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Inclusion Theorems for Absolutely -Summing Maps*
Ep DuUBINSKY and M. S. RAMANUJAN

1. Introduction

The concept of absolutely p-summing (absolutely /P-summing) maps
between Banach spaces was introduced in [4] and it was shown there that each
such map is continuous and is absolutely g-summing if g > p. Using suitably
restricted KOthe sequence spaces 4, the notion of absolutely A-summing maps
was introduced and studied in [6]. In this paper we study absolutely A-summing
maps for arbitrary normal sequence spaces A and consider, for two spaces 4
and y, the relationship between the set of absolutely A-summing maps and the
set of absolutely u-summing maps. We obtain in Section 3 the main result
which gives a sufficient condition for an inclusion relation to hold. In Section 4
we apply the above result to pairs of sequence spaces which are echelon spaces
and in Section 5 we consider pairs of power series spaces of finite or infinite
type. Since the absolutely [*-summing maps are precisely the continuous
linear maps we are also able to study the relation between absolutely A-summing
maps and continuous linear maps. In Section 6 we show that given A, either
every absolutely A-summing map is continuous or every linear map is abso-
lutely A-summing.

2. Definitions and Preliminary Resuits

All the notations and terminologies not explained below are as in [3].
Throughout the paper the sequence spaces A considered are assumed to be
normal and unless otherwise stated, equipped with the topology (1)

A sequence space A is called a step provided that it is perfect, that A[T,(17)]
isa Banach space and that I' C 4 CI®. In [2] it is observed that a perfect sequence
space /A is a step if and only if A™ is a step.

Suppose A, u are sequence spaces. We define

A-p={(xy0): (x)ei, ()eu}.
Let (4,) be a sequence of steps and (a*) a sequence of sequences such that

i) O<daf<at*! forallik,
1 1
i) ?T'i_lk+1c ?A’k for all k.

* The authors express their thanks to Professor G. K&the for his hospitality at the Goethe
Universitit, Frankfurt, We thank also Mr. P. Spuhler for many discussions we had during the
preparation of this paper. Support from the Goethe Universitiit (to E.D.) and from the Humboldt
Stiftung (to M.S.R.) is gratefully acknowledged.
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Under these conditions (a*, 1) is called an echelon system and A=) %‘- A
k

is called the corresponding echelon space. It is shown in [2] that 1 is a perfect
sequence space, that A*={ Ja*A and that A [T,(4)] is a Fréchet space.
k

If A and p are sequence spaces we shall denote by D (i, ) the set of diagonal
matrices carrying g into 4. We shall frequently use the following result of
Crofts [1].

Proposition A. D (u, A) C(A™ - w)* and if A is perfect we obtain equality.

Consider now a normed linear space E. Let 4 be a fixed sequence space.
We define A (E)= {(x,): x, € E for each n and ({x,, a)) € A for each ae E'} and
ALE]={(x,): x,e E for each nand (| x, ) € A}.

Let E and F be two normed linear spaces and T be a linear map on E into F.
T is said to be absolutely A-summing if for each x=(x,)e A {E), the sequence
Tx={Tx,) e A[F]. We emphasise here that in the definition above we have not
requited T to be continuous; in fact, in Section 6 of this paper we discuss
discontinuous absolutely A-summing maps.

The absolutely [*-summing maps are precisely the continuous linear maps
whereas the absolutely w-summing maps are exactly the linear maps (between
the specified normed spaces). When 4 = I” we shall use the terminology “abso-
lutely p-summing map” to conform with that notion introduced by Pietsch [4]
and when A=[' we shall simply say “absolutely summing”, again to conform
to standard practice.

1t is now easy to see that if d = (d,) and 4, > O for each n then Tis absolutely
A-summing if and only if Tis absolutely {(d - A)-summing.

Suppose J is an infinite subsequence of N and x is a sequence. We define
Xy =(X,)pes and 1, = {x;: x € i}.

Throughout the paper the sequence space v is used exclusively to denote
(A - @ It now follows from Proposition A that v = D (u, A} = D(1*, u*)whenever
A is perfect.

