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Real Quadratic Fields with Large Class Number

Hugh L. Montgomery and Peter J. Weinberger
Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104, USA

Let h, d, & and R be the class number, discriminant, fundamental unit, and
regulator, respectively, of the real quadratic field Q(]/c?). Let y be the primitive
quadratic character (modd), and let

o0

L= Y rmn™.

n=1
Then R=logs, and
L(1, y)=hRd™*. (1)

Since L(1, y)<logd, R>(}+0(1)) logd, it follows that h< 1/5 Moreover, Little-
wood [4] showed that if all nontrivial zeros of L(s, x) lie on the critical line Res =%,
then L(1, y)<(2¢" +o{1)) log logd. Hence

h<(4e”+o(1))d*(logd) ! log logd 2)

assuming the Generalized Riemann Hypothesis, In this paper we show that the
hypothetical estimate {2) can not be improved upon, apart from the value of the
constant.

Theorem. There is an absolute constant ¢ >0 such that
h>cd?(logd)™ ! log logd 3)
Jor infinitely many real quadratic fields Q(W}.

To prove the Theorem we construct d for which R<logd, and L(1, y)>
¢loglogd. Then (3) follows from (1). We consider only square-free d with
d=1(mod4),d=n?+1.Then s=n+}/d <2W<d, and so R <logd. To make L(1,y)
large we wish to have y(p)=1 for many small primes p. By quadratic reciprocity
this amounts to having d lie in certain arithmetic progressions. Following an
argument of Estermann [3], we show in Lemma 1 that such d exist. Then in
Lemma 2 we relate L(1, y) to x(p) for small p. With these lemmas established,
it is then a simple matter to complete the proof of the Theorem.
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Lemma 1. Let D(x;q, a) denote the number of d<x such that d is square-free,
d=n*+1 for some integer n, and n=a(modgq). Suppose that 2|q, and that
(@®+1,q)=1. Then

D(x;q, a)= - [T(=2p"2)+0(x" logx).

pla

Proof. Clearly
D(x;q.a)=  }, Y ur)

ng(x— 112 r2[(n2+1)
n=a(modgq)

=y ury Y 1.
rgx n<i{x— 1312
n=ag{modg)
r2{n2+1)
If (g,r)>1 then the inner sum vanishes, since (n*+1,q)=1 for n=a(modg).
Thus we may suppose that (g,r)=1. We consider r<y, y<r<x separately.

Writing n? + 1 =r%s, we see that

Yo ) 1< Y > 1.

y<r<x ns(x—1)4/2 s<xy~?2 nr
n=aimodq) r2s=n? + |
rlm?+1)
From the theory of Pell’s equation, the number of pairs u, v for which u? —sv* = — 1,

1Zu<U, is €logU, uniformly in 5. Thus the inner sum above is <logx, and so
the contribution of r >y is <xy~%logx. Thus

Dix;q @)= Y pur) Y  1+0(xy *logx).

rsy ng(x—1)1/2
gr=1 n=a({modq)
r2{(n?+1)

For odd m the number of solutions n (modm) of the congruence

n?+1=0(modm) is [] (1 + (:p_l)) =c(m), say.

plm

But 2|q and (g,7)=1, so r is odd, and so the number of n(modgr?) for
which r?|(n*+1), n=a(modg), is c(r’)=c(r). Hence the innersum above
is =c(r) (x*q~ 1r ™ 4+ 0(1)). Now c(r)<d(r) so

Y or)<ylogy, and Y cryr ?<y 'logy.

r<y r>y
Therefore
D(x;q,a>=§ Y ur)c(r)r 2 +0(y logy)+O(x*q ™'y ' logy)
r=1
gry=1

+0(xy %logx).

Taking y=x*, we obtain the result, since the sum over r is

== G
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Lemma 2. Suppose that 0<3d<1. Then for (logq)’<y=<loggq, and y a primitive
character (modqg), > 1,

log (L, )= Y. x(p)p~ ' +04(1)
PEY
unless y lies in an exceptional set &8). The set &(5) contains < Q° primitive characters
¥ with conductor g< Q.

A more precise result of this sort has been given by Elliott [2]; for the sake of
completeness we include a short proof of Lemma 2.

Proof. Clearly

s—1

S ) A (nlogn) = 5 flog Lis, 1) " ds

ol s—1

where the contour is the straight line from c¢—ico to ¢+io, ¢>> 1. Let € be the set
of primitive characters y for which L(s, xj has at least one zero in the rectangle

1-1550=1,  |f=(logg). &

Suppose that y¢ €. Arguing in the usual manner (see Titchmarsh {8, Lemma 3.127]),
we see that the portion of the above integral for which [t = logg contributes <1,
uniformly for x<q. For |t|<logg we take the contour to the abcissa 6=1—14,
passing the pole at s=1 (with residue log L(1, y)). We may neglect higher powers of
primes with error <1, so

logq

dt
Y Hpp —logLl, i+ IIOgL(l—%5+it,x)lw~;-~~.

pEx ~logg o+|i]

But L(s, x)%0 for s in the rectangle (4), which implies that log L(s, y)<;logg in
the integrand above. Hence the above is <1+ x~+? (logq)?. Taking x =(loggq)'*® ",

we find that
logL(L)— ¥ dp)p "<+ Y p i<l

PEY y<pEx
since y=(logq)’.

It remains now to estimate the number of characters lying in the set €=E(5).
Let N(g, T, ) denote the number of zeros g=f+iy of L{s, y) in the rectangle
g B, Iyl £ T From a theorem of Montgomery [6] (see also [7, Theorem 12.2]
or [1, Théoréme 201]),

Y. 3" No, T, ) <(Q*T)*' 7 (1ogQT)° .

94=Q x
Here Y " denotes a sum over all primitive characters y (modg). Thus the number

X
of zeros in question is <€Q° so Lemma 2 is established.
We now complete the proof of the Theorem. Let y=14logx, g=2 [] p, a=0.

BEY

Then g<x7, 2|q, (a*+1,q)=1, and if d=n*+1, n=a(modg), then y(p)= (g) =1
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for all p<y. By Lemma 1 there are »x*q~!» x* such square-free d<x. From
Lemma 2, with §<3, we see that L(1, y)>c, logy>cloglogd for almost all of
these d. This completes the proof of the Theorem.
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