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Inclusion Theorems for Absolutely 2-Summing Maps* 
ED DtmINSKY and M. S. RAMANtlJAN 

1. Introduction 

The concept of absolutely p-summing (absolutely /P-summing) maps 
between Banach spaces was introduced in [4] and it was shown there that each 
such map is continuous and is absolutely q-summing if q > p. Using suitably 
restricted K/Sthe sequence spaces 2, the notion of absolutely 2-summing maps 
was introduced and studied in I-6]. In this paper we study absolutely 2-summing 
maps for arbitrary normal sequence spaces 2 and consider, for two spaces 2 
and p, the relationship between the set of absolutely 2-summing maps and the 
set of absolutely #-summing maps. We obtain in Section 3 the main result 
which gives a sufficient condition for an inclusion relation to hold. In Section 4 
we apply the above result to pairs of sequence spaces which are echelon spaces 
and in Section 5 we consider pairs of power series spaces of finite or infinite 
type. Since the absolutely /°%summing maps are precisely the continuous 
linear maps we are also able to study the relation between absolutely 2-summing 
maps and continuous linear maps. In Section 6 we show that given 2, either 
every absolutely 2-summing map is continuous or every linear map is abso- 
lutely 2-summing. 

2. Def'mitions and Preliminary Results 

All the notations and terminologies not explained below are as in [3]. 
Throughout the paper the sequence spaces 2 considered are assumed to be 
normal and unless otherwise stated, equipped with the topology ~b(2 ×). 

A sequence space 2 is called a step provided that it is perfect, that 2[~b(2 ×)] 
is a Banach space and that 11 C 2 C l °°. In [2] it is observed that a perfect sequence 
space 2 is a step if and only if 2 × is a step. 

Suppose 2, # are sequence spaces. We define 

2. # = {(x,y,) : (x,) ~ 2, (y,) e #}. 

Let (2k) be a sequence of steps and (a k) a sequence of sequences such that 

i) 0 < a k < ~  +1 fo raUi ,  k, 

1 2 1 ii) ~ k + 1 £ ~ 2k for all k. 
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preparation of this paper. Support from the Goethe Universitlit (to E.D.) and from the Humboldt 
Stiftung (to M.S.R.) is gratefully acknowledged. 
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! 4  Under these conditions (a k, 40 is called an echelon system and 4 = N ak k 

is called the corresponding echelon space. It is shown in [2] that 4 is a perfect 
sequence space, that 4 ×= Uak4~ and that 4 [Zb(4×)] is a Fr6chet space. 

k 
If 4 and # are sequence spaces we shall denote by D ~u, 4) the set of diagonal 

matrices carrying # into 2. We shall frequently use the following result of 
Crofts [1]. 

Proposition A. D (#, 2) C (4 × • #)× a n d / f  4 is perfect we obtain equality. 

Consider now a normed linear space E. Let 4 be a fixed sequence space. 
We define 4 (E) = {(x~): x, e E for each n and ((x~, a)) e 4 for each a ~ E'} and 
4 I-El = {(xn) : x~ ~ E for each n and (LI x~ II) ~ 2}. 

Let E and F be two normed linear spaces and T be a linear map on E into F. 
T is said to be absolutely 4-summing if for each x = (xn)e 4 (E), the sequence 
Tx = (Tx~) ~ 4 IF].  We emphasise here that in the definition above we have not 
required T to be continuous; in fact, in Section 6 of this paper we discuss 
discontinuous absolutely 4-summing maps. 

The absolutely/m-summing maps are precisely the continuous linear maps 
whereas the absolutely ~o-summing maps are exactly the linear maps (between 
the specified normed spaces). When 4 = I p we shall use the terminology "abso- 
lutely p-summing map" to conform with that notion introduced by Pietsch [4] 
and when 4 = 11 we shall simply say "absolutely summing", again to conform 
to standard practice. 

It is now easy to see that if d = (dr) and d n > 0 for each n then Tis absolutely 
4-summing if and only if Tis absolutely (d- 4)-summing. 

Suppose J is an infinite subsequence of N and x is a sequence. We define 
xj  = (x~)~j and 4j = {xj: x ~ 4}. 