3. Main Resuit

Let E and F be two arbitrary normed spaces and 4 and y be two normal
sequence spaces. A natural question is: under what conditions is every abso-
lutely A-summing map an absolutely y-summing map? In this section we prove
a sufficient condition ensuring the above and provide examples to which the
result is applicable. Further applications of this result are contained in the
next two sections,

Theorem. If (v- A"y Cu and v- uC A then for arbitrary normed spaces E and
F each absolutely A-summing map on E into F is absolutely u-summing.

Proof. Let T be absolutely A-summing on E into F. Let (x,)e u(E). Let &
be the sequence defined by &£,= || Tx,||. Then for each x e v and a € E’' we have

(<anxm a>) =0 ((JC,,, a>)n ev-ucC A.
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Since Tis absolutely A-summing it follows that |a|- &= (]| T(,x,) )€ A and

since A is normal, a- & € A. Thus £e D (v, A) and therefore, by Proposition A,
Ee(-2")Cy, ie, (| Tx,|) e u. Thus Tis absolutely u-summing. [ ]

We list below some simple specific examples to which the theorem is
applicable.

1. Let 1<p<qg< o and —1-17—=%+%. If A=1P and u=1F then by the

Holder inequality
v=Il, (v-A*)*=F and v-u=1I?

so that [ C[? implies that each absolutely p-summing map is absolutely g-
summing. It may be considered that we have obtained a somewhat simple
proof of this known result ([4], p. 335).

2. If A=1' and p is any perfect space then

v=p<, @ -A2)=v=p and v.p=p*-uclt=2

so that, by the theorem, every absolutely summing map is absolutely u-summing.
3.If A=1® and u=¢ then

v=w, @-XY=¢=u and v-u=¢Ci

and consequently every continuous linear map on E into F is absolutely
¢-summing. Actually we shall see in § 6, Example 8, that more is true.

4. If A= then the second condition of the theorem is satisfied but v=w
O (v )= (w - ¢)* = w so the first condition of the theorem is satisfied if and
only if 4 = w.

5. If A=p is perfect then v=(1"-1)" so that (v-A*)* =((A*- )™ -1*)*
CA* ™ =4; also, by Proposition 4, v=D(4, A) so v-ACA and the conditions
of the theorem are satisfied. However if A=pu=c, then v=1I1® and v-u=2
but (v-A*)* =Il"q¢cy=p.

Since A = u it now follows that the converse of the theorem is false. We shall
see later (§ 6) that the converse is false even if one assumes that A and u are
perfect.

Problem 1. If 2 and u are perfect and if I* C 2 C u CI® does it follow that for
arbitrary Banach spaces E and F every absolutely A-summing map is abso-
lutely p-summing?

We shall see (§ 5, Remark after Proposition 10) that the answer is negative
if we do not assume that I* C A, uCI®.

We now give a few simple applications of the preceding considerations.

Corollary 1. For any perfect space A every absolutely summing map is
absolutely A-summing.
Corollary 2. Let A be a perfect sequence space such that not every nuclear

space is A-nuclear'. Then there is no positive integer n such that if T,, T, ..., T,

1 For definitions and examples of this situation see [7].
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are absolutely A-summing operators on I* then the composition T=T, T,, ..., T,
is A-nuclear.

Proof. Consider such a 4 and let E be a locally convex space which is nuclear
but not A-nuclear. Then there exists a fundamental system % of neighbourhoods
of zero in E such that if Ve % then there exists a We % such that W<V, E, and
Ey are lsomorphlc to 12 and the canonical map Ey, — E,, is absolutely summing;;
by Corollary 1, it is then absolutely A-summing. Now if the product of each n
absolutely A-summing maps in [* were A-nuclear then given V we could apply
the above considerations n times to obtain U e#% such that U<V and the
canonical map E;— E, was A-nuclear. But this would imply that E is A-nuclear
which is false. |

4. Echelon Spaces of Fixed Order

In this section we apply the main result to echelon spaces A and u of (the
same) fixed order; we obtain a sufficient condition for the hypotheses of the
main theorem to be satisfied. We present cases of A in which each continuous
linear map is absolutely A-summing and also cases where continuous linear
maps are not necessarily absolutely A-summing.

