t)) is summable in [tt, t2] 
because it lies between summable functions, and x: [t 1, t2] ~ R n is admissible. 
Finally, if  we take 

t 

Z~ : z~ --  f 2(T) dr,  t ~ [t~, t21, 
t l  

we see that Z~ is monotone non-decreasing in [t~., t2]; hence 

t2 

Z~ : Z~ --  Z~ : z~ --  f 2(0  dt 
t l  

t~ t 2 

= v(Z~ > f I z~ --  ~.(t) l at = f (z~ - 2(t)) dt 
t t  t t  

ta tz t2 

>= f ( F o ( t ) -  2 ( 0 ) d t  = f F o ( t ) d t -  f 2(0  dt. 
f l  It IX 

t2 

Hence z~ f Fo(t)dt,  and finally 
t t  

t2 

I(x) = f Fo(t) dt <= z~ = l im Zk0(t2) : l im l(x,). 
t l  k - §  oo k--~ + oo 

Theorem 1' is thereby proved. 
Theorem 1' has an important consequence concerning the concept of  integral 

J ( x )  defined at the beginning of  Section 3. Indeed, as long as we define J ( x )  by 
means of  sequences Xk = (.Vg, Zk) ~ ACg, k E N, with equibounded variation, 
then we can well say that J is an extension to BVC of  the functional I ,  in other 
words, if  x = (y, z), y, z both ACg, then J ( x )  ---- I(x). In fact, from Theorem 1' 
we have 1 I(x) ~= J ( x ) ,  b u t / ' ( x )  contains now the sequence of  repetitions xk = 
(y, z), k E N; hence J ( x )  ~ I(x), and finally I(x) = ~r 

3c. The existence theorem 

We now state and prove an existence theorem of the calculus of  variations 
for the integral ~ .  In other words we have to prove that J has an absolute mini- 
mum in $2. That  is we have to prove, under the assumptions that 

(a) the infimum i of  l (x)  in ACg • s is finite; hence there are minimizing se- 
quences xk = (Yk, Zk), k E N, in /'2, both Yk, Z~ E ACg, such that I(xk) --~ i; 

(b) for some subsequenee, say (k) again, and elements x -- (y, z) E ~2, y E ACg, 
z~  BVC, we have yk---~y uniformly, zk-+ z pointwise a.e. in [t~, t2]. 

1 This is not true, in general, if assumption (v) of Theorem 1' is dropped, as Ex- 
ample 3 below shows. 
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Since we shall assume that  there are such sequences x~ = Ok, zk) with equi- 
bounded  variations V(x~), then by Theorem 1' we know that I(x)  <= J ( x )  = i. 2 

To state and prove our  existence theorem, we denote by (71), (72), (73) the 
following alternative assumptions on the function Fo. 

(7~) There is a scalar function 4~(~), 0 ~ ~ < + ~ ,  or 4~ : R + -+ R, bounded 
below, with ~(r + cx~ as ~ --~ + co, such that  Fo(t, y, z, u, v) >= 
qS(Ju[) for  all ( t , y , z , u , v ) E M .  

(72) Fo r  any e > 0 there is an integrable scalar function ~,~(t) ~ 0, or 
W, : [fi, t2] -+ Ro +, such that  ] u] ~ ~o,(t) + eFo(t, y, z, u, v) for  all 
( t , y , z , u , v ) E  M.  

(Ta) For  every ~-vector p E R ~ there is an integrable scalar function 4~p(t) => 0, 
or % :  [q, t2] -+ R +, such that  Fo(t, y,  z, u, v) ~= (p,  u) - -  Cba(t) for  all 
( t , y , z , u , v ) E  M.  

Note  that  under  condit ion (70  certainly 4~(() > 2 for  some real constant  2, 
and then Fo(t ,y ,  z, u, v) ~ ~b([u[) ~ 2 for all ( t , y ,  z, u, v). Under  condit ion (72) 
and e =  1 we have lul <= ~o~(t) + Fo(t, y,  z, u, v); hence Fo(t ,y ,  z ,u,v)>= 
--~Pl(t) ,  a summable function in [t~, t2]. Under  condition (73) and p = 0, we 
have Fo(t, y, z, u, v) ~ --4~o(t), a summable function in [t~, t2]. 

Theorem 2 (An existence theorem). Let  1 ~ o; ~ n - -  1, and assume that (i) 

A is compact and M is closed; (ii) the sets Q(t, x)  are closed and convex and have 
property  (Q) with respect to (t, x)  at every point (t, x)  o f  A (with the exception perhaps 
o f  a set o f  points whose t-coordinate lies' on a set o f  measure zero on the t-axis); 
(iii) Fo(t, y,  z, u, v) is lower semicontinuous in M ;  (iv) Fo satisfies one o f  the growth 
conditions (71), or (72), or (73). Also we assume that the class g2 is nonempty and 
closed, and (v) there exists  a constant Wo such that f o r  every element x = (y ,  z) E 
ACg A .c2, then V*(z) <= Wo. 