Throughout  the paper the sequence space v is used exclusively to denote 
(4 ×. #)×. It now follows from Proposition A that v = D (#, 4) = D(4 × , #×)whenever 
4 is perfect. 

3. Main Result 

Let E and F be two arbitrary normed spaces and 2 and # be two normal 
sequence spaces. A natural question is: under what conditions is every abso- 
lutely ;~-summing map an absolutely #-summing map? In this section we prove 
a sufficient condition ensuring the above and provide examples to which the 
result is applicable. Further applications of this result are contained in the 
next two sections. 

Theorem. I f  (v. 2 ×)× C # and v. # C 2 then for arbitrary normed spaces E and 
F each absolutely 2-summing map on E into F is absolutely #-summing. 

Proof. Let T be absolutely 2-summing on E into F. Let (x~)e # (E). Let 
be the sequence defined by ~n = II Txnll. Then for each ~t e v and a e E' we have 

((~x~,  a))  = ~. ((x~, a))n ~ v. # C 2. 
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Since T is absolutely  2 - summing  it follows that  lal .  ¢ =(11 T(~,x,) l[)~ 2 and  

since 2 is normal ,  ~.  ~ e 2. Thus  ~ e D (v, 2) and therefore, by Propos i t ion  A, 
~ (v. 2×)×C/~, i.e., (11Tx, II) e ~. Thus  T i s  absolute ly  #-summing.  I 

We list below some  simple specific examples  to which the t heo rem is 
applicable. 

1. Let  l < p < q < o o  and 1 _ 1 + - - . 1  I f 2 = l  p and  # = / ~  then by the 
p q r 

HSlder  inequali ty 

v = l  r, ( v . 2 × ) × = l  q and  v . # = l  p 

so that  I p ( I  q implies tha t  each absolutely p - summing  m a p  is absolutely  q- 
summing.  It  may  be considered that  we have obta ined  a somewhat  s imple 
p roof  of  this known  result  ([4], p. 335). 

2. If  2 = 11 and # is any perfect space then  

v = #  ×, ( v . 2 × ) × = v × = #  and  v . g = / ~ × . / I c l l = 2  

so that,  by the theorem,  every absolutely summing  m a p  is absolutely  #-summing.  
3. I f  2 = l ~ and # = ~b then 

v = c o ,  ( v - 2 × ) × = c b = #  and v - p = q S C 2  

and consequent ly  every cont inuous  linear m a p  on E into F is absolutely  
q~-summing. Actual ly we shall see in § 6, Example  8, tha t  more  is true. 

4. I f  2 = co then the second condi t ion of the t heo rem is satisfied but  v = co 
so (v. 2×) × = (co. qS) × = co so the first condi t ion of the t heo rem is satisfied if and  
only if # = co. 

5. If  2 = p is perfect then v = (2 × • 2) × so that  (v- 2 ×) × = ((2 × • 2) × • 2 ×) × 
C2 ×× = 2 ;  also, by Propos i t ion  A, v = D ( 2 , 2 )  so v - 2 C 2  and the condi t ions 
of the theorem are satisfied. However  if 2 = # = c o then v = l ~ and v./~ = 2  
b u t ( v - 2  ×) × = l  ~ ¢ c  o = # .  

Since 2 = # it now follows tha t  the converse  of  the t heo rem is false. We  shall 
see later (§ 6) that  the converse  is false even if one assumes tha t  2 and /~  are 
perfect. 

P rob l em 1. If  2 and p are perfect and if I x ( 2 C # £ I ~ does it follow tha t  for 
arbi t rary  Banach  spaces E and F every absolutely 2 - summing  m a p  is abso-  
lu te ly/~-summing? 

We shall see (§ 5, R e m a r k  after Propos i t ion  10) tha t  the answer  is negat ive 
if we do  not  assume tha t  l ~ C 2, # C l ~. 

We now give a few simple appl ica t ions  of the preceding considerat ions.  

Corol lary 1. For any perfect space 2 every absolutely summin9 map is 
absolutely 2-summin 9. 