Suppose [ is a step and a=(a*),. We consider the echelon space A (a, )

1
=05t
Recall ([2], p. 189) that [4 (a, hT* = Ja*I~
k

Lemma 1. If | is a step then D (I, )= 1.
Proof. Since J, being a step, is normal, I° ¢ D (I, ). Conversely, since I' C I [®
we have
DL DcD(4I®)=1". i

Throughout the rest of this section we let A=A (a, ) and u= A (b, ) be two
echelon spaces of order ! and since A and y are perfect it follows from Proposi-
tion A that

= (A% u)=D (1, A) =D (1%, ).

Lemma 2. v= ﬂ U —l°°

kl;la

Proof. Let ze ﬂ U Ld I and take u e A%, Then there exists a k such that
k=1j=1
uea*l* and so we have somej with d*z e b/]°. Hence

z-u=a‘z—£‘k—ebfl°°-1x=bfl”Cﬂ’
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and therefore z e v. Conversely, suppose that zev. Then we have {[1], p. 67)
that the map z: A*[3,(A)] - w*[3, ()] is continuous, so it maps bounded sets
into bounded sets. Applying now the characterization of bounded sets in a
co-echelon space ([2], Theorem 2, ii)) it follows that for each k, there exists a

k
j and M >0 such that if x is in the unit ball of I* then z—ZTx <M. This
l)(

k
implies that z -%j— “cIx Thus z-d*eb D (I, )= D(l,))=b1°. Thus we

have shown that for each k there exists j such that z - ¢* € b/ [ and this implies

that ze ) U --~l°° |

k=1j= p @
Proposition 1. v- uC 4.

Proof is immediate from Proposition 4 since u is perfect. |

Definition 1. If A=A (a,l) and p= A (b,]) we say that b dominates a if for
each j, there exists a k, such that for each kz k, there exists a j such that
at beedo b I,

As we shall see in the next section, this condition is not related by implica-
tion to the condition AC u.

Proposition 2. If b dominates a then (v- 2*)D p* and hence every absolutely
A-summing map is absolutely u-summing. Moreover if | =1 then b dominates a if
and only if (v- 1) D u*.

Proof. Suppose b dominates a and let ve y* Then we have j, such that
ve b *, For this j, we have a k, as in Definition 1. Now for k= k, there exists j
such that
pio
?o— € F i,

1 1
But this shows, along with the fact that for k< k, we have F I> o I, that

bio © b bf
e UL AR ol Cy i,
a* k2ko j=1 ak =1j= 1

Thus we have shown that w*C(v-A)and since pis perfect wehave(v - X)*C .
This, along with Proposition 1, permits the application of the theorem and the
assertion that each absolutely A-summing map is absolutely p-summing

Finally, suppose that [ = and (v- 19D ,u". Choose any jo- Then bio g bo . [®
=ble.*Cpu*Cv-A* so that bloev-*=v- U ae = U atv.

k=
Hence there exists k, such that b’ e a*v and by Lemma 2 we have

bjo @ © bj
—ev= U I

k=1j=1
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so that for each k there exists j with a*b/ € a*b/I* and this means that b domi-
nates a. |

Problem 2. In the last part of Proposition 2 can the requirement /=" be
dropped?

Corollary 3. If A is an echelon space of order | then every absolutely I-summing
map is absolutely A-summing.

ProofLet A=A (b,]) and define a by a*=ke. Then clearly I=A4(a,]). On
the other hand, given j, set k, = 1 and given k take j = j, so that b < b/ and we
have a* b =kboe b/ | =e b/ - |® = a* b/ I, so b dominates a and Proposition
2 applies. ]

The choice I=/? in Corollary 3 yields the following.

Corollary 4. If 1 Sp< o0 and A is an echelon space of order p then every
absolutely p-summing map is absolutely A-summing.

Remark. We may consider Corollary 4 to be a partial extension of Corollary
1. For p=1, Corollary 4 is less general than Corollary 1. Also for p= o0 we
obtain, from Corollary 4, that if 1 is an echelon space of order oo then each
continuous linear map is absolutely A-summing.