Then the functional  J has an absolute minimum x = (y, z) in Q, y E ACg, 
z E BVC, and I(x)  ~ J ( x )  = i. 

For or = 0, then x -~ z, requirements (71), or alternatively (72), (73) do not 
apply, ye t  the conclusion is still valid i f  we know that (iv)' there is a summable scalar 

function 2 : [G, t2] ~ R such that Fo(t, z, ~) ~ 2(0  f o r  all (t, z, ~) E M.  

For o~ = n, then x = y,  [2 is a nonempty and closed class o f  ACg functions 
y ( t )  = (yX, . . . ,  y~), t E It1, t,], condition (v) does not apply, and the problem reduces 
essentially to those discussed in Theorems 11.1.i and ii o f  [5]. 

Note  that  the condit ion in (ii) concerning proper ty  (Q) for the sets Q(t, x), 

not  only implies that  the same sets Q(t, x) are closed and convex, but  also that  
their projections, the sets Q(t, x), also are convex, and that  Fo(t, y, z, u, v) is 
convex in (u, v). 

2 See Note 1. 
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Note that for 0 _< or _< n -- 1, if(v')  there are scalar functions 7)i E L~([tl, t2]), 
i = 0~ q- 1, . . . ,  n, such that (t, y, z, u, v) E M implies v ~ ~ ~oi(t ) a.e. in [h, t2], 
then (v) certainly holds. (Cf. part (g) of  proof  of  Theorem 2 below). 

Note that for 1 _< 0~ ~ n -- 1, the sets ()(t, x) closed and convex, and (~,~) 
holds, if (v") there are constants Li such that, a.e. in [h, t2], (t, y, z, u, v) E M 
implies v ~ ~ Li, i = 0~ -k 1, ..., n, then both (ii) and (v) hold. ( C f  part (h) of 
p roof  of  Theorem 2 below). 

Remark  5. I f  ~ = n, x = y, note that Theorems 1 I. 1,i, ii of  [5] are proved under 
weaker assumptions on the function Fo and definitively less information on the sets 

Q(t, x). In particular in Theorem 11.1.ii, under none of  the assumptions (~,~), (7'2), 

(Y3) is it needed to verify that the sets Q(t, x) have property (Q). Indeed, a differ- 
ent topology is used on the functions Yk, namely Yk ~ Y uniformly and y~ -+ y'  
weakly in L t. Then, in terms of the equivalence theorem ([5], Theorem 10.3.i; 

see also CV.SAR~ & PuccI  [7]), these sets Q(t, y) are shown to have augmented sets 

Q(t, y) which have property (Q) with respect to y, a.e. in t (see [5], p roof  of  Theo- 
rem 10.7.i.). 

Proof of  Theorem 2. Without loss of generality we can suppose that there 
is an element x E g2 such t ha t / ' ( x )  4= 0. Let i = i n f J ( x ) ;  then --  oo =< i <  + cx~. 

O 

Let ~k)k~N be a minimizing sequence, i.e. ,,r ~ i as k -+ oo. We divide the 
proof  into parts. 

(a) First note that we can find a sequence (Xk)k~N in ACg A s such that 
I(xl,) --~ i as k -+ o~. In order to see this, note that for every k E N, there is an 
integer nk such that IJ(~nk) --  il < ilk, and moreover (see Remark 2) there is 

a sequence (x~)n~ N in ACg A ~2 such that I(x~) --.'.. J ~ , k )  as n ~ oo. Thus, for  

every k E N, there is an integer ~ = ~(k) such that I I ( x ~ ) -  i[ < 2/k (or 

x(~) < k if  i =  - - ~ ) .  Let Xk = X~, k E N .  Then x k E A C g A  g2, and II(x~) --  i I 
< 2/k, k E N. Without loss of  generality we can suppose that xk is AC, k E iV, 
and, since A is compact, the sequence (x~)~eN, xk = (y~, zk), is equibounded. 

(b) By virtue of  hypothesis (V1), we prove, as in Theorem 10.4.i of [5] that the 
sequence (Yk)k~N is equi-absolutely continuous. Thus, V(.vk) ~ V1 for all k E N 
and some constant I11. Moreover, since (Yk)~N is equibounded, there is a subse- 
quence, say still (Yk)~N, such that Yk ~ Y uniformly in [h, tz], with y E AC. 