Corollary 2. Let 2 be a perfect sequence space such that not every nuclear 
space is 2-nuclear 1. 7hen there is no positive integer n such that if T1, T2 . . . . .  T~ 

1 For definitions and examples of this situation see 1"7]. 
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are absolutely A-summing operators on 12 then the composi t ion T =  T 1 T 2 . . . .  , T, 
is A-nuclear. 

Proof.  Consider such a A and let E be a locally convex space which is nuclear 
but not A-nuclear. Then there exists a fundamental system ~ of neighbourhoods 
of zero in E such that if V~ ~/ then there exists a We q/such that W-< V,/~v and 
/~w are isomorphic to 12 and the canonical map/~w~/~v is absolutely summing; 
by Corollary 1, it is then absolutely A-summing. Now if the product of each n 
absolutely A-summing maps in 12 were A-nuclear then given Vwe could apply 
the above considerations n times to obtain U e ~d such that U~( V and the 
canonical map/~v ~/~v was A-nuclear. But this would imply that E is A-nuclear 
which is false. I 

4. Echelon Spaces of Fixed Order 

In this section we apply the main result to echelon spaces A and # of (the 
same) fixed order; we obtain a sufficient condition for the hypotheses of the 
main theorem to be satisfied. We present cases of A in which each continuous 
linear map is absolutely A-summing and also cases where continuous linear 
maps are not necessarily absolutely A-summing. 

Suppose l is a step and a = (ak)k. We consider the echelon space A (a, l) 
1 

Recall ([2], p. 189) that [A (a,/)]x= U a k l  ×. 
k 

L e m a  1. I f  I is a step then D (l, l) = 1% 

Proof.  Since l, being a step, is normal, l ~ C D (t, l). Conversely, since l 1 C t C l ~ 
we have 

D (l, l) z O (ll, l~) = l ~ . II 

Throughout the rest of this section we let A = A (a,/) and p = A (b,/) be two 
echelon spaces of order 1 and since 2 and/z are perfect it follows from Proposi- 
tion A that 

v = (2 ×, #)× = D (g, 2) = D (2 ×, g×). 

Iasmna 2. v= N 0 ~-1 °° . 
k=l  j = l  a 

°° O bi ® A×. Proof.  Let z E k01 j = 1 ~ l and take u ~ Then there exists a k such that 

u E akl × and so we have some j with akze/9P °. Hence 

U l× = z . u = ak z - d  ~ b l  l® . b i  l ~ c l :  
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and therefore z e v. Conversely, suppose that z e v. Then we have ([1], p. 67) 
that the map z:2 × [Zb(2)] ~ #× [Zb~)] is continuous, so it maps bounded sets 
into bounded sets. Applying now the characterization of bounded sets in a 
co-echelon space ([2], Theorem 2, ii)) it follows that for each k, there exists a 

z a ~ x  l×<M.  j and M > 0 such that if x is in the unit ball of 1 × then This 

implies that z ~ .  l × C l ×. Thus z . a k e b i D (1 ×, l ×) = b t D (l, l) = td l  °°. Thus we 

have shown that for each k there exists j such that z. a k e/r  / l ~° and this implies 

that z e  (~ 0 l% II 
k = l j = l  

Proposition 1. v. # C 2. 

Proof is immediate from Proposition A since/~ is perfect. II 

Definition 1. If 2 = A (a,/) and/~ = A (b,/) we say that b dominates a if for 
each Jo there exists a ko such that for each k ~ k0 there exists a j such that 
a k b i° e a k° b j 1% 

As we shall see in the next section, this condition is not related by implica- 
tion to the condition ;t C #. 

Proposition 2. I f  b dominates a then (v . 2 ×) 3 #× and hence every absolutely 
2-summing map is absolutely #-summing. Moreover  i f  l = 11 then b dominates a i f  
and only i f  (v . 2 ×) 3 I~ ×. 

Proof. Suppose b dominates a and let v e p×. Then we have Jo such that 
v e b j° l ×. For thisjo we have a k o as in Definition 1. Now for k > k o there exists j 
such that 

b jo t9 
a~O e ~ - I  ®. 