The last remark raises the question of which sequence spaces A have the
property that each continuous linear map is absolutely A-summing. We already
know this to be the case for 1= ¢, w, I” and any echelon space of order co. We
now give some results that provide supplementary information on that question.

Proposition 3. Let A be a normal sequence space which is nuclear and complete
in its normal topelogy. (In particular let A be a nuclear echelon space.) Then every
continuous linear map is absolutely A-summing.

Proof. Under the given hypothesis we have ([5], p. 103) for any locally
convex space E.

A®,E=A®,E

and this implies (see [8]) that A (E) = 4 [E] so that the identity map I : E~E is
absolutely A-summing. Hence if Te % (E, F) then T= TI and it is easy to see
therefore that T is absolutely A-summing. [ |
Further examples of sequence spaces 1 such that each continuous linear
map is absolutely A-summing can be constructed using the following device.
Let J, and J, be two disjoint infinite subsequences of IN whose union is N.
If 2, and A, are two sequence spaces, define

A=4, @l ={xcw:ix;el, i=12}.

Proposition 4. If E and F are normed spacesthenll, ¢ ; ,(E, F)=1II, (E, F)nIl,,
(E, F) where I1,,(E, F) is the set of all absolutely A,-summing (linear) maps on E
into F with a similar interpretation for I1, & ,,.

Proof. Let Tell, g,, (E, F). Let (x,) be a sequence in E such that
({Xp @)pen € 44 for each ae E'. Let J, =(ny,n,,...,n,...). Define (y,),.nCE
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by Yu, =X, k=1,2,... and y,=0, n#%n, for any k. Then, for each a € E/,
(V> B e E A- Hence (|| Ty, Duen €4 so that (| Tx, | ken€ 4, and T is abso-
lutely A;-summing. Thus Te I1,, (E, F) and similarly Te I1,, (E, F).

Conversely suppose Tell, (E, F)nII,, (E,F) and (x,)e A(E). Then for
each ae E/,

(<xn’ a>)neJ1 € A’l and (<xm a>)ner € j'2
so that

(“ Txn ”)ne.ll € }"1 and (” Txn ”)ne.lz € )'2
and

(I Txa Dnen€ 4. i

Corollary 5. If A, and 2, have the property that each continuous map is
absolutely 4, (respectively, 1,)-summing then A, @/, has the same property. In
particular this is the case for ¢ @ w and I1° ® A, 1 a nuclear echelon space.

We can construct also many examples of spaces A for which not every
continuous linear map is absolutely A-summing. As is known ([4], p. 336) this
is the case for A =[P, p < o0; actually a more general result is true.

Proposition 5. Let A be a normal sequence space. Let | be any Banach sequence
space with ¢ Cl, || €|l =1 for each i and I' CI*. Suppose there exists a sequence
& ¢ A such that &-1*C L. Then there exists a continuous linear map which is not
absolutely A-summing.

Proof. The identity map Ton [ is linear and continuous. Define (x,) in [ by
x,=¢,€" Then if ael CI* we have ((x,,a)),=&-aeé-1* CAbut | Tx, | =&,
"l 2 1€l Hence (|| Tx,l1), ¢ 4. ]

Corollary 6. Suppose /. is a normal sequence space with I' CACI®, A£I1®.
Then there exists a continuous linear map which is not absolutely A-summing.

Proof. Obviously I=c,, &=e satisfy the criteria of Proposition 5. [}
Our next proposition gives a sufficient condition on an echelon space 4 so
that not each continuous linear map is absolutely A-summing.

Proposition 6. Let | be a step such that (I"[T,()]) =1Ccy. Let A be an
echelon space of order | but not a Montel space. Then the identity map T :I* —[®
is continuous but not absolutely A-summing.