Moreover, the assumption (v) shows that V(zk) <= Wo for all k E N. Hence, 
by Helly's theorem (see [5], Theorem 15.1.i) there is a subsequence, say still 
(z~)kC N, such that zk(t)---~z(t ) pointwise everywhere in It1, t2] with zE BV, 
not necessarily continuous. 

(c) Now the function ~b in (Yl) is bounded below, say ~(~) => 2, 2 E R; hence 
Fk(t) = F(t, yk(t), zk(t), y'k(t), Z'k(t)) ~ 4'(1y~,(t)[) -->__ 2 for k E N  and tE [t,, t2]- 
Consequently, for Fg(t) = F+(t)  - -  FU(t), F~ ~ O, F + >= O, IF~(t)[ = F+(t)  + 
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F~-(t), we have F k ( t ) ~ 2  , Fk(t)=<12 [. S i n c e f  Fk(t)dt-->i as k - + o o ,  we 
tl. 

derive i >= 2(t2 --  q) ,  and thus i is finite. Without loss of  generality we can 
t2 

assume that f Fk(t) dt < i + 1 for all k E N, and then 
tj. 

t2 t2 t2 

f F+( t l d t=  f Fk(t)dt-- f F ; ( t l d t ~  i +  1 + I~1 - tO, 
t l  l~ tt 

t2 

f [Fk(t) I d t ~ i +  1 + 2 t 2  I ( t 2 -  t~). 
l l  

Let us consider now the AC functions Zk0: [q, t2]--~ R defined by z~ = 
t t2 

f Fo('C, Xk(~:), X'~(z)) dT, k E U. Then V(z ~ ----- f ]Fk(t)[ dt ~ i + 1 -~ 2 121 (t2 -- t,) 
t l  It 

---- V, k E N. Again, by Helly's theorem there is a subsequence, say still (z~ 
such that z~ z~ pointwise everywhere in [h, t2], with z~ BV (not ne- 
cessarily continuous). 

(d) Note that the functions (z ~ Xk)kE N a r e  AC solutions of  the orientor field 

(t, xk(t)) E A, (z~ Xk(t) ) E Q(t, Xk(t)), a.e. in [h, t2], where Q:  A -+ R "+1 is 

the set-valued function defined by Q(t, x) = {(r, () : (E  Q(t, x), r :> Fo(t, x, ~)) 
= epi Fo(t, x, ")/Q(t,x). By (ii) the sets (~(t, x) have property (Q) with respect to 
(t, x) in A, for a . e . t .  

(e) As an application of Theorem 1, we see that the limit function 
(z ~ y, z) = (z ~ x) : [t~, tz] ~ R "+1 is again a solution of  the orientor field 

(t, x(t)) E A, (z~ x'(t)) E Q(t, x(t)), a.e. in [tl, t2], i.e. (t, x(t)) E ,4, x'(t) E 
Q(t, x(t)), z~ >= F(t, x(t), x'(t)), a.e. in [q, t2]. Note that z~ >= Fo >= 2; 
hence Fo(t, x(t), x'(t)) is summable in Its, t2] and the function x : [q, t2] -+ R" is 
admissible. Since the class ~ is closed, we conclude that x E ~ .  

(f) Finally, by definition, (Xk)kE N E / ' ( x )  and i ~ J ( x )  ~ lim I ( X k )  = i, or 
J ( x )  ---- i and the proof  is complete, k - ~  

(g) Let us prove now that, for 0 ~ _ ~ n - -  1, A compact and property 
(v'), then V(zk) <= V2, k E N, for some constant V2. Indeed, since z k is AC, we 
have (writing z, for any of its components z~, i = o~ + 1, . . . ,  n), 

and 

t2 t2 

zk(tz) - zk(t l)  f '+ - = z k (t) dt f z'g-(t) dt 
tt t l  

t2 t2 

v ( ~ )  f '+ ' -  = z k (t) dt + f (t) dt. 
ti  t l  
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Thus, by condition (v'), we have 

t2 t2 

V(Zk) = 2 f Z'k--(t) dt § zk(t2) --  zk(h) ~= 2 f ~p-(t) dt q- diam A. 
It tl 

(h) Let us prove that, if 1 --~ or _~ n --  1, A compact, the sets Q(t, x) closed 
and convex, and (~L) and (v"), then not only (v) but also (ii) holds, that is, the sets 

0(t ,  x) have property (Q) with respect to (t, x). Indeed, we have Fo(t, x, u, v) ~= 
~(lui), v~>=Z~, i = ~ + l , . . . , n ,  for all (t, x, u, v) E M, and by virtue of  
Theorem 10.5.ii (second version) of [5] (with the variable x replaced by (t, x)), 
the thesis follows. 