But this shows, along with the fact that for k < ko we have 13 ~ l, that 

bJo & ® ~ bJ b ~o co* k_ .o,o,N U /~=,0_1 ,  =~1 --~- l~° = v and sO v ~  - - a k ° l × C v . 2  × . a k  ° 

Thus we have shown that #× C (v. 2 ×) and since # is perfect we have (v. 2×) × ( #. 
This, along with Proposition 1, permits the application of the theorem and the 
assertion that each absolutely 2-summing map is absolutely #-summing. 

Finally, suppose that l = 11 and (v- 2 ~) ) #×. Choose anyjo. Then b/° ~ b/°. l ~° 

0 ° =/~°- l×C#×Cv-2  ~ so that b ioev -2×=v  - akl~= Ua%- 
k = l  k = l  

Hence there exists k o such tha t /d  ° E a ~° v and by Lemma 2 we have 

v --'-- k 0  l°° ak° 1 j = 1 
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so that for each k there exists j with akb j° ~ ak°l;l ~° and this means that b domi- 
nates a. | 

Problem 2. In the last part of Proposition 2 can the requirement l = 11 be 
dropped? 

Corollary 3. I f2  is an echelon space of order I then every absolutely l-summing 
map is absolutely 2-summing. 

ProofLet 2 = A (b, l) and define a by a k = ke. Then dearly l =  A (a, l). On 
the other hand, given jo set k o = i and given k t a k e j > j o  so that b ~° < b j and we 
have a* b s° = kb j° e b ~ l ® = e b j . l ~ = a go b ~ l °°, so b dominates a and Proposition 
2 applies. | 

The choice I=  I p in Corollary 3 yields the following. 

Corollary 4. I f  1 <= p <= oo and 2 is an echelon space of order p then every 
absolutely p-summing map is absolutely 2-summing. 

Remark. We may consider Corollary 4 to be a partial extension of Corollary 
1. For p = 1, Corollary 4 is less general than Corollary 1. Also for p = oo we 
obtain, from Corollary 4, that if 2 is an echelon space of order oo then each 
continuous linear map is absolutely 2-summing. 

The last remark raises the question of which sequence spaces 2 have the 
property that each continuous linear map is absolutely ;t-summing. We already 
know this to be the case for ;t = ~b, ~, l ~ and any echelon space of order oo. We 
now give some results that provide supplementary information on that question. 

Proposition 3. Let ;t be a normal sequence space which is nuclear and complete 
in its normal topology. (In particular let ;t be a nuclear echelon space.) Then every 
continuous linear map is absolutely ;t-summing. 

Proof Under the given hypothesis we have ([5], p. 103) for any locally 
convex space E. 

and this implies (see [8]) that ;t (E) -= 2 [E] so that the identity map I : E - ,  E is 
absolutely ;t-summing. Hence if Te  ~ (E, F) then T=  TI  and it is easy to see 
therefore that T is absolutely ;t-summing. | 

Further examples of sequence spaces 2 such that each continuous linear 
map is absolutely ;t-summing can be constructed using the following device. 

Let J1 and J2 be two disjoint infinite subsequences of N whose union is IN. 
If ;tl and ;t2 are two sequence spaces, define 

; t=; t l~); t2={XEfD:xj iE; t i ,  i = 1 , 2 } .  

Prolmsition 4. IrE and F are normed spaces then H a~ ~ x 2 (E, F) = 114, ( E, F)c~ 11~ 
(E, F) where H ~, (E, F) is the set of all absolutely 2rsummin # (linear) maps on E 
into F with a similar interpretation for II  ~ • ~. 

Proof. Let T~11x~.a~ (E, F). Let (x.) be a sequence in E such that 
((x.,  a ) ) , ~  e ;tl for each a ~ E'. Let J1 = (nl, n2 . . . . .  nk .... ), Define (Y.).~N C E 
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by Y,k = Xk, k = 1, 2 .... and y. = O, n ~ n k for any k. Then, for each a e E', 
((y~, a ) ) . ~  E 2. Hence (11Ty. }[)neN e 2 so that (l[ TXk II)kslq U 21 and T is abso- 
lutely 21-summing. Thus T~  H~I (E, F) and similarly T~  H ~  (E, F). 