Proof. Since A is not a Montel space then ([2], p. 190) it follows that there

exists a k and a subsequence J of N such that A ,=% I,. If u=d*J then it
J
suffices to show that T'is not absolutely p-summing. We have p,=1[;. Define

(x,) in I* [T,()] by
= {e", nelJ

0, n¢J
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and consider any ae(*) =1 Then (({x,,a)),);=a;€l,=u,;. Hence there
exists a £y with £,=a; and we have [{x,, ad|<|&,] for all neN. So ({x,,
a)),.n € 4 since u is normal. However the sequence (|| Tx,|),.n is equal to 1 for
each neJ and 0 otherwise and so it cannot be in u because p;=1,Ccy. The
continuity of T is clear. |

Corollary 7. Let | be a step such that (I"[T,(I)]) =11. Then the identity

map T :I"—1” is not absolutely I-summing.
1
Proof. In the proof of Proposition 6 we can take a* = ke and A=) v I=1
k

so that J= N and the same argument works. 1

Remark. The hypothesis of Proposition 6 cannot be relaxed to, say, asserting
only that I C [* as in Corollary 7. Indeed consider the step

lm {(xn) : (x2n + l)n € lw and (x2n)n € 12}

so that (I"[T, (D]) =1CI® buti{ c,.

Choose d* such that a%,,,=k and (&), e(d:; 1), I', so we can write
A=A, P4, where A, =1° and A, is 2 nuclear echelon space. 1 contains a
subspace isomorphic to I° so it cannot be a Montel space. However, by Proposi-
tion 4 it follows that every continuous linear map is absolutely A-summing.

Proposition 7. If A is a normal sequence space and I is its normal topology
and if A (X) is complete but not nuclear then the identity map on I* is not absolutely
A-summing.

Proof. Since A is not nuclear, we have ([5], p. 103)
'® [T 21'®,A[T]

and therefore A (I') 2 A[I'] and this implies that the identity map on I* is not
absolutely A-summing. 1

5. Power Series Spaces

In this section we first generalize the notion of power series spaces 4 and
apply the results of the previous section to discuss absolutely A-summing
maps.

Definition 2. Let | be a step, 0 < g, £ o0 and «, an increasing unbounded
sequence of non-negative reals. We define the power series space of order I,
type g, and power o to be the echelon space

Ao, 0, )=A1(a,])

where a* = o~ and (g,) is any increasing sequence which converges to g,.
(Clearly 4 is independent of the choice of (gy).)

Remark. If 0 <@, <00 then IT, g o0 =114 (g 00.o,p- In particular we
need consider only two cases, g, =1 and g, = oo in which case we say that A is
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of finite, respectively infinite, type. Indeed, for g, = oo there is nothing to prove
and for g, <o it follows that A (g, g¢, @, ]) is a diagonal transformation of
A (go» a, ) via the sequence (9$) and therefore the spaces of absolutely summing
maps agree.

Proposition 8. If acB-1° then each absolutely A (g,, o, D-summing map
is absolutely A (go, B, l)-summing.

Proof. We apply Proposition 2 with at= g, bk= gf~. We have M >0
such that a S MB.

Case 1. g, =o0. We take @, =k. Given j, take k=1 and given k=1,
take j=kMj,. Then

dy b =k jir S KMPn e = (kKMo YPm =k jn = afo b]
so b dominates a and the result follows.
k M
Case 2. go=1. We take g, = ——for A (1, o, ]) and ¢, = (—k—:’i_l_) for

k+1
AWML, B ).
Given j,, take k= j,. Given k= k, take j=k, Then

kot 1) _ jGo+1)
k+Dko  G+1o =

and therefore

(k(ko +1) ) < (j(jo +1) )W"
(k+Dko/ ~\(+ g )
Thus
at bl
" < n
aﬁo = no
so b dominates a and the result follows. | ]

Remark. In Proposition 8, the containment need not be an equality; of
course it is if both spaces are nuclear, but if [ =1' and 4 (g,, «, ) is not nuclear
but A (gy, f, ) is nuclear then by Propositions 3 and 7 equality does not hold.

Proposition 9. For arbitrary o and 1 we have that each absolutely A (1, a, 1)-
summing map is absolutely A {0, a, I}-summing.
k
Proof. We take, as before, g, =k for A (o0, ¢, }and g, = ey forA(l,al).
Then we apply Proposition 2. For any j,, take k, =1 and for any k = 1 we take
j=2j,. Then

at k(k0+1))“"_( k ) P A
ako ”((k+1)k0 =\%1) 2= & bR ’

sT.
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Remark. In the above proposition the containment need not be an
equality. Indeed if we take [=1' and «,=1log (n+ 1) then A (oo, o, I) is nuclear

but 4 (1, a, [} is not. So, again, by Propositions 3 and 7 the equality does not
hold.