Remark 6. The hypothesis (v) can be replaced by the weaker assumption (v"') 
the level sets LK ---- {x = (y, z) E ACg/~ .62 : l(x) ~ K) are equibounded in 
variation. In fact, as can be seen by the proof, we use condition (v) only to guaran- 
tee that every minimizing sequence of  ACg curves x --- (y, z) is equibounded in 
variation. 

We shall illustrate now three situations in which even condition (v'") can be 
dropped. 

a) Let F 0: R ~ R + be a convex function then F 0 is the least upper bound of its 
support straight lines, i.e. 

F o ( v )  = s u p  :  0(w) = aw + b < Fo(w), w E R). 

Thus, either Fo(v) = const, and then Theorem 2 is trivial, or  Fo(v) >= av § b, 
v E R, a =~ 0. But in this last case, it is easy to see that every minimizing sequence 
of  AC curves is equibounded in variation. 

b) Let consider now an integrand Fo which does not depend on the variable z 
and does satisfy the condition 

Iv1 ] ~ [v21 implies Fo(t, vl) ~ Fo(t, v2). 

Then condition (v"') in Theorem 2 can be omitted, provided we suppose that the 
sets Q(t,x) are such that if v E Q ( t , x )  and ] w l < l v ] ,  then wEQ( t ,x ) .  In 
fact, in the present case, we can find a minimizing sequence of  AC curves with 
equibounded variation. In order to see this, given any sequence of  AC curves 
such that I(zk) --~ i as k--~ q- oo, it is sufficient to alter the sequence (zk)k~N 
in the following way. For  simplicity we write Zk for any of  its components z~, 
i = 1 . . . . .  n. Let us suppose first that zk(h) < zk(t2), take 

----- max (t E [h, t2]" zk(t) = z~(tl)), 7 ---- min (t E [7, t2] : Z k ( t )  = 2k(t2)} 
and 

[ zz,(t~), t E [tl, 7], 

~,~(t) = ~ max (Zk(T), Z E [7, t]}, t E [t, t] ,  (3) 

I [ z (tg, t E [?, t2]. 
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I f  z , ( t l )  > z , ( t2) ,  we define ~g analogously by substituting min for max in (3). 
Finally, if z , ( t l )  = z~(t2), we take ~k(t) = z~(t,), t E [h, t2]. Observe that, in 
any case, ~ is again AC and moreover it is monotone and ]-Zk(t)[<=[z'k(t)[, 
a.e. in [h, t2]. Therefore V ~ )  ~ diam A, k E N, and, by virtue of the assump- 
tion on the integrand F, we have I(~k) =< I(z~), k E N.  This proves that ~k)~CN 
is still a minimizing sequence. 

c) Let Fo(t, z, v) : M--> R § subjected to the growth condition Fo(t, z, v) > 
a [v[ q-b(t) ,  with a > 0 and b E L ~ .  In this case condition (v'") is trivially 
satisfied. 

R e m a r k  6'.  Note that we may drop the requirement that A be bounded if 
we know that there is a minimizing sequence x k = (Yk, Zk), Yk, zk E AC, with 
I(Xk)---> i, which is equibounded. Thus the assumptions "A compact and (v)" 
can be replaced by the weaker conditions: A closed and 
(v') the level sets L r  = (x  = (y, z) E ACg A / 2  : I (x)  <= K} are bounded in the 

norm l[x][ = [Xe(tl)[ q- V*(x), where X e ( t l ) =  l imessx(t) .  
t-~t s 

R e m a r k  7. Note that we consider the infimum i of I (x)  in the class ACg A / 2  
and we prove in Theorem 2 under the hypotheses that there is some element 
x = (y, z) in /2, y EACg, z E BVC, and some sequence Xk = (Yk, Z~), Yk, 
zg E ACg, k E N, in /2 with I(xk)  -+ i, and I (x)  ~ J ( x )  = i. 

In other words, under the assumptions of Theorem 2, the infimum i is attained 
by dr, or dr(x) = i, while I (x)  may have a value equal to or less than i. In Ex- 
amples 4 and 5 below , I ( x ) =  d r ( x ) =  i. However, it may well happen that 
I (x )  < dr(x) = i as Example i below shows. Note that if we denote by io the 
infimum of  I (x )  in the class/2, then ACg A / 2  C /2 ;  hence io ~ i. We shall see 
in Example 2 below that possibly io < i, and that both can be attained, say 
I (x )  = io and I(~) ~ dr(2) = i, possibly by different x, ~ E/2. Also note that 
for 2 optimal for dr under the assumptions of the present paper, we certainly have 
io =< I(.~) < dr(~)= i. 