Conversely suppose T~ IIx, (E, F)c~Hx: (E, F) and (x,) E 2 (E). Then for 
each a e E', 

((x. ,  a)).~s~ e 21 and ( (x . ,  a)).~s ~ ~ 2 2 

so that 

and 

(ll Zx~ II)~,J1 ~ 21 and (11Txn I[)n~d2 ~ 22 

(ll Zx, II),~ ~ 2.  I 

Corollary 5. I f  21 and 22 have the property that each continuous map is 
absolutely 21 (respectively, 22)-summing then 21 ~) 2 2 has the same property. In 
particular this is the case for r~ Ogo and l °° ~) 2, 2 a nuclear echelon space. 

We can construct also many examples of spaces 2 for which not every 
continuous linear map is absolutely A-summing. As is known ([4], p. 336) this 
is the case for 2 = I p, p < ~ ;  actually a more general result is true. 

Proposition 5. Let 2 be a normal sequence space. Let l be any Banach sequence 
space with qb C l, II ei I{ >= 1 for each i and l' C l ×. Suppose there exists a sequence 

~ 2 such that 4" l × C 2. Then there exists a continuous linear map which is not 
absolutely A-summing. 

Proof. The identity map Ton  I is linear and continuous. Define (x.) in l by 
x , =  {~ e". Then i f a e  l' CI × we have ( (x . ,  a ) ) , =  { . a ~ { .  1 × C2 but [I Tx.ll = I~,1 
• I1¢'11 > 14,1. Hence (1[ Tx, ll), ~ 2. | 

Corollary 6. Suppose 2 is a normal sequence space with 11 C 2 C 1 ~, 2 :# l ~. 
Then there exists a continuous linear map which is not absolutely A-summing. 

Proof. Obviously l =  Co, { = e satisfy the criteria of Proposition 5. | 
Our  next proposition gives a sufficient condition on an echelon space 2 so 

that not each continuous linear map is absolutely A-summing. 

Proposition 6. Let l be a step such that (l×[Zb(/)])'= IC c o. Let 2 be an 
echelon space of order I but not a Montel space. Then the identity map T : l ×-} l °° 
is continuous but not absolutely A-summing. 

Proof Since 2 is not a Montel space then ([2], p. 190) it follows that there 

2 -  1 exists a k and a subsequence J of N such that a -  ~ l a. If # = ak2 then it 

suffices to show that T is not absolutely #-summing. We have #a = lj. Define 
(x.) in l × [Zb(l)] by 

= ~e n, n ~ J 
x. [ 0 ,  nq~J 
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and consider any a e (l×) ' = l. Then (((x n, a))n)z = az E lz = #j. Hence there 
exists a ~ / ~  with ~ j = a  a and we have I(x~,a)l<l~l for all n~]N. So ((x, ,  
a ) ) ~ / z  since/~ is normal. However the sequence (i] Txnlt)~N is equal to 1 for 
each n e J and 0 otherwise and so it cannot be in # because #~ = la C Co. The 
continuity of T is clear. I 

Corollary 7. Let  1 be a step such that (l × [Zb(/)])' = l # l °°. Then the identity 
map T :l × ~ l  ~° is not absolutely l-summing. 

1 
Proof. In the proof of Proposition 6 we can take a k = ke and 2 = N -~- I = l 

so that J = N and the same argument works. 1 

Remark. The hypothesis of Proposition 6 cannot be relaxed to, say, asserting 
only that l C l ~ as in Corollary 7. Indeed consider the step 

1 = {(Xn) : (X2n + 1)n ~ l~  and (x2.). ~ 12} 

so that (l × [3: b (l)])' = l £ 1 ® but l ~i Co. 
Choose a k such that a k ~ + i = k  and k k+ 1 (a2,), e (a2~)~ P, so we can write 

2 = 2 ~ 2 2  where 2 1 = l  ~ and 22 is a nuclear echelon space. ,t contains a 
subspace isomorphic to l ® so it cannot be a Montel space. However, by Proposi- 
tion 4 it follows that every continuous linear map is absolutely 2-summing. 

Proposition 7. I f  2 is a normal sequence space and ~ is its normal topology 
and i f2 (%) is complete but not nuclear then the identity map on 11 is not absolutely 
2-summing. 