Proposition 10. Let «, § be increasing unbounded sequences of non-negative
numbers. Then the following statements are equivalent.
yaep-l=,
i) A {0, 0, NDA (o0, B, D),
i) A1, e, )CAWB]).
Proof. i)=>ii): Take a* = k* and b = kP~ and we have o, < M, so a* < b¥™.
Hence

1 - |
A (o0, o, )= ﬂ DQWI ﬂFl=A(oo,ﬁ,l).
k=1 k=1

k+1 "\ k+t
i if we define B* by B= ()" it fol
mce(k+1) (k+1) , if we define b* by (m) 1t follows

from the fact that (

on Br
i)=>iii): we have a,<Mp, and we take at= (-~k—~) , bf= (,,L) .

) increases with k to 1 that

21
A, o )= ﬂ lcﬂ kl~ﬂ I=AL B D).
ii)=>i): Let af = k* and b% = k+; also by assumption, ﬂ s Dﬂ I. This

implies that e€ D (4 (o0, §, 1), A (0, a, 1)) and then, by Lemma 2, there exists j
such that a € b’ [*; thus we have M > 0 with 2*» = a2 < M b} = M j*~ for each n.
Thus if we choose ¢> 0 such that log M £ cf, for each n (since lim B, = c0),
then o, log 25 (log j+¢) f, and aef-I™.
k \» k \Pn 1 1
5 Y k. bk = 2 A
iii)=i): Let a* (k+1) and b (k+1) and Q s ICQ 7 I

As above, we conclude that there exists a k with b' ed*I® and so we have

M > 0 with
k \* . 1\
e} = >hle={-—
M(k+1) Mayzb, (2) .

Now choose ¢> 0 such that
logM

—_—— < ¢f3, for all n
k
'_mg(k+1)
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and we have
1 Z - .
oty og<k+1>+ logM 2z —B,log2
Therefore
o < log 2 B+ log Mk < logk2 AYY
log(k+1) ‘l°g<k+1) 10g(k+1>
and soaxeff-1°. ]

Remark. Referring now back to Definition 1 we see that, in view of
Proposition 10 and the proof of Proposition 8, the condition “b dominates a”
is not related by implication to the condition 1C g

Thus we may summarize our results by saying that if one is considering
“absolute p-summability” or “absolute finite-type-power-series-summability”
then A C pimplies that each absolutely A-summing map is absolutely g-summing,
However, in view of Propositions 8 and 10 and the remark after Proposition 8
we have that this is not so for absolute summability corresponding to infinite
type power series spaces, but instead ACpu in this case implies that every
absolutely p-summing map is absolutely A-summing. Moreover we have that
if A is a power series space of infinite type and u is a power series space of finite
type then in view of Proposition 9 and the remark following it, A C p and every
absolutely u-summing map is absolutely A-summing but not conversely.

6. Discontinuous Absolutely Summing Maps

We examine in this section whether there are discontinuous (linear maps)
that are absolutely A-summing and our result in Proposition 11 shows that
for a normal sequence space A either each absolutely A-summing map is con-
tinuous or else every linear map is absolutely A-summing.

We start with the following lemma.

Lemma 32 Let E be a Banach space and (x,) a sequence of non-zero elements
of E. Then there exists an ae E' such that for each n, {x,, a) £0.

Proof. For each n, let 4,={ae E': (x,, ay + 0}. Since the map a— {x,, a}

is continuous, linear and non-zero on the Banach space E' it follows that
each A, is dense and open; so by the Baire category theorem there exists an
element a € () 4, and this element obviously annihilates no x,. ]
a
Propeosition 11. If 1 is a normal sequence space then the following are equiva-
lent:

2 This short proof was given by G. Maltese in a private conversation.
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i) every absolutely A-summing map is continuous;

i) on each infinite dimensional Banach space E there exists a linear map T
which is not absolutely A-summing;

iii) there exists a Banach space E and a linear map T on E which is not
absolutely A-summing;

iv) there exists an infinite subsequence J of N such that A has a sequence
which does not vanish on J but ;% w;

v) there exists £ € A and an infinite subsequence J of N and n ¢ A such that
£,>0 for eachneJ and n,=0 for each n¢ J.