E x a m p l e  1. Let us show that, if i is the infimum of  I (x )  in ACg A / 2  (and 
therefore the infimum of  dr(x) in /2), and x E s is a minimizing element, then 
it may happen that l ( x )  < dr(x) = i. 

Let us consider the problem of minimizing the length of the plane curves 
z 1 = z l ( t ) ,  z 2 = z2(t), 0 _< t --< 1, joining two given points, say (0, 0) and (1, 1), 
o r  

1 
I (x)  = f [(zr(t))2 + (z2"(t))2] 1/2 dt ,  

0 

ZI(0)  = 0, z2(O)  : O, ZI(1)  = 1, z2 ( l )  : 1. 

Here, for z 1, z 2 E AC, the infimum of I is i = I/2 -, and this infimum is attained 
not only by the obvious solution z~(t) = z2(t) = t, 0 --< t --< 1, but also by the 
infinitely many solutions z l ( t ) = z Z ( t ) = ~ ( t ) ,  0_< t_< 1, ~EAC,  monotone 
nondecreasing with ~ (0 )=  0, ~ (1 )=  1; hence z l ( 0 ) =  0, z2 (0 )=  0, z l ( 1 ) =  1, 
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z2(1) = 1, and 
1 1 

Z(z) = I/2 f I S ' l d t  = I/~ f ~' dt = 1/2 = i. 
0 0 

On the o ther  hand,  let us consider the usual te rnary  Can to r  funct ion 9 (0 ,  0 
t ~ 1, 9(0) = 0, 9(1) = 1, cont inuous,  m o n o t o n e  non  decreasing, with deriva- 
tive zero a.e. in [0, 1], 9 BV and not  AC.  Let  ~ ( t ) ,  0 _< t ~ 1, k E  N, "be a se- 
quence o f  m o n o t o n e  nondecreasing A C  approx imat ions  of  9 with ~:~(0) = 0, 
~:t,(1) = I, and ~ek---~ 9 uni formly  in [0, 1]. N o w  we take the sequence o f  A C  
funct ions Zlk(t) = z2(t) = ~k(t), 0 ~ t --< I, k E N. F o r  zk = (z 1, z 2) : (~l,, ~k), 
z = (z 1, z 2) = (9, ~P), we have  

1 1 

I(zk) = r f I~,(t)l  d t =  r  f ~'k(t)dt = r 
0 0 

zk ~ z, i.e. z], ~ z 1, z 2 ~ z 2 uni formly;  hence pointwise in [0, 1] 

I(zk)---> i =  CY. 

Thus,  in the terms o f  the beginning o f  Section 3, J(~0) = i = ]/2,, I(q0 = 0; hence 
1(9) < or = i. 

Example 2. Suppose  

A = [0, l]2{5{(t,x)ER2: t - - � 8 9  t + � 8 9  = R,n =- I, 

and  let Fo(v): R ~ R be defined by  Fo(v)= [v [. In  this case (see R e m a r k  2) 
the funct ional  J is the generalized variat ion.  Let  9 ( 0  : [0, 1] --~ [0, 1] be the usual  
te rnary  Can to r  function.  Then  9 is cont inuous,  BV and no t  ACg,  with 9 ' ( 0  ---- 0, 
a.e. in [0, 1], and  graph  9 Q A. Thus  1(9 ) = 0, i.e.; i f  io denotes  the inf imum 
o f  I(x) in s then  1(9 ) ---- io = 0. On the other  hand,  if  i denotes  the in f imum 
o f  I(x) in A C g  F~ g2 then by  Theo rem 2, J also at tains its inf imum at  some 
minimizing e lement  2"E ~ ,  and J ( ~ ) =  i. Certainly i >  0 (hence i >  i0), 
since i = 0 would  imply ~ ' ( t ) =  0 a.e., 7 (0  = const,  a.e., and this is not  possible  
given the shape o f  the set A. I t  is easy to see that  i = 2/3 and that  a minimizing 
e lement  is 7 ( 0 = 0  for  0 - - < t ~ l / 3 , 2 ( t ) = t - - 1 / 3  for  1 / 3 < t = < 1 ,  with 
I ~ )  = J ( 2 )  = 2/3. No te  tha t  i f  we consider  the same p rob lem with b o u n d a r y  
da ta  z(0) = 0, ---- z(1) = 1, then 9 satisfies the same da t a ;h  ence 1(9 ) = io = 0 
as before.  On the other  hand,  it is easy to see tha t  the new inf imum is now i ---- 1, 
and  that  a minimizing element  is ~,(t) = 0 for  0 ~ t --< 1/3, ~(t) ----- t - -  �89 for  
1/3 t < 1, 7(1 - -  0) = 2/3, 7(I)  = 1 with a j u m p  o f  1/3 at  t =- 1, and or = 1 = i, 
1~)  = 2/3 and  again  I(~) < J ~ )  ---- 1 as in Example  1. Thus  0 = i 0 = 1(9 ) < 
I ~ )  ,< J ( 7 )  ---- i ---- 1. 