Proof. Since 2 is not nuclear, we have ([5], p. 103) 

l ~®~2[~E] ~ l ~ ® ~ 2 [ ~ ]  

and therefore 2 (P) .D 2 [P]  and this implies that the identity map on l: is not 
absolutely 2-summing. II 

5. Power Series Spaces 

In this section we first generalize the notion of power series spaces A and 
apply the results of the previous section to discuss absolutely A-summing 
maps. 

Definition 2. Let  1 be a step, 0 < Qo < oo and ct, an increasing unbounded 
sequence of non-negative reals. We define the power series space of  order l, 
type Qo and power ~t to be the echelon space 

A (0o, ~,/) = A (a, l) 

where a~ = O~" and (Ok) is any increasing sequence which converges to Oo. 
(Clearly A is independent of the choice of (Ok).) 

Remark. If 0 < Qt < ~ then //a~Qo,,,t)=//a~,¢o,,,t). In particular we 
need consider only two cases, Qo = 1 and Qo = ~ in which case we say that A is 
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of finite, respectively infinite, type. Indeed, for Oo = m there is nothing to prove 
and for Oo < ~  it follows that A (01 0o, e,/) is a diagonal transformation of 
A (0o, e, l) via the sequence (O~") and therefore the spaces of absolutely summing 
maps agree. 

Proposition 8. I f  ot ~ ft. l v then each absolutely A (go, o~, l)-summing map 
is absolutely A (Qo, fl, l)-summing. 

Proof. We apply Proposition 2 with . k _  ~,,  k_  - . - ~ k ,  b , - - ~ ' .  We have M > 0  
such that ~ 5 Mfl. 

Case t. 0o = oo. We take q~k = k. Given Jo take k o = 1 and given k>_ 1, 
take j = kMjo . Then 

a. k ~ = k "  jg" = < kM#" rio" = (kMjo) #" = kg" j#~ = a~ ° ~ 

so b dominates a and the result follows. 

k for A (1, e, l) and Ok= for Case 2. 0o = 1. We take Ok -- k + ~  

A (1,/~,/). 
Given Jo, take ko =Jo. Given k > ko take j = k. Then 

and therefore 

Thus 

k (k o + 1) J (lo + 1) 
(k + 1)k o (j + 1)j o 

- - > 1  

( k + l ) k o ]  = ~ - ~  1-)f~o ,] " 

4o= o 

so b dominates a and the result follows. II 

Remark. In Proposition 8, the containment need not be an equality; of 
course it is if both spaces are nuclear, but if l = l t and A (Qo, 0t,/) is not nuclear 
but A (Qo, fl,/) is nuclear then by Propositions 3 and 7 equality does not hold. 

Proposition 9. For arbitrary ~ and I we have that each absolutely A (1, ct,/)- 
summing map is absolutely A (0% ~, 1)-summin#. 

k 
Proof. We take, as before, Ok = k for A ( ~ ,  ~t,/) and 0k = k +----i- for A (1, ~,/). 

Then we apply Proposition 2. For anyjo,  take ko = 1 and for any k ~ 1 we take 
j = 2jo. Then 

.'k ( k(ko + 1) I"  = • 2"" <= 2"  - - 
a \ ( k + l ) k  o} \ k + l ]  j~  ~° 

| 
an 
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Remark. In the above  proposi t ion the conta inment  need not  be an 
equality. Indeed if we take l = 11 and % = log (n + 1) then A ( ~ ,  ~t,/) is nuclear 
but  A (1, ~,/) is not.  So, again, by Proposi t ions  3 and 7 the equali ty does not  
hold. 

Proposition 10. Let ~t, fl be increasing unbounded sequences of non-negative 
numbers. Then the following statements are equivalent. 

i) o~ ~ fl . l ® , 
ii) A (oo, ct, 1)~A ( ~ ,  fl, I), 

iii) A (1, ~t, 1)C A (1, fl, I). 
-k i Lk M Proof. i)=Mi): Take  a k -- k ~" and b k -- k p~ and we have % <Mfln, so % ~ v n . 