Proof. i)=>ii): if 1) is false then there exists an infinite dimensional Banach
space E on which each linear map is absolutely A-summing and hence a discon-
tinuous linear map which is absolutely A-summing so that i) is false.

ii)=>1ii) is obvious.

iti)=-1v): suppose iv) is false.

Then for each infinite subsequence J of N, if 4 has a sequence which does not
vanish on J then 4, = . Take any Banach space E and any linear map T on E.
We shall show that T'is absolutely A-summing, thus iii) is faise.

Indeed let (x,) be a sequence in E such that ({(x,,a)),€4 for each ac E'.
Let J = {n: x,#0}. If J is finite, then since T'is linear, (| Tx,|),e¢CA;if J is
infinite, then by Lemma 3, we have ae E' with {x,,a)+0 for all neJ. Let
&= ({Xp, @)pen€ A

Then ¢ does not vanish on J and therefore 4;=w; since (|| Tx,|),es € @,
there exists # € A such that for ne J, n,= || Tx,| and since || Tx,|| =0 for n¢J
and since 4 is normal it follows that (|| Tx,|),cn€ A- Thus Tis absolutely A-
summing.

iv)=>v): We have J and £ € A with £, 0 for all ne J; since A is normal we
may assume that £,>0 for all neJ. Moreover since 4, +w we can find a
sequence (ﬁn)ne} € (‘0\}’.} - Deﬁne ('In)neN by

_ |t neld,
™=, ne¢J.

Then (1,),x is not in A for if it were, then (7,),., would be in 4, which it is not;
clearly (1,),n satisfies v).
v)=>i): Let &, J and 5 be as in v). Define # by

mz{r&ag nj, neld

0 , n¢J

Then since A is normal, 7¢ 1 and for n, ke J, n<k, we have 7, <7, Now
suppose that T is a linear map which is absolutely A-summing but not con-
tinuous. Then we have a sequence (y;) with

lim Iy} =0, lim Ty)l=co0;
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so by passing to a subsequence we may assume [Ty, 2 #;. Choose a sub-
sequence (ij);c;, such that |y, || S¢&;, jeJ. Then we have [Ty, || 27, 27
Define (x,) by

Vi, for n=i; for some jeJ,
X, = )
0, otherwise.

Then (f{x,|),n 18 In 4, so for each ae E', ({x,,a)), €4 but (|Tx,D,en €4 N

Remark. From the above proposition it follows that given a normal
sequence space 4 then either every absolutely A-summing map is continuous
or every linear map is absolutely A-summing and iv) and v) give precise condi-
tions which determine which of the alternatives holds.

Examples

6. If A is an echelon space then every absolutely A-summing map is con-
tinuous.

. . 1
Indeed, in this case, we take J =N and ¢, = o

n

7. 1f I' C AC 1™ then every absolutely A-summing map is continuous.

In this case we can take J=Nand ¢, = =

8. If A= ¢, w then every linear map is absolutely A-summing.

9. If A consists of elements which are infinite matrices each row of which is
an element of @ but only finitely many rows are different from zero then every
linear map is absolutely A-summing.

Indeed if J is as stated in Proposition 11, iv) then J meets only finitely many
rows, S0 A;=w.

10. If A consists of elements which are infinite matrices each row of which is
in ¢ then every linear map is absolutely A-summing. In fact, if J is as in iv) of
Proposition 11 then for each k, sup {n:(k,n)eJ} < co. It follows then that
l 7= .

Remark. By taking A=, u=¢ we see that A and u are perfect and
every absolutely A-summing map is absolutely py-summing (Example 8);
however, by Example 4 the hypothesis of our theorem is not satisfied. Thus the
converse of the theorem does not hold, even for perfect spaces.
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