Example 3. We show here an example  in which occurs the " n o n  na tu ra l "  

s i tuat ion i = J ( x )  < l(x). In this example  A is compact ,  bu t  the sets (~ do no t  
have the p roper ty  (Q), and for  a minimizing sequence o f  A C  funct ions xk = (Yk, z~), 
k E N, the total  var ia t ions  V*(zk) are not  equibounded,  and the sequence z~,, kE N, 
is not  equ ibounded  below. 
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Let  A ---- [0, 2z~] • [--  1, 1] 2, Q(t, X) = R 2, (t, x) E A,  and let Fo(z, v) : 
[ - - 1 , 1 1 2 X R 2 - +  R + be defined by 

Fo(zl,  z2, vl, v2) ---- exp [zlv 2 - -  zzvl) .  

We consider  now the sequence (z~)k~ N given by 

z~(t) = r k sin kt, z~(t) = r k cos kt, 0 <_ t <_ 2~, k E N ,  

where r~ = k -113. Note  that  z~'(t) = rkk cos kt, z~'(t) -~ --rkk sin kt, and 
1 2, 2 r --r~k - - k  1/3 -)- - - o o .  Therefore  we have 

Z k Z  k - -  Z k Z  k = = 

2 n  

0 ~ de(Zk) ~ l(Zk) =- f Fo(Zk(t), Z'k(t)) dt = 2z~ exp ( - - k  1/3) -+  0, 
0 

as K ~  oo. Thus  i = 0. Note  that  V(z~) = V(z 2) = 4rkk = 4k 2/3 --+ + 
as k - + e o .  Since rk---~0 as k - -~oo ,  i f w e t a k e  z----(zl ,  z 2) with z l ( t ) = z Z ( t )  
= 0, t E It1, t2], then z is A C  in [0, 2z~] and zg -+  z uniformly,  hence de(z) = O. 

2z~ 

But  I(z) = f exp (0) dt = 2:r > 0. Moreover ,  for  every z C BVC we certainly 
have  o 

2n 

I(z) --- f exp (zl(t) z'2(t) - -  zz(t) z'l(t) ) dt > O. 
0 

We shall give now two examples  which illustrate Theorem 2 and show that,  
in general,  the m i n i m u m  of  de is at tained by a BVC function, not  necessarily 
ACg.  

Example4 .  Let  A - -  [0, 2] • [0,1],  n =  1, c~----0, ~ ( t ) = 0 .  Q ( t , x ) =  
[0, + oo) for  (t, x) E A,  M = A • [0, q- oo), with boundary  conditions x(0) = 0, 
x(2) = 1. Le t  Fo(t, v) be defined by Fo(t, v) ---- I1 - -  t I [vl for  (t, v)~ M. Thus  
the funct ional  J ( x )  is nonnegative.  Note  that,  for  the sequence zk : [0, 2] -+  R, 
k E N ,  defined by  zk(t ) = 0  for  t 6 [ 0 , 1 - -  I /k] ;  Zk(t ) =  1 for  t e l l ,  2], 
Zk( t )=  1 - - k + k t  for  t 6 ( 1 - - 1 / k ,  1), we have 

1 

0 ~ de(Zk) = I(zk) = f (1 - -  t) k dt = 1/2k -+ 0 as k -+  oo.  
1-11/~ 

Thus  the inf imum i o f  de is zero, and z k is a minimizing sequence. The min imum 
is a t ta ined by  the discont inuous funct ion z : [0, 2] -+  R defined by z(t)  ---- 0 for  
tE  [0, 1), z(t)  = 1 for  tE  [1, 2]. In  other  words  I(z) ---- J ( z )  = O. 

ExampleS .  Let  A = [ - - 1 , 1 ]  • [0,1],  n = l ,  0 ~ = 0 ,  ~ o ( t ) = 0 ,  Q ( t , x ) =  
[--1, + ~ ) , M =  A •  + o o ) ,  F o ( t , v ) =  i t i v  2, Fo>=O. with boundary  
condit ions x ( - -  1) - -  0, x(1) = 1. The  functional  de(z) is nonnegative.  Note  that  
for  the sequence z k : [-- 1, 1 ] -+ R, k E N, defined by  Zk(t ) = 0 for  t E [--  1, 1/k]; 
Zk(t) = ( logk)  -1 log t + 1, for  tE  (1/k, 1], we have 

1 
0 ~= de(Zk) = I(zk) = f (log k ) -2 / t  dt = (log k ) -  1 ~ 0 as k -+  oo.  