Hence 

~ ] 1  ~ 1  ~ ] 1  
A ( ~ ,  ~, l )=  -~-13 -b~-P~yl= - ~ - l = A ( ~ , f l ,  l). 

k=l k=l k=l 

i )~ i i i ) :  we have %<Mfln and we take k _  k_  a n -  , b n - k - k + l j  . 

Since >__ ~ k . l ]  if we define ~ by e = it follows 

f rom the fact that  ~ increases with k to 1 that  

oo 1 ~ 1 
1 1C 0 -f~-I l =  (1, fl, l) 

a (1, o~,/): (~ ~ - k = l  k = l  ~) -~-k~=l V a . 

i i , ~ i , :  Let  g ~- k = k , . ;  k ~ r  k ~ 1  a,  = k and bn also by assumption,  1 ~ ~ I. This 

implies that  e e D (A (oo, fl, 1), A (oo, ~, l)) and then, by L e m m a  2, there exists j 
2 ~ Mb~ = Mfl" for each n. such that  a 2 E b j 1 °~; thus we have M > 0 with 2 ~- = an 

Thus  if we choose c > 0 such that  log M __< cfln for each n (since lim fl. = oo), 
then 0c n log 2 < (log j + c) fin and ~ e ft. l ®. 

(k3"  ( k ~  ~ 1 1 
k= bn - ~-k ~ J ~ ~_~ 0 _~_ l iii)=~i): Let  a n \ k + l ]  and k__ and IC . 

As above,  we conclude that  there exists a k with b~e a k l ~ and so we have 
M > 0 with 

M = M  k 1 an >- bn = 

N o w  choose c > 0 such that  

log M 

- - log  ~ 

Cfln for all n 
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and we have 

Therefore 

~ log ( k ~ ) +  l o g M ~ - f i n  log2. 

and so ~ e ft. l °~. I 

Remark. Referring now back to Definition 1 we see that, in view of 
Proposition 10 and the proof of Proposition 8, the condition "b dominates a" 
is not related by implication to the condition A C #. 

Thus we may summarize our results by saying that if one is considering 
"absolute p-summability" or "absolute finite-type-power-sefies-summability" 
then 2 C # implies that each absolutely A-summing map is absolutely/a-summing. 
However, in view of Propositions 8 and 10 and the remark after Proposition 8 
we have that this is not so for absolute summability corresponding to infinite 
type power series spaces, but instead A C/~ in this case implies that every 
absolutely/~-summing map is absolutely A-summing. Moreover we have that 
if A is a power series space of infinite type and # is a power series space of finite 
type then in view of Proposition 9 and the remark following it, A C # and every 
absolutely /~-summing map is absolutely A-summing but not conversely. 

6. Discontinuous Absolutely Summing Maps 

We examine in this section whether there are discontinuous (linear maps) 
that are absolutely A-summing and our result in Proposition 11 shows that 
for a normal sequence space 2 either each absolutely A-summing map is con- 
tinuous or else every linear map is absolutely A-summing. 

We start with the following lemma. 

Lemma 3. 2 Let E be a Banach space and (x.) a sequence of non-zero elements 
of E. Then there exists an a c E '  such that for each n, (x~, a)  ~eO. 

Proof For each n, let A n = {a e E': (x~, a) :~ 0}. Since the map a-~ (x., a)  

is continuous, linear and non-zero on the Banach space E' it follows that 
each A. is dense and open; so by the Baire category theorem there exists an 
element a ~ ~ A n and this element obviously annihilates no x~. 1 

n 

Prolmsition 11. I f  2 is a normal sequence space then the following are equiva- 
lent: 

This short proof was given by G. Maltese in a private conversation. 
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i) every absolutely ,1-summing map is continuous; 
ii) on each infinite dimensional Banach space E there exists a linear map T 

which is not absolutely ,1-summing; 
iii) there exists a Banach space E and a linear map T on E which is not 

absolutely ,1-summing; 
iv) there exists an infinite subsequence J of N such that ,1 has a sequence 

which does not vanish on J but ,1~ 4= 09; 
v) there exists ~ E ,1 and an infinite subsequence J of ~q and r 1 ¢ ,1 such that 

~ > 0 for each n E J and rl. = 0 for each n ¢ J. 

Proof. i)~ii) :  if ii) is false then there exists an infinite dimensional Banach 
space E on which each linear map is absolutely ,1-summing and hence a discon- 
tinuous linear map which is absolutely 2-summing so that i) is false. 

ii)=~iii) is obvious. 
iii)~iv): suppose iv) is false. 

Then for each infinite subsequence J of N, if ,1 has a sequence which does not 
vanish on d then ,1j = 09. Take any Banach space E and any linear map T on E. 
We shall show that Tis absolutely ,1-summing, thus iii) is false. 

Indeed let (x,) be a sequence in E such that (<x., a))~ ~ ,1 for each a ~ E'. 
Let J = {n: xn#: 0}. If J is finite, then since Tis linear, (llTx, lt)~ e (PC ,1; if J is 
infinite, then by Lemma 3, we have a ~ E' with (x . ,  a ) ~  0 for all n e J. Let 
¢ = ((x. ,  a)),~N e ,1. 

Then ~ does not vanish on J and therefore ,1j=ro; since (llZxnll)..jeo~, 
there exists r/e ,l such that for n e J, ~h = II Zx.II and since I1 Zx.II = 0 for n ¢ J 
and since ,1 is normal it follows that (lt Zx.ll)no~'1. Thus T is absolutely ,1- 
summing. 

iv)=*.v): We have J and ~ e ,1 with ~n 4:0 for all n e J ;  since ,1 is normal we 
may assume that ~ > 0 for all n e J. Moreover since ,1j 4: co we can find a 
sequence (~,)~,j e o9\,1a. Define (~/n).~ by 

n J, 
r / .= [ 0 ,  nq~J. 

Then (~/.).~ is not in ,1 for if it were, then (~.).~ would be in '1a which it is not; 
dearly (~h).~ satisfies v). 

v)=>i): Let ~, J and ~/be as in v). Define ~'by 

f max tttjl, n ~ J 

Then since ,1 is normal, ff¢ ,l and for n, k e J, n < k, we have fin---ffk. Now 
suppose that T is a linear map which is absolutely ,1-summing but not con- 
tinuous. Then we have a sequence (Yi) with 

l i m  Ily lt = 0 ,  IITy II = oo ; 
i 
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so by passing to a subsequence we may assume ilTyill ~ ~i. Choose a sub- 
sequence (ij);~ s, such that IlyijII <¢j, J~J.  Then we have IITyi, ll>~,j>~j. 
Define (x,) by 

= ~Ytj, for n = ij for some j e J ,  
x. [0 , otherwise. 

Then (llx.ll),~N is in 2, so for each acE',  ((x,,  a)).  e ;t but (IITx.II).~NC2. II 

Remark. From the above proposition it follows that given a normal 
sequence space 2 then either every absolutely ;t-summing map is continuous 
or every linear map is absolutely ;t-summing and iv) and v) give precise condi- 
tions which determine which of the alternatives holds. 

Examples 

6. If 2 is an echelon space then every absolutely 2-summing map is con- 
tinuous. 

1 
Indeed, in this case, we take J =]N and 4, = --~-~, 

7. If 11 C 2 C l ~ then every absolutely 2-summing map is continuous. 
1 

In this case we can take J = • and ~, = --~-. 

8. If 2 = ~b, o9 then every linear map is absolutely 2-summing. 
9. If 2 consists of elements which are infinite matrices each row of which is 

an element of o9 but only finitely many rows are different from zero then every 
linear map is absolutely ;t-summing. 

Indeed if J is as stated in Proposition 1 1, iv) then J meets only finitely many 
rows,  so  ~ j  = co. 

10. If ;t consists of elements which are infinite matrices each row of which is 
in ~b then every linear map is absolutely ;t-summing. In fact, if J is as in iv) of 
Proposition 1 1 then for each k, sup {n: (k, n)e J} < 0o. It follows then that 

Remark. By taking 2 = 09,/~ = ~b we see that ;t and /~ are perfect and 
every absolutely ;t-summing map is absolutely #-summing (Example 8); 
however, by Example 4 the hypothesis of our theorem is not satisfied. Thus the 
converse of the theorem does not hold, even for perfect spaces. 
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