I l k  
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Thus the infimum i of  or is zero and (Zk)kE N is a minimizing sequence. The mini- 
mum is attained by the discontinuous function z : [-- 1, 1] --,'- R, defined by z(t) = 
0 f o r  t E l - - I , 0 ] ,  z ( t ) = l  for tE (0 ,1 ] .  In other words, I ( z ) = J ( z ) = i .  For  
this example cf. [5], Section 1.1, no. 4. 

4. An existence theorem for problems of optimal control 

As above, let o~, n, 0 _< o~ <: n, be given integers and, for every x E R ", let 
x = (y, z) with y E R ~ and z E R ~-~. Let A be a compact subset of  the (t, x)- 
space such that its projection onto the t-axis contains the fixed interval [t~, t2]. 
Let U(t, x), (t, x) E A, U(t, x) C R m, or U: A ---> R m be a given set-valued func- 
tion and let 3'/o denote the set 

Mo = ((t, x, w) : (t, x) E A, w E U(t, x)} C R l+"+m. 

Let fo(t, x, w),f(t, x, w) = (fl . . . .  ,fn) be given functions defined on Mo C Rl +n+m. 
Let/20 be a class of  admissible systems (y(t), z(t), w(t)), t E [tx, t2], i.e. functions 
x(t) -= (y(t), z(t)), or x : It1, t2] ---> R n, w : [ta, t2] -+ R m, such that (i) y E ACg, 
z E BVC, w is measurable; (ii) (t, y(t), z(t)) E A, w(t) E U(t, y(t), z(t)), a.e. in 
[q, t21; (iii) x'(t) = f ( t ,  x(t), w(t)), a.e. in [tl, t2], fo(', x(.), w(')) E LI([q,  t2]). 

We consider the functional J o : / 2 0  -+ R defined by 

t2 

Jo(X) = ~'o(Y, z) = inf lim f fo(t, yk(t), zk(t), Wk(t)) at 
to(x) k ' - ~  t~ 

= inf lim Io(Yk, z~, Wk) , 
/'o(X) k'W-~ 

where Fo(X) denotes the class of  all sequences (x,, Wk)k~N in /20 such that (a) 
Xk = (Yk, Zk) E ACg, k E N; (b) Yk -+ Y uniformly and z k --+ z pointwise a.e. in 
[tt, t2]. If  Fo(X) = 0 we take Jo(X) : + ~ .  The class/20 is said to be closed 
if  it has the following property (c): If  (Yk, Zk, Wk)k~N is a sequence of admissible 
systems, all in/20, satisfying (a) and (b), and if there exists a measurable w such 
that (y, z, w) is an admissible system, then (y, z, w) belongs to /20. 

Note that, if  the problem of  minimizing the functional above involves given 
initial or terminal values for x, say x(tl) E BI, x(t2) E B2, then we will proceed 
as illustrated in Remark 2 of  Section 3. 

It is well known (see [5], Section 1.13) that the problem of  optimal control 
described above can be deparametrized, and essentially reduced to a problem 
of calculus of variations as discussed in Section 3. For  every (t, x) E A let Q(t, x) 
denote the set 

Q(t, x) = {~ E R" : ~ = f( t ,  x, w), w E U(t, x)}, 

and take 

M = ((t, x, OE R 2n+I: (t, x)E A, (E  Q(t, x)}. 
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Let Fo(t, x, r denote the scalar function defined on M by taking 

Fo(t, x, r = inf (z ~ E R; z ~ >= fo(t, x, w), ~ = f ( t ,  x, w), w E U(t, x)).  (1) 

If  for some ~ the set in brackets is empty, we take Fo = -t- ~ .  If in (1) inf is 
actually a minimum for all (t, x, ~) E M, then we may replace the problem of 
optimal control with the problem of the calculus of variations studied in Section 3, 
concerning the integral functional ~r relative to the integrand Fo, with constraints 
(t, x( t))  E A, x ' ( t )  E Q(t, x(t)) ,  a.e. in [h, t2] , and where x = (y, z), yE  ACg, 
z E BVC. We will apply Theorem 2 of  Section 3 to the present problem of  the 
calculus of variations. Of course, we shall assume that the sets Q(t, x) are non- 
empty and convex and that the scalar function Fo(t, x, ~) is lower semicontinuous 
in (t, x, r and convex in ~. Moreover, once we have a solution x = (y, z) of  the 
deparametrized problem, or problem of the calculus of  variations, we shall need 
to know that there exists some measurable function w(t), or w:[ t l ,  t2]--~ R m 
such that 

w(t)E U(t, x(t)) ,  fo(t ,  x(t),  w(t)) = Fo(t, x(t),  x ' ( t ) ) , f ( t ,  x(t),  w(t)) = x'(t),  

a.e. in [h, t2]. 
(2) 

This is a consequence of the implicit function theorems. For  instance, i ffo and f a r e  
continuous on the closed set Mo, then the existence of a measurable w(t) satisfying 
(2) follows from the McShane-Warfield implicit function theorem ([5], Theorem 
8.2.iii). In [5], Sections 8.2., 8.3, a great many situations are depicted for which 
some implicit function theorem applies. Concerning the n-vector function 

f ( t ,  x, w) = (fl  . . . . .  fn), we write j~ = (fa . . . . .  f~) and j~ = (f~+l . . . . .  fn). We 
shall need the following alternative assumptions: 

(g~) There is a scalar function 95(~), 0 ~ ~ < + oo, or 95 : Ro -+ R bounded 

below, such that 95(~)/ff -+ -t- ~ ,  as ~ -~- § co, and fo(t, x, w) ~ 95([J~(t, x, w)1) 
for all (t, x, w) E Mo. 

(g2) For  every e > 0 there is a summable scalar function ~0,(t)~ 0 such 

that Ijq(t, x, w)[ ~ ~o,(t) -/- efo(t, x, w) for all (t, x, w) E Mo. 
(ga) For  any o~-vector p E R ~ there is a summable scalar function 95p(t) ~ 0, 

such that fo(t, x, w) ~ (p, fL(t, x, w)) -- 95p(t), for all (t, x, w) E Mo. 
Note that, under condition (gl), certainly 95(~)=> 2 for some real constant 

2, and then fo(t, x, w) >= 95([f~(t, x, w)l) => 2 for all (t, x, w) E Mo. Under con- 
dition (gz) and e = I, we have 1711 < ~o~(t) +No(t, x, w); hence fo(t, x, w) 
- -wj( t ) ,  a summable function. Under condition (g3) and p = 0. we have fo(t, x. w) 
~--95o(t), a summable function. 

Theorem 3 (An existence theorem for problems of Optimal Control). Let  
1 ~ o~ ~ n -- 1, and assume that (i) A is compact and Mo is closed; (ii) the sets 

Q(t, x) are closed, convex and satisfy property (Q) with respect to (t, x) at every 
point (t,x) o f  A (with the exception perhaps o f  a set o f  points whose t-coordinate 
lies on a set o f  measure zero on the t-axis); (iii) the functions f and fo are continuous 
and satisfy one o f  the growth conditions (gl), (g2), (g3). Also we assume that 



Simple Integrals of  the Calculus of Variations 327 

the class s 0 is nonempty and closed, and (iv) there is a constant Wo such that 
f o r  every element x ---- 0 ' ,  z) E s A ACg,  then V*(z) <: Wo. Then the functional 
J o  has an absolute minimum x = (y, z) in g'2 o. 

For o~ = 0, then x ~ z, the requirements (gO or (g2) or (g3) do not apply, 
ye t  the conclusion is still valid i f  we know that (iii') there is a summable scalar func- 
tion 2 : [tt, t2] ~ R such that fo(t, x, w) ~ 2(0 ,  f o r  all (t, x, w) E Mo. 

For o~ : n, then x : y, s is a nonempty and closed class o f  ACg func t i ons  
y( t )  : (yl,  . . . ,  y~), t E [tl. t2]  condition (iv) does not apply, and the problem 
reduces essentially to those discussed in Theorems 11.4.i. and ii o f  [5]. 

Statement 3 is a corollary o f  Theorem 2. 
Note  that  for  0 --< 0~ ~ n - -  1, if(iv ')  there are scalar functions ~v i ~ L l ([ t t .  t2], 

i : ~ + 1 . . . .  , n, such that  (t, y, z, u, v) C Mo implies v i >= ~oi(t ) a.e. in [t~, t2], 
then (iv) certainly holds. 

No te  that, for  1 _< 0~ _< n - -  1, the sets (~(t, x) are closed and convex, (gl) 
holds, and i f ( iv")  there exist constants L / s u c h  that  a.e. in Its, t2], ( t ,y ,  z, u, v) E Mo 
implies v i ~  Li, i = o~ + 1, . . . ,  n, then both (ii) and (iv) hold. 

See also Remarks  6 and 6'. 
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